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Abstract. In recent years, many analytical and numerical pdthhave emerged which
are being used to obtain approximate solutions wide range of problems arising in
mathematical modeling of linear and nonlinear ptgisand engineering problems. In this
paper we study the application of the homotopyypkdtion method (HPM) to obtain
analytical approximate solutions of the nonlinedfedcential equations which model a
coupled spring system with and without damping amxtlernal driving force. The
application of the method is found to be justifiegd a good agreement between the
results of HPM and the corresponding numerical amained by usinylathematica 9.
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1. Introduction

From the mathematical point of view, most of thal iworld physical and engineering
problems are modeled as differential equations.l&#&tandard solution procedures exist
for linear differential equations, nonlinear eqaas are rather difficult to solve, and in
some cases, it is virtually impossible to find dxaelutions. Mathematicians are in a
constant search of new techniques to find analjgiexact or approximate solutions for
nonlinear ordinary and partial differential equagowhich model diverse fields of
science and engineering. Some of the recently dpedl and popular methods used to
find approximate solutions to nonlinear problems &he homotopy perturbation method
(HPM) [1-7], the variational iteration method (VIM}8-10], and the Adomian
decomposition method [11, 12]. The homotopy pegtiom method, introduced by the
Chinese mathematician Dr. Ji Huan He in 1998, lmmsecto be accepted as an elegant
tool in the hands of researchers looking for simpde highly effective solutions to
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complicated problems in many diverse areas of seieand technology. It has been
employed to solve a large variety of linear andlinear problems and found to provide
highly accurate solutions in comparison with nuicariechniques. In [13] and [14] He
applied the HPM for solving nonlinear boundary eafroblem and Blasius differential
equation, respectively. Ganji and Rafei used thé/HP [15] to obtain solitary wave
solutions for a generalized nonlinear Hirota-Sasuwoupled KdV partial differential
equations. This HPM has also been successfullyieappb problems relating to the
Laplace equation [16], heat radiation equations],[IYonlinear dispersiveK(mp)
equations [18], nonlinear integral equations [18pnlinear heat conduction and
convection equations [20], nonlinear Schrddingenatigns [21], nonlinear oscillators
[22], nonlinear wave equations [23], nonlinear clstp problems [24], and to other
fields [25-32]. The HPM yields a very rapid convemge of the solution series in most
cases, usually only a few iterations leading ty \&mcurate solutions.

The aim of this article is to extend the applicatf the He’'s HPM to solve a
system of nonlinear ordinary differential equatiavisich give a mathematical model of
coupled spring systems [33/lathematica 9.0 software has been used for computing and
testing the accuracy of the analytical approximdfM solutions compared with the
numerical solutions.

2. Formulation of the Problem
The coupled spring system we study consists ofspvings and two weights. One spring,

having spring constak{ is attached to the ceiling and a weight of magss attached to
the lower end of this spring. To this weight, acs®t spring is attached having spring
constank, . To the bottom of this second spring, a weighthassm, is attached and the

entire system appears as illustratedrigure 1. Allowing the system to come to rest in
equilibrium, we measure the displacement of thereeaf mass of each weight from

equilibrium as a function of time, and denote thessasurements by, (t) and X, (t)
respectively.

Figure 1: The coupled spring syste
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Assuming Hooke's Law, under the assumption of swstillations, the restoring
forces are of the form-k;|, and —k,l, where |, and |, are the elongations (or
compressions) of the two springs. Since the uppesns attached to both springs, there
are two restoring forces acting upon it: an upwastoring force— k, X, exerted by the

elongation (or compression, of the first spring; an upward forcek, (X, —X;) from
the second spring’s resistance to being elongateccdmpressed) by the amount of
X, =% . The second mass only ‘feels’ the restoring foficen the elongation (or

compression) of the second spring. If we assume tthere are no damping forces
present, then Newton’s Law implies that the twoagiquns representing the motions of
the two weights are

n'[Xi' = _lel_ kZ(Xl_ X2) (1)

mzxg = _kz(xz - X]) 2
where primes denote derivation with respect to tiffleus we have a pair of coupled
second-order linear differential equations

The most common type of damping encountered innoémg courses is that of
viscous damping; the damping force is proportidnathe velocity. The damping of the
first weight depends solely on its velocity and tia velocity of the second weight, and

vice versa. We assume that the damping coefficiéptand J, are small. We add
viscous damping to the model by adding the terdyx; to the equation (1) and-9,X,
to the equation (2).

