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Abstract. In recent years, many analytical and numerical methods have emerged which 
are being used to obtain approximate solutions of a wide range of problems arising in 
mathematical modeling of linear and nonlinear physical and engineering problems. In this 
paper we study the application of the homotopy perturbation method (HPM) to obtain 
analytical approximate solutions of the nonlinear differential equations which model a 
coupled spring system with and without damping and external driving force. The 
application of the method is found to be justified by a good agreement between the 
results of HPM and the corresponding numerical ones obtained by using Mathematica 9. 
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1. Introduction 
From the mathematical point of view, most of the real world physical and engineering 
problems are modeled as differential equations. While standard solution procedures exist 
for linear differential equations, nonlinear equations are rather difficult to solve, and in 
some cases, it is virtually impossible to find exact solutions. Mathematicians are in a 
constant search of new techniques to find analytically exact or approximate solutions for 
nonlinear ordinary and partial differential equations which model diverse fields of 
science and engineering. Some of the recently developed and popular methods used to 
find approximate solutions to nonlinear problems are  the homotopy perturbation method 
(HPM) [1-7], the variational iteration method (VIM) [8-10], and the Adomian 
decomposition method [11, 12]. The homotopy perturbation method, introduced by the 
Chinese mathematician Dr. Ji Huan He in 1998, has come to be accepted as an elegant 
tool in the hands of researchers looking for simple yet highly effective solutions to 



Md. Abdul Alim, M. Abul Kawser and Md. Mizanur Rahman 

100 
 

 

complicated problems in many diverse areas of science and technology. It has been 
employed to solve a large variety of linear and nonlinear problems and found to provide 
highly accurate solutions in comparison with numerical techniques. In [13] and [14] He 
applied the HPM for solving nonlinear boundary value problem and Blasius differential 
equation, respectively. Ganji and Rafei used the HPM in [15] to obtain solitary wave 
solutions for a generalized nonlinear Hirota-Satsuma coupled KdV partial differential 
equations. This HPM has also been successfully applied to problems relating to the 
Laplace equation [16], heat radiation equations [17], nonlinear dispersive K(mp) 
equations [18], nonlinear integral equations [19], nonlinear heat conduction and 
convection equations [20], nonlinear Schrödinger equations [21], nonlinear oscillators 
[22], nonlinear wave equations [23], nonlinear chemistry problems [24], and to other 
fields [25-32]. The HPM yields a very rapid convergence of the solution series in most 
cases, usually only a few iterations leading to very accurate solutions. 
 

The aim of this article is to extend the application of the He’s HPM to solve a 
system of nonlinear ordinary differential equations which give a mathematical model of 
coupled spring systems [33]. Mathematica 9.0 software has been used for computing and 
testing the accuracy of the analytical approximate HPM solutions compared with the 
numerical solutions. 
 
2. Formulation of the Problem 
The coupled spring system we study consists of two springs and two weights. One spring, 
having spring constant1k  is attached to the ceiling and a weight of mass 1m  is attached to 
the lower end of this spring. To this weight, a second spring is attached having spring 
constant 2k . To the bottom of this second spring, a weight of mass 2m  is attached and the 
entire system appears as illustrated in Figure 1. Allowing the system to come to rest in 
equilibrium, we measure the displacement of the centre of mass of each weight from 
equilibrium as a function of time, and denote these measurements by )(1 tx and )(2 tx  
respectively. 

 
Figure 1: The coupled spring system. 
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Assuming Hooke’s Law, under the assumption of small oscillations, the restoring 
forces are of the form 11lk−  and 22lk− where 1l  and 2l  are the elongations (or 
compressions) of the two springs. Since the upper mass is attached to both springs, there 
are two restoring forces acting upon it: an upward restoring force 11xk−  exerted by the 

elongation (or compression) 1x  of the first spring; an upward force )( 122 xxk −−  from 
the second spring’s resistance to being elongated (or compressed) by the amount of 

12 xx − . The second mass only ‘feels’ the restoring force from the elongation (or 
compression) of the second spring. If we assume that there are no damping forces 
present, then Newton’s Law implies that the two equations representing the motions of 
the two weights are  

1 1 1 1 2 1 2( )m x k x k x x′′ = − − −              (1) 

2 2 2 2 1( )m x k x x′′ = − −                (2) 

where primes denote derivation with respect to time. Thus we have a pair of coupled 
second-order linear differential equations. 
 

