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Abstract. This paper is concerned mainly with the study of fractional order prey-predator 
system with time delay analyzing stage structure system, the characteristic equation 
which deals with the local stability is calculated and the existence of Hopf bifurcation is 
derived using Routh Hurwitz strategies.  

The parameter in this paper are fractional order and time delay. They deal with 
oscillatory behaviour of solutions and by Lyapunov global stability, dynamical value of 
complex system which are reviewed with incommensurate order. Atlast the numerical 
examples are used to validate the effectiveness of derived analytic results. 
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1. Introduction 
During the past three centuries, Fractional Calculus was developed by Riemann, 
Liouville, Grunwald and Letnikov. In the early 20th century, this concept was most 
significant in scientific fields, mechanics, physics, engineering, informatics and artificial 
neural networks. The extensive usage of fractional calculus includes viscoelasticity, 
dielectric polarization, electro magnetic waves and so on. 

Material and energy cannot be instantaneously transmitted to almost all the 
natural systems. Hence the existence of the time delay cannot be ignored. Delay 
Differential Equation(DDE) is a differential equation in which the derivative of the 
function at any time depends on the solution at previous time. The starting condition of 
the time delay system in which the history of the DDE is (-�, 0). Dynamical analysis of 
the systems with time delays is more complex due to the non deterministic polynomial 
time hard (NP-hard) nature of the stability system [1]. Fractional order system describes 
behaviour of real physical system more truthfully than the integer order system [4, 7].  

Cao and Xiao was derived the Hopf bifurcation analysis for a nonlinear system is 
a efficient approach and they investigated the periodic solution properties obtained near 
stationary state of systems and the issue of bifurcation for four neuron simplified 
bidirectional associative memory network with two time delays with the technique of 
Hopf bifurcation. Additionally Wei Hu et al., [9] discussed about details of Hopf 
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bifurcation memristor-based chaotic circuit with chaos in a fractional order delay system. 
They investigated the stability and bifurcation behaviors of this fractional order delayed 
memristor-based chaotic circuit system. Also differentiation with fractional order induces 
the basic and energetic computation for neuron that provides the information process. 

Mathematical modeling through differential equations and simulation via 
computers play a significance role in the study of multi species population interactions. 
So many works had been already done on these predator-prey, there may be few works 
available on multi species interaction by considering FDE with time delay. Xu and Ma et 
al. [10] had been discussed the stability and Hopf bifurcation in a ratio dependent 
predator-prey with stage structure while the global stability and Hopf bifurcation of a 
predator-prey model with Holling type II functional responses. Deng et al. [1] analysed 
the Hopf bifurcation for a ratio dependent predator-prey system along with two different 
type of delays and considered the stage structure for the predator.  

 
2. Preliminaries and model description 
2.1. Fractional derivative and its approximations 
Fractional calculus is the generalization of integration and differentiation to a non integer 
order integro-differential operator ����  defined by  

   ����  =	 
�	
�� 									��) > 01													��) = 0� ���)���� 				��) < 0� 
There are many definitions in fractional derivatives from which one of the best well 
known definitions of Riemann-Liouville definition is  �����)��� = 1

Γ�� − �) ������ ���)�� − �)����� ���
�  

for n-1≤ � < �,	  where Γ  is the gamma function. The geometrical and physical 
interpretation of fractional derivative is 

� !�"� �# ��∞

# ���)�� = 	 $�%&���)' −( $) ����)�����)|�+##
���
)+#  

for n-1	≤ � < � where s	≡	i- denote the Laplace variable 
The fractional integral of order � > 0 of a function y : (0,	∞) →  is given by /#�� 0��) = 1

Γ�� �� − $)����
# 0�$)�$ 

where the right hand side is pointwise defined on (0,	∞). ���� 23��) = −4323��)+(637�3 827��)9 +�
7+� (:3);)<2)�� − �)= 		> = 1, 2, … . ,			� > 0���

)+#  

(A�)  The transfer function �3 , ;7�	B = 1, 2…�)satisfies Lipschitz condition, i.e., there 
exists positive constants C7,D7	such that 

|�3�2) − �7�0)|≤ 	C7|2 − 0|,   |;3�2) − ;7�0)|	≤ 	D7|2 − 0|, for all x, y ∈ . 
(AF)		It has a constants G7�B = 1, 2, … 	�) such that the following inequalities hold: 
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G743 >(G7<C3H637H + D3H:37H=				> = 1,2, … . ��
7+�  