If we assume that the restoring forces are nonlinglaich are most certainly the
cases of large vibrations, we can modify the maaelordingly. Rather than assuming
that the restoring force is of the formkx (Hooke's law), we assume the restoring force

has the form-kx + £x*. We add nonlinearity to the model by adding thentes,x°

and £, (%, — x2)3 to the equation (1) and, (X, — x1)3 to the equation (2). The range of
motions for such nonlinear model is much more caragd than that for the corresponding
linear model. An idea of this range of motions dasingle spring model is given in [34].
Moreover, accuracy questions arise when solvingetteguations. No numerical solution
can be expected to remain accurate over long timtervials. The accumulated local
truncation error, algorithm error, round off errpropagation error, etc., eventually force

the numerical solution to be inaccurate. This gdssed in some detail in the interesting
papers by Knapp and Wagon [35], and by Fay andeio({g6, 37].

It is a simple matter to add external forcing te thodel. Indeed, we can drive
each weight differently. Suppose we assume simpheissidal forcing of the
formF cosat. Then the model becomes

M = =8, ~ KX+ 4G =K X X )+ 4 {X =X }° + F goswt, @
M, = =3¢, =K, (X,= X) + 11 {X = X)* + F goswt )
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The range of motions for nonlinear forced modelguige vast. We can expect to
find bounded and unbounded solutions (nonlineaonasce), periodic solutions that
share the period with the forcing (called harmosidutions) and solutions that are
periodic with a period of a multiple of the drivipgriod (called sub harmonic solutions),
and steady state periodic solutions (limit cyclethie phase plane). The conditions under
which these motions occur are by no means easat® s

3. Homotopy Perturbation Method
To illustrate the homotopy perturbation method,oamsider a general equation of the type,

Au(x))-f(r)=0,rdQ (5)
With the boundary conditions B[u, %) =0, rar (6)
X

where Ais the general differential operatoB is the boundary operatof; is the
boundary of the domaif) and f(r) is a known analytical function. Generally

speaking, the operatdh can be divided into a linear pdrtand a nonlinear paN. Now
equation (5) can be written as:
L(u(x)) + N(u(x)) - f(r) =0 @)

By the homotopy perturbation method, we construct heamotopy as
v(r, p): Qx[01] -~ Rwhich satisfies the following equation:

H(v, p) = @~ p)[L(V) — L(u,)] + pLA(V) — £ ()] =0 ®)
wherep [J[0, 1] is an embedding parameter augis an initial approximation of equation

(5), which satisfies the boundary conditions. Cdesing equation (8), we will have
H(v,0)=L{¥)-L(u,)=0 )
and H,)=AW)-f()=0 (10)

The changing process pffrom zero to unity is just that of(r, p) from u,(r)

to u(r) . In topology this is called deformation ahdV) —L(u,) and A(v) - f(r) are
called homotopy.

According to the homotopy perturbation theory, @ €irst use the embedding
parametemp as a small parameter and assume that the solutiegquation (8) can be
written as a power seriesjiras follows:

V=V, + v, + P2V, + PV F e, (11)

To obtain the approximate solution of equations@ifingp =1, we have
u:Iimlv:vO+vl+v2+v3+ ................ (12)
pP-

The equation (12) is convergent for most cases. evew the convergent rate
depends on the nonlinear operaigv) .
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4. Application of the Homotopy Perturbation Method (HPM)
Writing X for X, andy for X, we may rewrite the equations (3) and (4) as fallow

ran" = _51X' - klx_ kz(x —y)+ :ulxs + /Uz(x - Y)3 +F,coswt (13)
m,y" = =38,y ~ky(y = X) + t,(y = X)° + F ,cosw} (14)

According to the equation (8), we consider theofelhg homotopy for the (13)
and (14) are

MX" + X +KX =K, (y=X) + p| =ux° + 11y = X)° = F,coswt | = 0(15)
My" + 3,y +K,(y = %) + p[ ~4,(y = %)°* = F,coswt | = 0 (16)