The most common type of damping encountered in beginning courses is that of 
viscous damping; the damping force is proportional to the velocity. The damping of the 
first weight depends solely on its velocity and not the velocity of the second weight, and 
vice versa. We assume that the damping coefficients 1δ  and 2δ  are small. We add 

viscous damping to the model by adding the term 1 1xδ ′−  to the equation (1) and  2 2xδ ′−  

to the equation (2). 
 
If we assume that the restoring forces are nonlinear, which are most certainly the 

cases of large vibrations, we can modify the model accordingly. Rather than assuming 
that the restoring force is of the form kx−   (Hooke’s law), we assume the restoring force 

has the form 3xkx µ+− . We add nonlinearity to the model by adding the terms 3
1 1xµ   

and 3
212 )( xx −µ  to the equation (1) and 3

2 2 1( )x xµ −   to the equation (2). The range of 

motions for such nonlinear model is much more complicated than that for the corresponding 
linear model. An idea of this range of motions for a single spring model is given in [34]. 
Moreover, accuracy questions arise when solving these equations. No numerical solution 
can be expected to remain accurate over long time intervals. The accumulated local 
truncation error, algorithm error, round off error, propagation error, etc., eventually force 
the numerical solution to be inaccurate. This is discussed in some detail in the interesting 
papers by Knapp and Wagon [35], and by Fay and Joubert [36, 37]. 

 
It is a simple matter to add external forcing to the model. Indeed, we can drive 

each weight differently. Suppose we assume simple sinusoidal forcing of the 
form tF ωcos . Then the model becomes  

3 3
1 1 1 1 1 1 1 1 2 1 2 2 1 2 1 1( ) ( ) cosm x x k x x k x x x x F tδ µ µ ω′′ ′= − − + − − + − +          (3) 

              
3

2 2 2 2 2 2 1 2 2 1 2 2( ) ( ) cosm x x k x x x x F tδ µ ω′′ ′= − − − + − +            (4) 
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The range of motions for nonlinear forced models is quite vast. We can expect to 
find bounded and unbounded solutions (nonlinear resonance), periodic solutions that 
share the period with the forcing (called harmonic solutions) and solutions that are 
periodic with a period of a multiple of the driving period (called sub harmonic solutions), 
and steady state periodic solutions (limit cycles in the phase plane). The conditions under 
which these motions occur are by no means easy to state. 
 
3. Homotopy Perturbation Method 
To illustrate the homotopy perturbation method, we consider a general equation of the type, 

,0)())(( =− rfxuA Ω∈r              (5) 

With the boundary conditions , 0,
  = 
 

du
B u

dx
Γ∈r             (6) 

whereA is the general differential operator, B  is the boundary operator, Γ is the 
boundary of the domain Ω  and )(rf  is a known analytical function. Generally 

speaking, the operator A  can be divided into a linear part L and a nonlinear part N. Now 
equation (5) can be written as: 

0)())(())(( =−+ rfxuNxuL              (7) 
 
By the homotopy perturbation method, we construct a homotopy as 

Rprv →×Ω ]1,0[:),( which satisfies the following equation: 

0)]()([)]()()[1(),( 0 =−+−−= rfvApuLvLppvH           (8) 

where [0, 1]p ∈  is an embedding parameter and 0u is an initial approximation of equation 

(5), which satisfies the boundary conditions. Considering equation (8), we will have 

0( , 0) ( ) ( ) 0H v L v L u= − =              (9) 

and ( , 1) ( ) ( ) 0H v A v f r= − =            (10) 
 

The changing process of p from zero to unity is just that of ),( prv  from )(0 ru
 

to )(ru . In topology this is called deformation and )()( 0uLvL −
 and )()( rfvA −  are 

called homotopy.  
 
