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Abstract. Non linear differential equations in real variables generally present real 
solutions. In present paper the authors report complex solutions, obtained for two 
different sets of equations, namely Yang’s R-Gauge equations in real form and a 
generalization of the Charap’s Chiral equations. The former was reported previously by 
Chakraborty and Chanda in the year 2006 while the later case is located and reported by 
the present authors. The solutions for the two situations have been compared. 
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1. Introduction 
Non-linear differential equations are gradually attracting more and more importance these 
days. The first of the major reasons is, natural manifestations are non-linear in nature. 
Inspite of that scientists study linear approximations of those nonlinear equations because 
of the fact that it is very difficult to manage these nonlinear equations. However, recently 
there has been considerable development in this direction and now it is much easier to 
handle them. This is the second reason why the non-linear differential equations have 
drawn the attention of all the corners of scientific community [1,2,3]. Non-linear 
differential equations in real variables generally present real solutions. But in some 
situations one confronts with complex solutions. Normally people ignore such complex 
solutions. Also, there are examples where complex solution contribute to the physical 
understanding. One of the most celebrated example is the solutions of the Scrodinger 
equation. In order to avoid the absence of physical meaning of the imaginary terms in 
Scrodinger’s wave function the celebrated Born explanation [4] came into rescue with the 
concept  of the probability of a single electron in the hydrogen atom at every point and at 

every instant which is proportional to the probability density ����
�
= ����∗. Two important 

field equations, namely, the Yangs’ R- Gauge equations [5] and the Charap’s Chiral field 
equations [6] have real exact solutions which were reported by various authors 
[7,8,9,10,11,12] . In the present paper the authors report complex solutions for a 
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generalization of the Charap’s Chiral equations and compare them with those reported 
previously by Chakraborty and Chanda [7] for the Yangs’ equations in real form. The 
comparison is worthwhile because of the fact that the two sets of equations are having 
several common features reported previously by Chakraborty and Chanda [7], Chanda, 
Ray and De [12] and Saha and Chanda [13]. At present it has not been possible to assign 
any physical interpretation. However, the physical situation where from the equations 
generate are important. And, the solutions reported here may attract some relevance in 
future. A few words about the similarity of the Yang’s equations and Charap’s equations 
are as follows. First, when written in terms of real variables the two sets of equations look 
similar in form. Second, both of the two sets of equations allow (i) reduction to equations 
in two independent variables which are conformally invariant equations permitting one to 
obtain infinitely many other solutions from any solution of these conformally invariant 
equations, and (ii) those reduced equations closely resemble to generalized Lund-Regge 
equations [14,15] given by 
 

	
2 2

11 22 1 22 ( ) ( )( ) 0g hθ θ θ θ λ λ+ − + + = 																																																																																					(1
)																 
 

1 1 2 2[ exp( ( ) ] [ exp( ( ) ] 0p d p dλ θ θ λ θ θ− + − =∫ ∫ 																																																																			(1b)																															                    
 

where  = (��, ��), � = �(��, ��), � = ��
���  and so on. 

With g=0, the equations reduce to a conformally invariant set of equations, a particular 
example of which is the physically interesting equations of two dimensional Hiesenberg 
ferromagnets [16,17]. 
 
2. The equations under study 
The generalized form of Charap’s equation used here has been reported for the first time 
in the work of Saha and Chanda [13]. 

' '' 'k
x x

µν

µ ν
φ βφ η ∂ ∂=

∂ ∂ 																																																																																																															(2.1a)  
' '' 'k

x x
µν

µ ν
ψ βψ η ∂ ∂=

∂ ∂ 																																																																																																														(2.1b)	 
' '' 'k

x x
µν

µ ν
χ βχ η ∂ ∂=

∂ ∂ 																																																																																																														(2.1c) 
where 

'

11 22 33 44φ φ φ φ εφ= + + +  
 

2

2

1 111 1
,

x x

φ φφ φ∂ ∂= =
∂ ∂  

where 
�′	�� = 0	�� 	! ≠ #  
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          = 1	�� 	! = # ≠ 4 
										= %	�� 	! = # = 4  
% = +1	� − 1  
( ′′ = 
 )*+ 
 ,	-�./+
.+.  
0 = ln	(�3� +4� +�� + 5�)  
�3 = -�./+
.+  
 