As outlined above, the basic assumption is thatstiletions of equations (13)
and (14) can be written as power serieg:in

X=X+ le+p2X2+ ............ (17)
y = yO + py1+ p2y2+ ............ (18)

Therefore, substituting (17) and (18) into (15) 4thd), and then equating the
terms with identical powers gf, we can obtain the following set of linear differiaht

equations:
0. k1xo+kzxo_k2yo+5?(é+mf(g =0

p
KXo Kot 05y t My, =0
—F,costaw, — Xy — XS +HKX FK X+ U XYy & XY
pl: +:“2Y03_k2y1+51)(1+m1x'1' =0 x(0)= O’X'l(o): 0
—F,costaw, + 1,X; ~KX,—= UXgY ot XY oMY otKYy
+3,y, +myy; =0 ¥,(0)=0,y, (0)=C

Case | (undamped undriven motion): In the absence of damping and external driving
force, i.e., F,=0,F,=0,0,=00,= 0 we choosem =m, =1, k =0.4, k, =1.808,
M, =-0.16, 1, =—0.1.Then subject to the initial conditiong0)=0.005 y(0)=0.001

the first few approximations of the homotopy pdration solutions for equations (13)
and (14) are derived in the following forms:

X, =0.0027228*%°%19" ¢050.435 0.0022779c0S1i
y, =0.003039822%°%19™ ¢050.485 0.00203982 COs 1t
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x, = (-2.95646¢ 107e*%°219"t + 2 93066 I0e’®* ' )cos0.4:
+(7.57125 7.438682°%19°t 3 10 cosl.956 {2.38003°1
(e2002107°t _ g 7808 10%y _ 1 78825 10 @ 2°% 1Vt 1sin 0.4347
+{1.13789x10° (1- e>2°* 19" )~ 1.8243% 10% }sin1.956

y, = (-3.11678 107e*°°%1%" + 313196 10 ’® " )co0s0.4347
+1.38875¢ 10°e2°*1%" £0s1.08686 1.14846 3¢ 00% 10
-1.1091% 10° cos1.956 {2.65883 *1@*f°% 10" —g 7808 [Tty
~1.99697% 10°e*%°%19" 15in 0.435- {1.01896 10 {>2°*1" )

cos1td

-1.63365¢ 10°t }sin1.956

Therefore, the solutions up to first approximatiohthe equations (13) and (14) are
X=X +tx andy =Yy, +y,

Table 1: Comparison between the HMP and Numerical resuttsft) and y(t)

Time Homotopy Results Numerical Results Errorsin %

® X(1) y(® X(1) y(® X(1) y(

0 0.00¢ 0.001 0.00¢ 0.001 0 0

4 -0.0003895 | -0.000567. |-0.0003895 |-0.0005672 | 0.00985. |0.0047413
8 -0.0048439 |-0.0008333 |-0.0048437 |-0.0008334 {0.003387 | 0.016600
12 0.0011179 | 0.0016448 | 0.001117' | 0.0016447 |0.004462'/0.0022248
16 | 0.0043926 | 0.0003523 | 0.0043924 | 0.0003525 |0.005760| 0.072919
20 |-0.0016998|-0.0025573| -0.001699 |-0.0025573|0.002568|0.0009502
24 -0.0036956 | 0.0003880 |-0.0036952 | 0.0003877 {0.011408 | 0.084028.
28 0.0020559 | 0.0032155 | 0.0020559 | 0.0032156 |0.001117'|0.0005463
32 0.0028286 |-0.0013032 | 0.0028281 {-0.0013027 |0.016817 | 0.035623
36 |-0.0021324|-0.0035585 |-0.0021324 |-0.0035584 |0.001727'/0.0011879
4C |-0.0018858 | 0.0022880 |-0.0018852 | 0.0022875 |0.031805'| 0.024074

This fact is graphically shown figure 2.