According to the homotopy perturbation theory, we can first use the embedding 

parameter p as a small parameter and assume that the solution of equation (8) can be 
written as a power series in p as follows: 

.................3
3

2
2

10 ++++= vpvppvvv          (11) 

 
To obtain the approximate solution of equation (1) setting 1=p , we have 

.................lim 3210
1

++++==
→

vvvvvu
p          

(12) 

The equation (12) is convergent for most cases. However, the convergent rate 
depends on the nonlinear operator( )A v . 
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4. Application of the Homotopy Perturbation Method (HPM) 
Writing x  for 1x  and y  for 2x  we may rewrite the equations (3) and (4) as follow:  

3 3
1 1 1 2 1 2 1 1( ) ( ) cosm x x k x k x y x x y F tδ µ µ ω′′ ′= − − − − + + − +        (13) 

3
2 2 2 2 2 2( ) ( ) cosm y y k y x y x F tδ µ ω′′ ′= − − − + − +           (14) 

 
According to the equation (8), we consider the following homotopy for the (13) 

and (14) are 
3 3

1 1 1 2 1 2 1 1( ) ( ) cos 0m x x k x k y x p x y x F tδ µ µ ω′′ ′  + + − − + − + − − =   
(15) 

3
2 2 2 2 2 2( ) ( ) cos 0m y y k y x p y x F tδ µ ω′′ ′  + + − + − − − =           (16) 

 
As outlined above, the basic assumption is that the solutions of equations (13) 

and (14) can be written as power series in p: 
2

0 1 2 .............x x px p x= + + +                     (17) 
2

0 1 2 .............y y py p y= + + +                    (18)  

 
Therefore, substituting (17) and (18) into (15) and (16), and then equating the 

terms with identical powers of p, we can obtain the following set of linear differential 
equations: 

         :0p  
1 0 2 0 2 0 1 0 1 0

2 0 2 0 2 0 2 0

0

0

k x k x k y x m x

k x k y y m y

δ

δ

 ′ ′′+ − + + =


′ ′′− + + + =
      

         :1p

3 3 2 2
1 1 1 0 2 0 1 1 2 1 2 0 0 2 0 0

3
2 0 2 1 1 1 1 1 1 1

3 2 2 3
2 2 2 0 2 1 2 0 0 2 0 0 2 0 2 1

2 1 2 1 1 1

cos 3 3

0 (0) 0, (0) 0

cos 3 3

0 (0) 0, (0) 0

F t x x k x k x x y x y

y k y x m x x x

F t x k x x y x y y k y

y m y y y

ω µ µ µ µ

µ δ
ω µ µ µ µ

δ

 − − − + + + −


′ ′′ ′ + − + + = = =


− + − − + − +
 ′ ′′ ′+ + = = =

         

         …   …   …   …   …   …   …   … 

         …   …   …   …   …   …   …   … 
 
Case I (undamped undriven motion): In the absence of damping and external driving 
force, i.e., 1 2 1 20, 0, 0, 0,F F δ δ= = = = we choose 1 2 1,m m= = 1 0.4,k = 2 1.808,k =  

1 0.16,µ = − 2 0.1.µ = − Then subject to the initial conditions (0) 0.005,x =  (0) 0.001,y =  
the first few approximations of the homotopy perturbation solutions for equations (13) 
and (14) are derived in the following forms: 

       
182.602 10

0 0.0027221 cos 0.435 0.0022779cos1.956tx e t t
−×= +  

       
182.602 10

0 0.00303982 cos 0.435 0.00203982 cos1.956ty e t t
−×= −
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18 18

18

18 18 18

7 2.602 10 7 7.806 10
1

5.204 10 8 8

2.602 10 7.806 10 9 2.602 10

( 2.95646 10 2.93066 10 ) cos 0.435

(7.57125 7.43861 ) 10 cos1.956 {2.38093 10

( e ) 1.78825 10 }sin 0.4347

{1.13789

t t

t

t t t

x e e t

e t

e e t t

− −

−

− − −

− × − ×

× −

× × − ×

= − × + ×

+ − × + ×

− − ×

+
188 5.204 10 910 (1 ) 1.82433 10 }sin1.956te t t

−× −× − − ×
 

      