Equations (2.1) can be written explicitly as 

''
11 22 33 44 1 1 2 2 3 3 4 4( )kφ φ φ εφ φ β φ β φ β εφ β+ + + = + + + 																																																				(2.2a) 

''
11 22 33 44 1 1 2 2 3 3 4 4( )kψ ψ ψ εψ ψ β ψ β ψ β εψ β+ + + = + + + 																																											(2.2b) 

''
11 22 33 44 1 1 2 2 3 3 4 4( )kχ χ χ εχ χ β χ β χ β εχ β+ + + = + + + 																																														(2.2c) 

 where  0 = ln	(�3� +4� + �� + 5�)  
�3 = -�./+
.+  
 The equations (2.1) and (2.2) with ( ′′ = 1 and % = −1 represent the celebrated 
Charap’s equation. The equation were first written by Charap to describe Chiral field [6]. 

6� 	( ′′ = 7
�
	 , % = ±1  

Solutions of (2.2) as obtained by present authors are given by 
''2 2 2 2( ) ,  ( ),  ( )kf dX X Xπφ φ ψ χ φ φ α α= + + + = =∫ 																																																	(2.3a) 

( )
"

2 2

3 22 2 2 k

A B

f
φφ

π

αα
α φ α

= +
+ +

																																																																																															(2.3b) 
cosψ α θ= 																																																																																																																																	(2.3c) 
sinχ α θ= 																																																																																																																																	(2.3d) 

where 

( )
":

2 2 2

2

k
f

A dX BY C
π φ α

θ
α

 + + = + +
  
 

∫
																																																																									(2.3e) 

<, =	
.>	? are constants of integration which are again functions of (�7 − �@) and 

11 22 0X X+ = 																																																																																																																													(2.3f)  

11 22 0Y Y+ = 																																																																																																																																	(2.3g)                                                                                                                                                    

1 2X Y= 																																																																																																																																									(2.3h)  

2 1X Y= − 																																																																																																																																						(2.3*)  
i.e. D	
.>	E are mutually conjugate Laplace solutions. 
 
The procedure for obtaining (2.3) is the same as that used from the equation (5) to the 
equation (17) of the work of Chanda, Ray and De [12]. 
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" 3
For ,  0, 0

2
k A B= ≠ ≠

  

( )
2 2

2
3 5

2

4

A B
φ α

α
α α

= +
  

2 2 2where fπ φ α+ =   
Integrating we get, 

4 2 2 2

2

16 16

4

D A B
φ

α αα
α

− −=
  

where F is an arbitrary constant 
2

4 2 2 2

4

16 16
X

dX

d D A B

αφ
α α α

=
− −   

Integrating both sides, we get 

3/ 2 4 2 2 2

4

2 16 16

d
X

D A B

α
α α α

=
− −∫

  
After integration we get 

2

2 2
1

3/ 2 22

2 2

1 8
2

sin
2 8 16

A

BX E
B A D

B B

α−

 
 + 

= − + 
  

+  
      

where G is an arbitrary constant 
22

2 2

8 16
Let 

A D
F

B B

 
= + 

    

							

2

2

8A
G

B
=

  
2

2

8
Taking 1;  we get 0 and 

G A
D F

F B
= − = = −

  
Under these assumptions we get, 

3/ 21 2 ( )
cos

4 42

B E X
ec

F

πα  −= + 
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3/ 22 ( )
4 4log tan

2

B E X

i BY C

π

θ

 − +  = + + 
 
     

( )
"

2 2 2Now 
k

f dXπφ φ α= + +∫   

" 2 2 23
We have ,

2
k fπ φ α= + =

  
3/ 2 3So 2 dXφ α= ∫   

Substituting the value of  and integrating we get,α   
3/2

2 3/2 3/2

3

2 ( )
2 ( ) 2 ( ) 4 4cosec cot log tan

16 4 4 4 4 2

B E X
B B E X B E X

iA

π
π πφ

  − +     − −  
 = − + + +     
      
      

Thus we get 
 
 