Case |l (damped undriven motion):

In the absence of the external forces, that is

F, =0, F,=0,we choosem =1, m, =1, k =3, k,=2, 9,=0.1, J,=0.2, 1 =0.16,
M, =0.1. Then subject to the initial conditions(0)=0.6, y(0)=0.2, the first few

approximations of the homotopy perturbation sohgidor equations (13) and (14) are

derived in the following forms:

X, =0.19970@&°°* c0s0.996 0.400284°%

+0.005252°% sin0.9a6+ 0.015042°
Yy, =0.399898°° c0s0.996- 0.19989%"

+0.0184&7°° sin0.996+ 0.002288°°
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x =0.00063@°** c0s0.456- (0.00005%1*" + 0.000&99*
-0.00182&°° )cos0.996 (0.000628°* + 0.00281%5*
-0.0024387°°" )cos2.448 0.00006%*" c0s2.988

+0.00025%°?" c0s3.90F 0.026&°** cos4.441
+0.00004@%%" c0s5.893 0.0001F7'* cos7.845
-0.0000727°** sin0.456- (0.000869°"+ 0.01%38*
-0.01648%7°°" )sin0.996- (0.008443** + 0.043@5%"
-0.0522127%%°%)sin 2.448- 0.0000&L%** sin4.441
y, = -0.00026&%** c0s0.456 (0.0001&6°™ + 0.0044726"
~0.00432°% )c0s0.996- (0.000184%* - 0.000805°  )cod@ 4
-0.0000587%%" c0s2.988 0.0005¢2*" cost3:9 0.00@08%
Ccos7.845

cos4.44-0.0002&°*" c0s5.893 0.00018"

(0.00174&°*" + 0.030821°%" -

0.032965"°

+(0.00420&7°** + 0.021965°"* - 0.026086"°
Therefore, the solutions up to first approximatiohthe equations (13) and (14) are

X=X +tX andy=Yy,+y,

Table 2: Comparison between the HPM and Numerical resoitg(f) and y(t)

)sin 0.896
)sin 2.448

Time(t) Homotopy Results Numerical Results Errorsin %

X(t) y(t) X(t) y(t) X(t) y(t)

0 0.€ 0.2 0.€ 0.2 0 0
4 -0.40196. | -0.052237 | -0.40149! | -0.052366 |0.11666.| 0.24626!
8 0.19956! -0.10076¢ | 0.19891! -0.10040i |0.32703!| 0.35852!
12 -0.059897 | 0.15306. | -0.059501 | 0.15260! |0.66458!| 0.30055.
16 -0.009006' | -0.1090: |-0.0090428,| -0.10871' |0.40048:| 0.27692
20 0.032573' | 0.02840. | 0.032343 | 0.028394 |0.71216:/0.021763
24 -0.038733. | 0.034094 | -0.038357 | 0.033856 |0.97974(| 0.70284:
28 0.042233 | -0.057284 | 0.041799. | -0.056948 | 1.0385: | 0.59123:
32 -0.044983 | 0.049299. | -0.044554¢ | 0.048994 |0.96298'| 0.62284
36 0.04370: | -0.029235 | 0.043334 | -0.029024 |0.86114.| 0.72923
40 -0.036487 | 0.011950 | -0.036205. | 0.011832 |0.77791:| 0.9962¢

This fact is graphically shown figure 3.

Case Il (undamped driven motion):

In the absence of the damping, thai©js-0,

J, =0,we choosem =1, m, =1, k; =0.4, k,=0.5, 14, =-0.16, 1, =-0.1 F, =0.005,
F,=0.003, ¢4 =0.5, w, =0.4. Then subject to the initial conditions(0) = 0.005.
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y(0) = 0.001, the first few approximations of the homotopy pdsation solutions for
equations (13) and (14) are derived in the follayiorm:
X, =0.00203576c0s0.402 0.00296424cos1t.

Yy, =0.00300689c0s0.402 0.00200689 cos1it:

X =(-7.48048c0s0.309- 3.1403c0s0.462 4.04155c0s1.113
+1.12146c0s1.206- 2.75918 sin0.462 6.994611<in3 )x 10°
+0.9375c0s04~ 0.0142857cosDi5 (7.02903c0s1.917
+4.2854c0s3.339% 1¢

y, =(-8.38175¢c0s0.309- 5.8168c0s0.462 4.07%541 sin@.402
+4.73558 sin1.1113% 18+ 1.3875cosD4 0.028571cas0.5
+0.00147389co0s1.113 (6.9283c0s1.B24 5.47984cosfl.206