18 18

18 18

18 1

7 2.602 10 7 7.806 10
1

9 5.204 10 9 2.602 10

9 8 2.602 10 7.806 10

( 3.11678 10 3.13196 10 )cos 0.4347

1.38875 10 cos1.08686 1.14846 10 cos1.304

1.10911 10 cos1.956 {2.65883 10 (

t t

t t

t

y e e t

e t e t

t e e

− −

− −

− −

− × − ×

− × − ×

− × ×

= − × + ×

+ × − ×

− × + × −
8

18 189 2.602 10 8 5.204 10

9

)

1.99697 10 }sin 0.435 {1.01896 10 (1 )

1.63365 10 }sin1.956

t

t te t t e

t t

− −− × ×

−

− × − × −
− ×

 

 
Therefore, the solutions up to first approximations of the equations (13) and (14) are 
 0 1x x x= +  and 0 1y y y= +  

Table 1: Comparison between the HMP and Numerical results for ( )x t and (t)y  
Time 

(t) 
Homotopy Results Numerical Results Errors in %  

( )x t  (t)y  ( )x t  (t)y  ( )x t  (t)y  

0 0.005 0.001 0.005 0.001 0 0 
4 -0.00038953 -0.0005673 -0.00038956 -0.00056727 0.009851 0.00474139 
8 -0.00484392 -0.00083333 -0.00484375 -0.00083347 0.0033871 0.0166006 
12 0.00111795 0.00164481 0.0011179 0.00164477 0.0044629 0.00222489 
16 0.00439269 0.00035231 0.00439243 0.00035257 0.0057609 0.0729195 
20 -0.00169985 -0.00255738 -0.0016998 -0.00255735 0.0025688 0.00095026 
24 -0.00369565 0.00038805 -0.00369523 0.00038772 0.0114081 0.0840284 
28 0.00205594 0.00321559 0.00205596 0.00321561 0.0011179 0.00054631 
32 0.00282861 -0.00130321 0.00282813 -0.00130275 0.0168171 0.0356236 
36 -0.00213242 -0.00355852 -0.00213246 -0.00355848 0.0017270 0.00118794 
40 -0.00188585 0.00228806 -0.00188525 0.00228751 0.0318059 0.0240745 

This fact is graphically shown in Figure 2. 
 
Case II (damped undriven motion):  In the absence of the external forces, that is 

1 0,F =  2 0,F = we choose 1 1,m =  2 1,m =  1 3,k =  2 2,k =  1 0.1,δ =  2 0.2,δ =  1 0.16,µ =  
2 0.1.µ =  Then subject to the initial conditions (0) 0.6x = , (0) 0.2y = , the first few 

approximations of the homotopy perturbation solutions for equations (13) and (14) are 
derived in the following forms: 

       

0.09 0.06
0

0.09 0.06

0.199706 cos 0.996 0.400294 cos 2.448

0.005252 sin 0.996 0.015012 sin 2.448

t t

t t

x e t e t

e t e t

− −

− −

= +

+ +

 

       

0.09 0.06
0

0.09 0.06

0.399891 cos 0.996 0.199891 cos 2.448

0.01848 sin 0.996 0.002288 sin 2.448

t t

t t

y e t e t

e t e t

− −

− −

= −

+ +  
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0.24 0.27 0.21
1

0.09 0.24 0.18

0.06 0.27

0.21

0.000636 cos 0.456 (0.000051 0.000199

0.001828 ) cos 0.996 (0.000628 0.002815

0.002431 ) cos 2.448 0.000051 cos 2.988

0.000255 cos3.901 0.00

t t t

t t t

t t

t

x e t e e

e t e e

e t e t

e t

− − −

− − −

− −

−

= + +

− + +

− −

+ − 0.24

0.21 0.18

0.24 0.27 0.21

0.09 0.24 0.18

0.06

0268 cos 4.441

0.000049 cos 5.893 0.000177 cos 7.345

0.000071 sin 0.456 (0.000869 0.01538

0.016485 )sin 0.996 (0.008413 0.043656

0.052217

t

t t

t t t

t t t

e t

e e t

e t e e

e t e e

e

−

− −

− − −

− − −

−

+ −
− − +

− − +

− 0.24) sin 2.448 0.000071 sin 4.441t te t−−
 

       