Improvements of above models will provide us a new modeling method which describes 
the significance of fractional differential equations in the interaction of multiple species. 
Comparing to integer order differential equations FODEs have ability to provide precise 
description of the modeled mathematical problem. Predator – prey models are more 
significant in the modeling multi species population interactions and these interactions 
through integer order models have been studied by many authors [2, 5, 7].  
Xu et al. [10], have studied the stability with globality and entire Hopf bifurcation by 
considering the stage structure for predator. Also the time delay response in the predator 
response is considered in the system. The integer order prey-predator system is given as �2�� = 2��) IJ − 62��) − 6�0F��)1 +K2��)L �0��� = 6F2�� − �)0F�� − �)1 + K2�� − �) − J�0���) − �0���) �0F�� = �0���) − JF0F��) 
In the above system x(t) represents the density of the prey with respect to time. 0���) 
and	0F��) denote the densities of the immature and mature predator with respect to time, 
respectively. The parameter 6, 6�, 6F, m, r, J�, JF and � are positive constants in which 6 
is the intraspecific constant of the prey, J is the instrinsic growth rate of the prey,  J� and JF are the death rates of the immature and the mature predator respectively. The response 
function of the mature predator is denote by 

�MN��ON . The capturing rate of mature 

represented by 6�. 6F/6� is the rate of conversing prey into a new immature predator. 
The rate of immature predator becomes mature predator is denoted by non- negative 
parameter D and this rate is proportional to the density of the immature predator. The 
time delay due to the gestation of mature predator is consider by the constant � ≥ 0. It is 
assumed that mature adult predators can only contribute to the reproduction of predator 
biomass.  

In this work, we investigate a fractional order prey-predator interaction along 
with time delay is described by  ��MR��� = R���) IJ − 6R���) − 6�RS�� − �)1 +KR���)L 
�TUT
� = �TUM��)UV���W)��OUM��) − J�RF��) − XRF��)                       (1) ��VRS�� = XRF��) − JFRS��) 
With the following initial conditions R�(0), RF�0)	> 0 and RS��) = Y��), Y ∈ Z−�, 0[, � ∈�0, 1[, Y��) is the smooth function. The parameter descriptions are same as in the integer 
order system.  
 
3. Dynamics in a fractional order predator-prey system 
3.1. Stability analysis 
In this section we proceed with stability analysis of commensurate fractional order 
system (� = �� = �F = �S). 
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3.2. Stability of the equilibrium points 
In this section, we analyse the local stability of each of feasible equilibria of the system 
(1) and the existence of Hopf bifurcation at the coexistence equilibrium. Equating the 
derivatives to the zeros and solving  the system (1), one can get three distinct types of 
equilibria.  

i. \#�0, 0, 0) represents the trivial equilibrium of the system. 

ii. \� 8]� , 0, 09 represents the predator extinction equilibrium. 

iii.  Further if the condition (A�)		6FJX −	JF�6 + KJ)�X + J�) > 0	 holds then 
the system (1) has a unique coexistence equilibrium \��R�^̂ ^		, RF^̂ ^		, RS^̂ ^	)	where 
 R�^̂ ^ = JF�X + J�)6FX −KJF�X + J�)		 RF^̂ ^ = JFX RS	^̂ ^̂  RS	^̂ ^̂ = �T_Z�T]_�	]T���O])�_�]M)[�MZ�T_�O]T�_�]M)[T             (2) 

The local stability of system (1) can be done based upon the Jacobian matrix of the 
system. 
The characteristic equation of the system (1) at equilibrium state is 

`̀a
� − �b−6R� + �MUVUMO���OUM)Tc + J − 6R� − �MUV���OUM)) 0 �MUMdefg���OUM)−	 �TUV���OUM)T a� + J� + X �TUMdefg���OUM)0 −X a� + JF `̀

= 0         (3) 