-2.13792c0s1.91# 3.25223c0s2.62819®L35c0s3.339% I’
Therefore, the solutions up to first approximatidrthe equations (13) and (14) are
X=X +xandy=y,+y,
Table 3: Comparison between the HPM and Numerical resattx(t) and y(t)

Time Homotopy Results Numerical Results Errorsin %
© X(t) y() X(t) y() X(t) y(t)
0 0.00¢ 0.001 0.00¢ 0.001 0 0

4 0.011992 | 0.021188 | 0.01199! | 0.021188 |0.0011300| 0.000592

8 -0.010706. | -0.012236 |-0.010706 |-0.012237'|0.0044101| 0.010370

12 -0.031846 | -0.055163 |-0.031837 |-0.055157.| 0.027139 | 0.011750

16 0.024417 | 0.039061 | 0.024429 | 0.039083 | 0.050639 | 0.057961

20 0.042079 | 0.069653 | 0.042032 | 0.069611 | 0.11276 | 0.059470

24 -0.038278 | -0.065571. |-0.038328 | -0.065655.| 0.1303: 0.1275:

28 -0.043781 | -0.066764 |-0.043652 |-0.066641 | 0.29418! | 0.18410-

32 0.045443 | 0.077818 | 0.0455! | 0.077988 | 0.2334! | 0.21723.

36 0.043733% | 0.060149. | 0.043498 | 0.059915: | 0.54069i | 0.39022!

40 -0.044838 | -0.073400 |-0.044998 |-0.073659.| 0.3557¢ 0.3512¢

This fact is graphically shown in thegure 4.

Case |V (damped driven motion): In the presence of both damping and external forces
we choosem =1, m,=1, ¢,=0.2, §,=0.3, k=6, k,=4, 1 =0.16, u,=0.1,
F,=0.3, F,=0.2, @ =1, w,=0.6. Then subject to the initial conditiong0)=0.7,
y(0)= 0.2, the first few approximations of the homotopy pdration solutions for the
equations (13) and (14) are derived in the follapiorm:

Xy = 0.21982%°'" cos1.4@# 0.4801¢5%" cos3#

+0.01121@7%™ sinl1.407 0.019584'  sin 3.4¢
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X

Y1

Homotopy Perturbation Method

=0.439932°' co0s1.4Q7 0.239982'" cos3H
+0.02865@°'* sin1.407 0.0014&9'"  sin 3.4¢
=0.041418cos 016+ 0.00046%°* c0s0.647 0.07768¢0s
(0.0002327°% - 0.105¢ °** )cosl1l.40¥ (0.000453* +

0.00228887°% - 0.01688°! )cos3.462 0.0001698%  co$&.5
~0.0001987°* c06.277% + 0.000038°%* c0s8.382 0.00085%32
c0s10.386+ 0.004771sin@.6 0.000@64%  sin 01647
0.0149435sin- (0.000526% + 0.009358% +  0.0817° )
sin1.407 - (0.005568%** + 0.029089* -0.033742 "' )sin 3.4
~0.000131sin5.924 0.000064°% sin6.2#7 0.000587.924
=0.099959Cc0s016- 0.000168%°% c0s0.647 0.100541
+(0.00006@7°%% + 0.003435°% - 0.211367% )cosl.t
~(0.0001127°% - 0.000116°%* - 0.007845" )cos 3.4
~0.00006@7°** cos4.222 0.000398°% c0s5.516

+0.0000& % c0s6.2%7 0.000167°* c0s8.832
+0.000158°% c0s10.386 0.010121sint+6 0.030327
~(0.0010527°4% + 0.018746°% + 0.026468° )sin1.4C
+(0.0027&7°* +0.01468%°% - 0.017128°™" )sin 3.462

Therefore, the solutions up to first approximatifrihe equations (13) and (14) are

X=X +x andy=y,+y,

Table 4: Comparison between HPM and Numerical resultsxy and y(t)

Time Homotopy Results Numerical Results Errorsin %

® X(t) y() X(t) y(®) X(t) y(®)