0.24 0.27 0.21
1

0.09 0.24 0.18

0.27 0.21 0.24

0.000268 cos 0.456 (0.000156 0.004426

0.00432 )cos 0.996 (0.000154 0.000505 ) cos 2.448

0.000051 cos 2.988 0.000502 cos 3.9 0.000084

cos 4.44

t t t

t t t

t t t

y e t e e

e t e e t

e t e t e

− − −

− − −

− − −

= − + +

− − −
− − +

0.21 0.18

0.27 0.21 0.09

0.24 0.18 0.06

0.00021 cos5.893 0.000178 cos 7.345

(0.001741 0.030824 0.032955 )sin 0.996

(0.004201 0.021965 0.026086 )sin 2.448

t t

t t t

t t t

t e t e t

e e e t

e e e t

− −

− − −

− − −

− + −
+ −

+ + −  
Therefore, the solutions up to first approximations of the equations (13) and (14) are  

0 1x x x= +  and 0 1y y y= +  

Table 2: Comparison between the HPM and Numerical results for ( )x t and (t)y  
Time (t) Homotopy Results Numerical Results Errors in %  

( )x t  (t)y  ( )x t  (t)y  ( )x t  (t)y  
0 0.6 0.2 0.6 0.2 0 0 
4 -0.401964 -0.0522376 -0.401495 -0.0523665 0.116662 0.246265 
8 0.199569 -0.100768 0.198919 -0.100408 0.327039 0.358525 
12 -0.0598972 0.153063 -0.0595017 0.152605 0.664585 0.300552 
16 -0.0090066 -0.10902 -0.00904281 -0.108719 0.400482 0.276927 
20 0.0325736 0.028401 0.0323433 0.0283948 0.712161 0.0217638 
24 -0.0387334 0.0340943 -0.0383576 0.0338563 0.979746 0.702848 
28 0.0422335 -0.0572848 0.0417994 -0.0569481 1.03853 0.591232 
32 -0.0449839 0.0492994 -0.0445549 0.0489943 0.962987 0.622844 
36 0.043708 -0.0292358 0.0433348 -0.0290241 0.861144 0.729234 
40 -0.0364871 0.0119506 -0.0362054 0.0118327 0.777912 0.99628 

This fact is graphically shown in Figure 3. 
 
Case III (undamped driven motion):  In the absence of the damping, that is 1 0,δ =  

2 0,δ = we choose 1 1,m =  2 1,m = 1 0.4,k =  2 0.5,k = 1 0.16,µ = −  2 0.1µ = −   1 0.005,F =  
2 0.003,F =  1 0.5,ω =  2 0.4.ω =  Then subject to the initial conditions (0) 0.005,x =  
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(0) 0.001,y =  the first few approximations of the homotopy perturbation solutions for 
equations (13) and (14) are derived in the following form: 

       0 0.00203576cos0.402 0.00296424cos1.113x t t= +  

       0 0.00300689cos 0.402 0.00200689cos1.113y t t= −  

       

1

9

10

( 7.48048cos 0.309 3.1403cos 0.402 4.04155cos1.113

1.12146 cos1.206 2.75918 sin 0.402 6.99461 sin1.113 ) 10

0.9375cos 0.4 0.0142857 cos 0.5 (7.02903cos1.917

4.2854 cos3.339 ) 10

x t t t

t t t t t

t t t

t

−

−

= − − −

+ − − ×
+ − +
+ ×

 

       

1

9

( 8.38175cos 0.309 5.8168cos 0.402 4.07541 sin 0.402

4.73558 sin1.113 ) 10 1.3875cos 0.4 0.028571cos 0.5

0.00147389 cos1.113 (6.9283cos1.824 5.47984 cos1.206

2.13792 cos1.917 3.25223cos 2.628 t 2.

y t t t t

t t t t

t t t

t

−

= − − −

+ × + −
+ + −
− + − 1090135cos 3.339 ) 10t −×

 

Therefore, the solutions up to first approximation of the equations (13) and (14) are 

0 1x x x= +  and 0 1y y y= +  
Table 3: Comparison between the HPM and Numerical results for ( )x t and (t)y  

Time 
(t) 

Homotopy Results Numerical Results Errors in %  
( )x t  (t)y  ( )x t  (t)y  ( )x t  (t)y  