 
Then the characteristic polynomial is simplified as 
 aS� + h�aF� +hFa� + �hSa� + hi + hj)!�kW + hl = 0          (4) 
where h� =	J� + JF + X + 26R� − J + 6�RS�1 + KR�)S hF =	JF�J� + X) + �J� + JF + X)Z26R� − J + 6�RS�1 + KR�)S[ hS = −	 6FXR��1 + KR�)  

hi =	 6FXR�J�1 +KR�)  

hj =	−	 266FXR�F�1 + KR�)  

hl =	JF�J� + X)Z26R� − J + 6�RS�1 + KR�)F[ 
 

Put a = >- is a root of (4) where - > 0	and i = mn$ 	�oF + >$>� �oF  then we substitute the 

expression of a into (4) and separate the real and imaginary parts of equation (4) gives 
    4 + pmn$-� + q$>�-� = 0           (5) 
    r + qmn$-� − 	p$>�-� = 0           (6) 
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where 4 = -S�mn$ 3�t2 + h�-F�mn$�t + hF-�mn$ �t2 + hl p = hS-�mn$ �t2 + hi − hj q = hS-�$>� �t2  

r = -S�$>� 3�t2 + h�-F�$>��t + hF$>� �t2  

 
Suppose that (5) and (6) have roots, the expression		mn$-� and  $>�-� can be obtained as 
follows. $>�-�� =	 uv�wxvT�xT             (7) mn$-�F = ��vw�ux)vT�xT             (8) 

 
and mn$F-�� + $>�F-�� = 1           (9) 
Based on (5) and (6) we derive �� = �yz 8$>����uv�wxvT�xT) + 2�t9 , � = 0,1,2…         (10) �F = �yz 8mn$�����vw�uxvT�xT ) + 2�t9 , � = 0,1,2…                  (11) 

Define the bifurcation point �# = min<����), �F��)= ,				� = 0,1,2, … 
where ����), 6��	�F��) are defined by (10) and (11) respectively. 
From (9) we obtain the characteristic equation gives the solution - > 0 then we can 
solve the equation (4) as follows mn$F-�� + $>�F-�� =	I−�p4 + rq)pF +qF LF + Irp − 4qpF + qFLF = 1 

 
Solving, then we get pF +qF =	4F + rF                       (12) 
 

Substituting p, 4, r, q		in (12) then we get 
 -l� + ~�-j� +~F-i� + ~S-S� + ~i-F� + ~j-� + ~l = 0        (13) 
 
where  ~� = 2h�cos	��t2 )	 ~F = h�F + 2hFmn$�t	 ~S = 2Ihl cos I3�t2 L + h�hF cos8�t2 9L ~i = hFF + 2h�hlmn$�t − hSF	 ~j = 2cos 8�oF 9 �hFhl − hS�hi + hj))	  
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~l = hlF − hiF − hjF − 2hihj 
 
Lemma 1. When � = 0 , the equilibrium point of the fractional order system (1) is 
asymptotically stable if (AS) holds. �AS)    �� > 0, �F > 0	, �S > 0 
Proof: When � = 0, then the characteristic equation (4) becomes  aS� + ��aF� + �Fa� +�S = 0                                  (14) 
 
where  �� =	J� + JF +X + 26R� − J + 6�RS�1 +KR�)S �F =	JF�J� + X) + �J� + JF + X)Z26R� − J + 6�RS�1 + KR�)S[ −	 6FXR��1 + KR�)  

�S = 6FXR�J�1 +KR�) + JF�J� + X) �26R� − J + 6�RS�1 + KR�)F� − 266FXR�F�1 + KR�)  

 
When �� > 0, �F > 0	6��	�S > 0	hold, then (14) has three roots with negative real 
parts. Hence, the zero equilibrium point of the fractional system (1) is asymptotically 
stable when � = 0.  Then the proof is complete. 

Remark 1. 
The condition �AS) are only sufficient conditions, not necessarily one. They can assure 
the asymptotically stable of the incommensurate fractional system (1) when � = 0. 
We need the following additional assumption to get the transversal condition of the 
existence for Hopf bifurcation: �Ai)   Re(


k
W)|W+Wz 	 ≠ 0 

Differentiate (4) with respect to a	6��	� then  k′W′ = �M�3_M�T�3_T	                      (15) 

where  �� = −hS-��� sin 8�t2 − -�#9 + -$>�-�#�hi + hj) X� = hS-��� cos 8�t2 − -�#9 + -mn$-�#�hi + hj) �F = 3�-S��� cos I3� − 12 Lt
+ 2h��-F��� cosI2� − 12 Lt	 + �-����hFcos I� − 12 Lt
+ hS cos I�� − 1)t2 − -�#L)+hS�#-� cos 8�t2 − -�#9 + �#�hi+ hj)	mn$-�# XF = 3�-S��� sin I3� − 12 Lt + 2h��-F��� sin I2� − 12 Lt + �-����hFsin I� − 12 Lt
+ hS sin I�� − 1)t2 − -�#L)+hS�#-� sin 8�t2 + -�#9−�#�hi+ hj)	$>�-�# 