3/2

2 3/2 3/2

3

2 ( )
2 ( ) 2 ( ) 4 4cosec cot log tan

16 4 4 4 4 2

B E X
B i B E X B E X

A

π
π πφ

  − +     − −  
 =− − + + +     
      
      

 
 

3/ 2

3/ 2
2 ( )

2 ( ) 4 4cosec [ sinh log tan sin( )
4 4 4 2

B E X
B B E X

BY C
A

π
πψ

  − +   −    = + − +     
     

       
         

                   

3/ 22 ( )
4 4  cosh log tan cos( )]

2

B E X

i BY C

π  − +     − +   
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3/ 2

3/ 2
2 ( )

2 ( ) 4 4cosec [sinh log tan cos( )
4 4 4 2

B E X
B B E X

BY C
A

π
πχ

  − +   −    = + +     
     

      

                            

3/ 22 ( )
4 4  cosh log tan sin( )]

2

B E X

i BY C

π  − +     − +   
   

      

 
3. Comparison of the situation reported in Section-2 with that was reported 
previously by Chakraborty and Chanda [7] for the Yang’s R-gauge equations in 
real form 
 
The Yang’s R-gauge equations[5] read in real variables as stated below [5] 

( ) ( ) ( )2 2 2 2 2 2 2 2
11 22 33 44 1 2 3 4 1 2 3 4φ φ φ φ φ φ φ φ φ ψ ψ ψ ψ+ + + = + + + − + + +

  

															 ( ) ( )2 2 2 2
1 2 3 4 1 2 2 1 4 3 3 42χ χ χ χ ψ χ ψ χ ψ χ ψ χ− + + + − − + −

																															(3.1
) 

( ) ( )11 22 33 44 1 1 2 2 3 3 4 42φ ψ ψ ψ ψ φψ φ ψ φψ φ ψ+ + + = − + − ( )1 2 2 1 4 3 3 42 φ χ φ χ φ χ φ χ+ − + −
	(3.1b)          

( ) ( )11 22 33 44 1 1 2 2 3 3 4 42φ χ χ χ χ φ χ φ χ φ χ φ χ+ + + = − + −
2 1 1 2 3 4 4 32( )φψ φψ φψ φψ+ − + − 	(3.1c)            

2

2

1 111 1
where , ,i

x x

φ φρ ψ χ φ φ∂ ∂= + = =
∂ ∂                    

Chakraborty and Chanda [7] obtained the complex solutions with the attempt to generate 
exact solutions for the Yang’s equations from some trivial solutions of the same equation. 
This is a part of the formalism due to Weiss, Tabor and Carnavale [18] in relation to 
Painleve properties for the partial differential equations. 
             However they reported the solutions to be 

																																																							 ( )( )2 / lnHiφ ζ ζ=
																																																							(3.2a) 

																																																							 ( )( )/ lnHψ ζ ζ=
																																																											(3.2)) 

																																																							 ( )( )/ lnHχ ζ ζ=
																																																											(3.2-) 

 where H is an arbitrary constant and  satisfiesζ  

																																																							 11 22 33 44 0ζ ζ ζ ζ+ + + = 																																																		(3.2d)         
which are not correct. Solutions achievable through their procedure has been calculated 
by the present authors     

																																																						 2 ln

i

H
φ

ζ ζ
=

																																																																	(3.3
)   



On Some Complex Exact Solutions for Charap’s Equations in a Generalized Form   

205 
 

																																																						

1

2 lnH
ψ

ζ ζ
=

																																																																			(3.3))           

																																																						

1

2 lnH
χ

ζ ζ
=

																																																																			(3.3c) 

  where H is an arbitrary constant and  satisfiesζ                

    11 22 33 44 0ζ ζ ζ ζ+ + + =              
 
4. Comparison and summary                       
(i) Complex solutions for both the equations (2.2) and (3.1) are in terms of Laplace 
solutions. The solutions reported for Yang’s equations expressed in terms of ζ which 
satisfied the Laplace equation in four dimension (Equation  3.2d). The solutions reported 
for the Generalized Charap’s equations are expressed in terms of X  and Y which are 
mutually conjugate Laplace solutions(Equation 2.3f, 2.3g, 2.3h, 2.3i). 
(ii) In both the cases 44∗, ��∗, 55∗ can be expressed in the real form in a very straight 
forward way. 
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