0 0.005 0.001 0.005 0.001 0 0 
4 0.0119992 0.0211882 0.011999 0.0211881 0.00113002 0.0005929 
8 -0.0107062 -0.0122366 -0.0107067 -0.0122379 0.00441015 0.0103707 
12 -0.0318465 -0.0551639 -0.0318378 -0.0551574 0.0271398 0.0117505 
16 0.0244173 0.0390611 0.0244297 0.0390838 0.0506395 0.0579618 
20 0.0420799 0.0696532 0.0420325 0.0696118 0.112767 0.0594703 
24 -0.0382782 -0.0655714 -0.0383281 -0.0656552 0.13031 0.12754 
28 -0.0437812 -0.0667641 -0.0436527 -0.0666414 0.294185 0.184104 
32 0.0454436 0.0778186 0.04555 0.0779881 0.23342 0.217232 
36 0.0437333 0.0601494 0.0434981 0.0599155 0.540698 0.390225 
40 -0.0448386 -0.0734008 -0.0449987 -0.0736595 0.35578 0.35129 

This fact is graphically shown in the Figure 4. 
 
Case IV (damped driven motion): In the presence of both damping and external forces 
we choose 1 1,m =  2 1,m =  1 0.2,δ =  2 0.3,δ =  1 6,k =  2 4,k =  1 0.16,µ =  2 0.1,µ =  

1 0.3,F =  2 0.2,F =  1 1,ω =  2 0.6.ω =  Then subject to the initial conditions (0) 0.7,x =  

(0) 0.2,y =  the first few approximations of the homotopy perturbation solutions for the 
equations (13) and (14) are derived in the following form: 

       

0.14 0.11
0

0.14 0.11

0.219825 cos1.407 0.480175 cos3.462

0.011219 sin1.407 0.019584 sin 3.462

t t

t t

x e t e t

e t e t

− −

− −

= +

+ +  
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0.14 0.11
0

0.14 0.11

0.439932 cos1.407 0.239932 cos3.462

0.028659 sin1.407 0.001479 sin 3.462

t t

t t

y e t e t

e t e t

− −

− −

= −

+ −  

       

0.39
1

0.36 0.14 0.39

0.33 0.11 0.36

0.39

0.041418cos 0.6 0.000461 cos 0.647 0.07768cos

(0.000237 0.1057 ) cos1.407 (0.000453

0.0022885 0.01683 ) cos3.462 0.0001995 cos 5.516

0.000193 cos

t

t t t

t t t

t

x t e t t

e e t e

e e t e t

e

−

− − −

− − −

−

= + + +

− + +

− +

− 0.36 0.33

0.39

0.42 0.36 0.14

0.39 0.3

6.277 0.000038 cos8.332 0.000153

cos10.386 0.004771sin 0.6 0.000064 sin 0.647

0.0149435sin (0.000528 0.009359 0.0117 )

sin1.407 (0.005563 0.029079

t t

t

t t t

t

t e t e

t t e t

t e e e

t e e

− −

−

− − −

− −

+ −

+ − +
− + +

− + 3 0.11

0.39

0.033743 )sin 3.462

0.000131sin 5.924 0.000064 sin 6.277 0.000131sin 7.924

t t

t

e t

t e t t

−

−

−

− − +
 

       

0.39
1

0.42 0.36 0.14

0.39 0.33 0.11

0.42

0.099959 cos 0.6 0.000193 cos 0.647 0.100541cos

(0.000069 0.003435 0.211357 ) cos1.407

(0.000112 0.000116 0.007815 ) cos 3.462

0.000069 cos 4.222

t

t t t

t t t

t

y t e t t

e e e t

e e e t

e t

−

− − −

− − −

−

= − +

+ + −
− − −
− − 0.36

0.39 0.36

0.33

0.42 0.36 0.14

0.