Fractional Order Delayed Prey-Predator Model with Stage Structure 

119 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
Relation between Populations with respect to time when  alpha= 1 and delay is 0

Time t

x,
 y

1,
 y

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

Immatured Predator y1

M
at

ur
ed

 P
re

da
to

r 
y 2

Multiply and divide (15) by �F − >XF then we get a′�′ = ���F + X�XF + >��FX� − ��XF)�FF + XFF  

Then     Re(

k
W)|W+Wz,			y+yz � �M�T�_M_T

�T
T�_T

T � 0 

As the above mentioned concept, the following theorem can be as follows. 

Theorem 1. Assume that �A�� - �Ai� are satisfied, for system (1), the following results 
hold. 

(1) The zero equilibrium point is asymptotically stable for � ∈ Z0, �#). 
(2) The system (1) undergoes a Hopf bifurcation at the origin when � � 	 �#  i.e., 

system (1) has a branch  of periodic solution bifurcating from the zero 
equilibrium point near � � �#. 

Remark 2. It needs to be underlined that we choose the sum of time delays as bifurcation 
to consider the bifurcation phenomenon of system (1) in the present paper. In fact, 
fractional order or system parameters also can affect the dynamical behaviours of 
fractional system (1), which will be studied in our future work. 

4. Numerical simulation 
In this section, we provide the stability and existence of Hopf bifurcation for 
commensurate fractional order predator prey system and Lyapunov global stability of 
incommensurate fractional order system. The parameter values chosen for the numerical 
simulations are a =16, 6� � 5,  6F � 3 , X � 1, K � 0.1, J� � 1/8 , JF � 1/8  and the 
initial conditions of the populations are x(0) = 0.2,  0��0� � 0.2,  0F�0� � 0.2. 

Table 1: Stability mature for r = 8 and commensurate fractional order � � 1. 
Equilibrium  Eigenvalues Nature Index 
\#�0,0,0� 

\��0.8125,0,0� 
\F�0.0471,0.182,1.456� 

8, - 0.1250, -1.1250 
- 8, 0.6706, -1.9206 

-1.7841, - 0.0928�0.7483i 

Saddle 
Saddle 

Asymptotically Stable 

1 
1 
2 

   
 

 
 
 
 
 
 
 
 

 
Figure 1: Stability for mature with commensurate fractional order � � 1 and � � 0, r �8 

4.1. Commensurate fractional order (� �	�� � �� � ��) and � � 	� 
In this section, we analyse the non-delayed predator-prey system by considering the 
commensurate fractional order �α � 	α� � αF � αS) and varying the value of growth rate 
r of prey. The equilibrium points of system (1) and the eigen values of corresponding 

Relation between matured predator and immatured predator 
when τ=0 and various α 

Relation between population with respect to   

time when  τ=0 and α= 1  and r=8 
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Relation between matured predator and immatured predator when r=15

Jacobian matrix are given in Table 1 and Table 2. From Table 1, we can seen that E0, E1 

are saddle points of index 1 and E2 is asymptotically stable for r = 8. If the growth rate of 
prey is increased that is r = 15, then the corresponding equilibrium E0,  E1  and E2 and their 
respective eigenvalues are given in Table 2. It can be seen that E0 and E1 are saddle points 
of index 1 and E2 is saddle point of index 2.  

Table 2: Stability mature for r = 15 and commensurate fractional order � � 1 
Equilibrium  Eigen values Nature Index \#�0,0,0) \��0.8125,0,0) \F�0.0471, 0.182, 1.456) 

15, - 0.1250, -1.1250 
-15, 1.0547, - 2.3047 
- 2.0047, 0.0340 ± 

0.9968i 

Saddle 
Saddle 
Saddle 

 1 
1 
2 

 

 
Figure 2: Unstable for mature with and commensurate fractional order α = 1 and � = 	0, J = 15 

Hence it is clear that for the given parameter values and the fixed r, the system 
(1) will converge to fixed point for α < α̂ then the system undergoes Hopf bifurcation for 
α = α̂. Then the system shows oscillatory behaviour when α > α̂  which is shown in the 
Figure 2. For the given set of parameter values, the stability of commensurate fractional 
order system can be perturbed by α. Table 3 provides the numerical experiment on 
equilibrium,   \F	becomes  stable  or unstable by varying the fractional  order  α. 
 