0 0.7 0.z 0.7 0.z 0 0

4 0.073205 | -0.098832 | 0.071574 |-0.098609 | 2.2788: 0.22638:
8 -0.13731: | 0.11092. -0.13680. | 0.11380! 0.3737: 2.5326.
12 |-0.024788.| 0.17134. | -0.022823 | 0.17281. 8.606" 0.8499!
16 -0.10689! -0.239¢ -0.106: -0.23942. | 0.65800" | 0.073556
20 0.12281: | 0.10808: 0.12267' | 0.10822' | 0.11144:. | 0.13685:
24 | 0.019240( | -0.010578 | 0.018969 |-0.010678| 1.4298! 0.93536:
28 -0.11235: | -0.13494. | -0.11244. | -0.13513 | 0.080235: | 0.14381.
32 0.10392. 0.20430. 0.10398: 0.20427. | 0.058519 | 0.013649
36 |-0.057144:| -0.13210. | -0.057187 | -0.13215: | 0.075518 | 0.040542
40 |-0.021096¢| -0.013231 | -0.021121 |-0.013238:| 0.11660- 0.0529¢

This fact is graphically shown figure 5.
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5. Result and discussion

The homotopy perturbation method is successfullpliag to solve the nonlinear
ordinary differential equations governing the motif a coupled spring system. To test
the accuracy of the HPM results, we match our tesuith the numerical results obtained
by usingMathematica 9.0. The solution obtained by Homotopy perturbatitethod is an
infinite series for appropriate initial conditionReasonably appropriate values for the

spring constantk;, k,, damping constant, o, , nonlinear constanys,, 1/,, forcing
constant F;, F, and @, @, are taken for computing HPM solutions. Comparison
between these and the corresponding numericaligadutomputed by thlathematica
9.0 program for various values bdfare shown in the figures frofigure 2 to Figure 5

respectively in all four cases we study. These tewla represent a wide variety of
interesting motions.

Displacement
i - Homotopy Besults for x(t}) - Homotopy Results for w(t)
E'm}ﬁ: s Numerical Results for gt} == Numencal Besults for vt}
\ f "
1 [ i
o004} Ny Al i\ AT
38 I\ :'.'g i A
_" ' I 1 -,l,- ‘
B : \/ af 11 \n
0.002 !"n'- '_.«‘[ :li | hﬂ, A T .
il THAARTY FT A1 B !
"H‘.*l' ﬂ""il‘“ll‘f "l,‘*"l"i.l“' ‘v,!
F A VY VL AL VLn . .
v N 3T I i T 71 F 4 'H'_n_ Time
LT AA L BETNNE T E ‘A | PO
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Figure2: Comparison forF, =0, F, =0, 4, =0, §,=0, m =1, m, =1, k, =0.4,
k, =1.808, 1, =-0.16, u, =-0.1 and the initial conditions(0) = 0.005 y(0)=0.001
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Figure3: Comparison for, =0, F, =0, 6,=0.1, J,=0.2, m =1, m, =1, k =3,
k, =2, 1, =0.16, 1, =0.1 and the initial conditionx(0) = 0.6, y(0)=0.2.
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Figure 4: Comparison forF, =0.005, F, =0.003, 4, =0, J,=0, m =1, m, =1, k =0.4,
k,=0.5, 1, =-0.16, i, =-0.1,4 =0.5, w, =0.4and the initial conditionx(0) = 0.005
y(0)=0.001
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Homotopy Fesults for x(t) —— Homotopy Results for wit)
+ Numerical Results for x(t) -~ Numerical Results for y(f)
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Figur-e5: Comparison forF, =0.3, F,=0.2, §,=0.2, 9,=0.3, m =1, m, =1, k =6,
k,=4, 1,=0.16, 1, =0.1, &y =1, w, =0.6and the initial conditionx(0) = 0.7,
y(0)=10.2.

6. Conclusion

In this article, the homotopy perturbation methB®i1) has been successfully applied to
solve the dynamics of a coupled spring system withic nonlinearity. Our results
suggest that it is an efficient method for obtajngolutions of nonlinear differential
equations governing the motion of such problem®yTdiso confirm the simplicity and
efficiency of the method for solving any nonlineardinary differential equation or
systems of nonlinear ordinary differential equadiolt is also observed that the HPM is a
promising method for solving other linear and noedir partial differential equations.
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