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1. Introduction 
Consider a homogeneous Cauchy-Euler equation of order n  of the form 
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where naaa ,...,, 10  are real numbers with .0≠na  Details for methods to find solutions of 

the equation (1.1) was explained in [2, 4, 5, 8]. Moreover, Sabuwala and Leon [6] studied 
the particular solution for the most general n-th order Euler differential equation when the 
non-homogeneity is a polynomial. They found a formula which can be used to compute 
the unknown coefficients in the form of the particular solution. It is well known that the 
general solution of (1.1) can be found from the characteristic equation  
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of the linear ordinary differential equation with constant coefficients    
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where .ln xt =  In general, the general solution of any homogeneous Cauchy-Euler 

equations depends on zeros of the polynomial ∑ ∏
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 The aim of this paper is to give the family of all Cauchy-Euler equations (1.1) 

such that ∑
=

−=
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i
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1lnα  is the general solution of (1.1) on ),0( ∞  for some real 

number α . 
 
2. Preliminary 

In this section, we shall give the related basic notions that can be found in [1, 5, 7]. 
 Let ∈n ℕ, ∈naaa ,...,, 10 ℝ with .0≠na  An ordinary differential equation of the 

form  
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is said to be a homogeneous linear ordinary differential equation with constant 

coefficients. By a transformation ,mxey =  where m is a suitable number, the equation 
(2.1) is transformed into the polynomial equation 

0... 01
1

1 =++++ −
− amamama n

n
n

n , 

which is said to be the characteristic equation of (2.1).  
 
Theorem 2.1. [7] Let ∈n ℕ, ∈naaa ,...,, 10 ℝ with .0≠na  Then the real numbers α is 

the zero of multiplicity n  of the polynomial 001
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1lnα is the general solution of homogeneous linear ordinary 

differential equation (2.1) on ),,0( ∞  where ncc ,...,1  are arbitrary constants. 

 A linear ordinary differential equation form  
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is called a homogeneous Cauchy-Euler equation.  

 The following theorem tells us that each Cauchy-Euler equation (2.2) can be 
transformed into linear ordinary differential equation with constant coefficients by the 

transformation .tex =   
 
Theorem 2.2. [5] Let ∈n ℕ, ∈naaa ,...,, 10 ℝ with .0≠na  Then the transformation 

tex =  transforms equation (2.2) into the equation    
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and the inverse transformation xt ln= transforms equation (2.4) into (2.2). 
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Corollary 2.1. [7] Let ∈n ℕ and ∈naaa ,...,, 10 ℝ with .0≠na  Then the transformation 
mtex =  transforms equation (2.4) into the equation 
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Theorem 2.3. [5] Let ∈n ℕ, ∈naaa ,...,, 10 ℝ with .0≠na  Then the real numbers α is 

the zero of multiplicity n  of the polynomial ∑ ∏
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1lnα  is the general solution of Cauchy-Euler equation (2.2) on ),,0( ∞  

where ncc ,...,1  are arbitrary constants.  

 
3. Main theorems 

Definition 3.1.  For each ∈kj, ℕ with kj ≤  we define 

{ }kNk ,...,2,1:= , 

kjjkj NaaaaaaP ∈= ,...,,:{: 2121, ⋯  and }21 jaaa <<< ⋯ , 

,:
,

, ∑
∈

=
kjPp

kj pN   1:0,0 =N    and   ,1:,0 =kN  

and for every integers kj,  with jk >  we define .0:, =jkN    

 For example;  .113231213,2 =⋅+⋅+⋅=N  

 Form above definition, it is important to note that  

kkkk NkN ,1,1 =−−  

for every positive integer .k  In addition, we have the following applicable lemma. 
 
Lemma 3.1.  Let n  be a positive integer. Then 
     1,,1, )1( +− =++ ninini NNnN         (3.1) 

for all .,...,3,2,1 ni =  

Proof: Let all ni ,...,3,2,1=  and  

{ }111211211, ,,...,,:)1( −−−+ <<∈+⋅= iniini aaNaaanaaaQ ⋯⋯  

Before we proof (3.1), We shall prove that niP,  and 1, +niQ  form a partition of 1, +niP , that 

is 1,, +∩ nini QP is empty and .1,1,, ++ =∪ ninini PQP  For 1,, +∩ nini QP  is empty we suppose, 

to the contrary, that 1,, +∩ nini QP is not empty. We can let .1,, +∩∈ nini QPb  Since 

,,niQb ∈  there exist ni Naaa ∈−121 ,...,,  such that 121 −<<< iaaa ⋯  and 
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)1(121 +⋅= − naaab i⋯  but niPb ,∈  it follows that ni Nnaaa ∈+− 1,,...,, 121 and 

therefore nNn ∈+1  which is a contradiction.  