4.2. Dynamics for different � and fixed commensurate �  
In this section, we analyse the effect of time delay in the stability of the delayed predator 
prey system(1) by choosing that α	to be fixed. In numerical simulations, the parameter 
and the initial values are considered as r = 8, a = 16, 6� = 5, 6F = 3, X = 1,K = 0.1,J� = 1/8, JF = 1/8  and x(0) = 0.2, 	0��0) = 0.2, 	0F�0) = 0.2. For α = 0.98, the critical 
value of time delay is calculated as �∗ = 0.4895 with unique positive root -# = 0.6325, 
two pair of complex conjugates  0.2733 ±  1.1187i , - 0.3444±  1.0989i with one 
satisfying the condition for existence of Hopf bifurcation that is 0.2733 > 0. If the value 
of time delay � exceeds the critical value �∗ then the system undergoes Hopf bifurcation 
at � = �∗	which is shown in the Figure 3 and 4. Figure 5 shows that decrease in the 
fractional order derivative, α = 0.96  will increase the value of critical time delay �∗ = 1.1.  
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Relation between immature and mature predator at tau=0.4 and fractional order alpha = 0.98

Table 3: Stability nature for different fractional order  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Stability mature for r=8 and commensurate fractional order α=0.98 and τ=0.4 

 
4.3. Incommensurate fractional order at � � � 
We will investigate the predator prey system by considering the incommensurate type of 
fractional order α. The values of parameter r = 15, a = 16, 6� � 5, 6F = 3, X = 1,K =0.1, J� = 1/8 , JF = 1/8  and the initial condition of the populations are x(0) = 0.2, 0��0) = 0.2 , 0F�0) = 0.2.  We consider two different cases to analyse the 
incommensurate fractional order system (1). 

Case (i): 
Let α�	α�, 	αF, αS) = (0.92, 1, 1) now for the given derivative orders, the equilibrium EF 
is globally as asymptotically stable. 

  
 

 
 

 
 

 
 
 
 
 

 
Figure 4: Stability mature for r = 8 and incommensurate fractional order � = �0.92,1,1)  
and � = 	0.48 
 
 
 

Parameter  Equilibrium  Eigenvalues Nature 
α = 0.97 
α = 0.98 

\F�0.0471,0.1820,1.456) \F�0.0471,0.1820,1.456) -0.0134±0.9972 
0.0027±0.9973 
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Case (ii): 
Let α�	α�, 	αF, αS) = (0.94, 1, 1) by above method the system (1) does not satisfy the 
asymptotically stability condition. Hence the system (1) is unstable. Further the same 
method can be used to check for all other values of fractional orders. The pictorical 
representation of case( i) and case (ii) are displayed in Figure 6. 

 
 
 
 
 
 
 

 
Figure 5: Unstable mature for r = 8 and incommensurate fractional order α = �0.94, 1, 1) 

and τ = 	0.48 
 

4.4. Dynamics for incommensurate fractional order with fixed � 
We do not provide explicit expression for a critical magnitude of � for stability, but we 
provide information about the existence of such values. Figure 6 depicts the stability and 
periodical solution of incommensurate fractional order by considering the time delay as 
constant. 

 
 

 
Figure 6: Solutions of the system (1) undergoes Hopf bifurcation when the value of time 
delay exceeds its critical value that is, τ = 0.7 > 0.4882(τ*) and become stable for 
decreasing the fractional order. 
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5. Conclusion 
In this work, we have developed a theoretical framework that includes sufficient 
biological complexity to accurately describe the dynamics of multi-species interaction. 
The complex dynamics of a proposed fractional order stage structured predator-prey 
system with and without time delay have investigated in detail via numerical simulations. 
We have studied the stability of trivial equilibrium and predator extinction equilibrium 
through the characteristic polynomial and fractional order Routh–Hurwitrz criterion. The 
signification of incorporating the delay into the system when it exceeds its derived 
critical value. Also the stability of incommensurate fractional ordered predator prey 
system has been discussed. The complex dynamics of both commensurate and 
incommensurate fractional order system have been analyzed with varying the respective 
fractional order  as well as time delay. Also we discussed the fractional order predator 
prey with stage structure for the predator and time delay.  
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