0.000398 cos 5.516

0.00006 cos 6.277 0.000167 cos8.332

0.000153 cos10.386 0.010121sin 0.6 0.030327 sin

(0.001057 0.018746 0.026408 )sin1.407

(0.00278

t

t t

t

t t t

e t

e t e t

e t t t

e e e t

e

−

− −

−

− − −

−

+ −

+ + +
− + +
+ 39 0.33 0.110.014681 0.017128 )sin 3.462t t te e t− −+ −

 

Therefore, the solutions up to first approximation of the equations (13) and (14) are 

0 1x x x= +  and 0 1y y y= +  
Table 4: Comparison between HPM and Numerical results for ( )x t and (t)y  
Time 

(t) 
Homotopy Results Numerical Results Errors in %  

( )x t  (t)y  ( )x t  (t)y  ( )x t  (t)y  

0 0.7 0.2 0.7 0.2 0 0 
4 0.0732052 -0.0988329 0.0715742 -0.0986097 2.27881 0.226382 
8 -0.137313 0.110924 -0.136801 0.113806 0.37374 2.53262 
12 -0.0247882 0.171342 -0.0228239 0.172811 8.6065 0.84995 
16 -0.106899 -0.2396 -0.1062 -0.239424 0.658007 0.0735566 
20 0.122812 0.108081 0.122675 0.108229 0.111443 0.136858 
24 0.0192406 -0.0105786 0.0189694 -0.0106785 1.42985 0.935364 
28 -0.112351 -0.134943 -0.112441 -0.135137 0.0802358 0.143812 
32 0.103921 0.204301 0.103981 0.204273 0.0585195 0.0136497 
36 -0.0571445 -0.132104 -0.0571877 -0.132158 0.0755187 0.0405423 
40 -0.0210969 -0.0132315 -0.0211216 -0.0132385 0.116604 0.05299 

This fact is graphically shown in Figure 5. 
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5.  Result and discussion 
The homotopy perturbation method is successfully applied to solve the nonlinear 
ordinary differential equations governing the motion of a coupled spring system. To test 
the accuracy of the HPM results, we match our results with the numerical results obtained 
by using Mathematica 9.0. The solution obtained by Homotopy perturbation method is an 
infinite series for appropriate initial conditions. Reasonably appropriate values for the 
spring constants 21, kk , damping constants 21,δδ , nonlinear constants 21, µµ , forcing 

constant 21, FF and 21,ωω  are taken for computing HPM solutions. Comparison 
between these and the corresponding numerical solutions computed by the Mathematica 
9.0 program for various values of t  are shown in the figures from Figure 2 to Figure 5 
respectively in all four cases we study. These solutions represent a wide variety of 
interesting motions. 
 

 

Figure 2: Comparison for 1 0,F =  2 0,F =  1 0,δ =  2 0,δ =  1 1,m =  2 1,m =  1 0.4,k =  

2 1.808,k =  1 0.16,µ = −  2 0.1µ = −  and the initial conditions (0) 0.005,x =  (0) 0.001.y =  
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Figure 3: Comparison for 1 0,F =  2 0,F =  1 0.1,δ =  2 0.2,δ =  1 1,m =  2 1,m =  1 3,k =  

2 2,k =  1 0.16,µ =  2 0.1µ =  and the initial conditions (0) 0.6,x =  (0) 0.2.y =  
 

 

Figure 4: Comparison for 1 0.005,F =  2 0.003,F =  1 0,δ =  2 0,δ =  1 1,m =  2 1,m =  1 0.4,k =  

2 0.5,k =  1 0.16,µ = −  2 0.1,µ = − 1 0.5,ω =  2 0.4ω = and the initial conditions (0) 0.005,x =  
(0) 0.001.y =  
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Figure 5: Comparison for 1 0.3,F =  2 0.2,F =  1 0.2,δ =  2 0.3,δ =  1 1,m =  2 1,m =  1 6,k =  

2 4,k =  1 0.16,µ =  2 0.1,µ = 1 1,ω =  2 0.6ω = and the initial conditions (0) 0.7,x =  
(0) 0.2.y =  

 
6.  Conclusion  
In this article, the homotopy perturbation method (HPM) has been successfully applied to 
solve the dynamics of a coupled spring system with cubic nonlinearity. Our results 
suggest that it is an efficient method for obtaining solutions of nonlinear differential 
equations governing the motion of such problems. They also confirm the simplicity and 
efficiency of the method for solving any nonlinear ordinary differential equation or 
systems of nonlinear ordinary differential equations. It is also observed that the HPM is a 
promising method for solving other linear and nonlinear partial differential equations. 
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