 Now we shall prove that .1,1,, ++ =∪ ninini PQP  We see that .1,1,, ++ ⊂∪ ninini PQP  

since both niP,  and 1, +niQ  are subsets of .1, +niP  Now we shall show that   

.1,,1, ++ ∪⊂ ninini QPP  Let .1, +∈ niPb  Then there exist 121 ,...,, +∈ ni Naaa  such that   

iaaab ⋯21=  and iaaa <<< ⋯21 . Therefore nai ≤  or 1+= nai  since  1+∈ ni Na .  

      Case 1. Let .nai ≤  Then ni Naaa ∈,...,, 21 since .21 iaaa <<< ⋯ Therefore 

nii Paaab ,21 ∈= ⋯  and thus .1,, +∪∈ nini QPb   Consequently, .1,,1, ++ ∪⊂ ninini QPP   

      Case 2. Let 1+= nai . Then 1,21 +∈= nii Qaaab ⋯ since .,...,, 121 ni Naaa ∈−   

Therefore .1,, +∪∈ nini QPb  Consequently, .1,,1, ++ ∪⊂ ninini QPP     

 Now niP,  and 1, +niQ  form a partition of .1, +niP  

 Next, we consider  
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It follows that .)1( 1,,1, +− =++ ninini NNnN                □ 

Lemma 3.2.  Let ∈m ℂ. For every ∈n ℕ,      
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Proof: We shall proof by mathematical induction on .n  Since 
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we obtain (3.2) is true for 1=n .  
 Let ∈k ℕ  be arbitrary. Suppose that   
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Therefore, by Lemma 3.1 and k ! kkN ,= , we obtain  
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Thus (3.2) is true for .1+= kn  The proof is complete by mathematical induction 
                    □  
Lemma 3.3  Let ∈m ℂ and ∈naa ,...,1 ℝ with .0≠na  Then                
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for every ∈n ℕ with .2≥n   
Prove:  We prove by induction. For ,2=n  consider  
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It follows that (3.3) is true for .2=n     
 Let ∈k ℕ with 2≥k  and suppose that (3.2) is true for ,kn =  that is  
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We must prove that (3.2) is true for .1+= kn  Consider  
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Therefore, by inductive hypothesis and Lemma 3.2, we obtain  
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Thus (3.3) is true for .1+= kn  The proof is complete.              □ 

 From the above lemma, adding both sides of the equation (3.3) by ,0a  we obtain  
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and thus by Theorem 2.3, we obtain the following corollary.  
 
Corollary 3.1.  Let ∈n ℕ and ∈naaam ,...,,,, 10α ℝ with .0≠na  Then α is the zero of 

multiplicity n  of the polynomial                 
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  0011

1
1

1 =++++ −

−
−

− ya
dx

dy
xa

dy

yd
xa

dx

yd
xa

n

n
n

nn

n
n

n ⋯             (3.5) 

on the open interval ),,0( ∞  where ncc ,...,1  are arbitrary constants.  

 
Lemma 3.4.  Let ∈n ℕ and ∈naaam ,...,,,, 10α ℝ with .0≠na  Then                 
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Therefore (3.8) and (3.9) are equivalent. This proof is complete.            □ 
 By binomial theorem,  

,)1()1()(
1

1

nnjnj
n

j

jnn m
j

n
mm ααα −+








−+=− −

−

=
∑  

we obtain α is the zero of multiplicity n  of the polynomial  
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the next corollary is a direct consequence of  Lemma 3.4. and Corollary 3.1. 
 
Corollary 3.2.  Let ∈n ℕ and ∈naaam ,...,,,, 10α ℝ with .0≠na  Then α is the zero of 

multiplicity n  of polynomial (3.4) if and only if  (3.7) is true for every 1,...,2,1 −= nk . 

            The next main theorem is an immediately consequence of Corollary 3.1 and 
Corollary 3.2. 
 
Theorem 3.1. Let ∈n ℕ and ∈naaam ,...,,,, 10α ℝ with .0≠na  Then 
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i
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1

1lnα  is the general solution of the homogeneous Cauchy-Euler equation 

(3.5) on ),,0( ∞  where ncc ,...,1  are arbitrary constants if and only if (3.7) is true for 

every 1,...,2,1 −= nk .    

 The application of this theorem is to give a Cauchy-Euler equation of order 

n from a given general solution on ),0( ∞  in the form ,ln
1
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=

−=
n

i

i
i xcxy α  where α  is  

a given real number.  
 
4. Conclusion  
We give every Cauchy-Euler differential equation from its general solution that depends 
only on a given real numbers.  In the future, we will devote our attention to the family of 
all Cauchy-Euler differential equations that have general solutions depending on several 
real numbers.  
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