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1. Introduction 
A molecular graph is a graph such that its vertices correspond to the atoms and the edges 
to the bonds. Chemical graph theory is a branch of Mathematical Chemistry which has an 
important effect on the development of Chemical Sciences. A topological index is a 
numeric value that is graph invariant. Numerous topological indices have found some 
applications in Theoretical Chemistry, especially in QSPR/QSAR study, see [1]. 

Let G be a finite, simple connected graph with vertex set V(G) and edge set E(G). 
The degree dG(v) of a vertex v is the number of vertices adjacent to v. Let ∆(G) denote the 
maximum degree among the vertices of G. The reverse vertex degree of a vertex v in G is 
defined as cv = ∆(G) – dG(v) + 1. The reverse edge connecting the reverse vertices u and v 
will be denoted by uv. Any undefined term here may be found in Kulli [2]. 

In [3], Ediz introduced the first reverse Zagreb beta index and the second reverse 
Zagreb index of a graph. They are respectively defined as 
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Recently, many reverse indices were studied, for example, in [4, 5, 6, 7, 8]. 
We introduce the modified first and second reverse indices of a graph G as 
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The forgotten topological index or F-index of a graph G is defined as 
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The F-index was studied by Furtula and Gutman in [9] and also it was studied, 
for example, in [10,11, 12, 13, 14, 15,16]. 

Motivated by the definition of the F-index and its applications, Kulli [17] 
introduced the F-reverse index and F-reverse polynomial of a graph as follows: 

The F-reverse index of a graph G is defined as 
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The F-reverse polynomial of a graph G is defined as 
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        Some other F-indices were studied, for example, in [18,19,20]. 
        In this paper, the modified first and second reverse indices, F-reverse index and F-
reverse polynomial of certain nanostructures are computed. For more information about 
nanostructures see [21, 22]. 

 
2. Results for KTUC4C8(S) nanotubes 
In this section, we focus on the graph structure of a family of TUC4C8(S) nanotubes. The 
2-dimensional lattice of TUC4C8(S) is denoted by K=KTUC4C8[p,q] where p is the 
number of columns and q is the number of rows, see Figure 1. 

q

 
Figure 1: The graph of KTUC4C8[p,q] nanotube 

 
Let K be the graph of KTUC4C8[p,q] nanotube. Clearly the vertices of K are either of 
degree 2 or 3. Thus ∆(K) = 3. Therefore cu = ∆(K) – dK(u) + 1 = 4 – dK(u). In K, by 
calculation, there are three types of edges as follows: 
 E22 = {uv ∈ E(K) | dK(u) = dK(v) = 2}, |E22| = 2p + 2q + 4. 
 E23 = {uv ∈ E(K) | dK(u) =2, dK(v) = 3}, |E23| = 4p + 4q – 8. 
 E33 = {uv ∈ E(K) | dK(u) = dK(v) = 3}, |E33| = 12pq – 8p – 8q + 4. 
 Thus there are three types of reverse edges as given in Table 1. 

 
cu, cv\uv ∈ E(K) (2, 2) (2, 1) (1, 1) 
Number of edges 2p+2q+4 4p+4q–8 12pq – 8p – 8q+4 
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Table 1: Reverse edge partition of K 
Theorem 1. The modified first and second reverse indices of KTUC4C8[p,q] nanotubes 
are given by 
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Proof: (i) By using Table 1 and from equation (1), we deduce 
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(ii) By using Table 1 and from equation (2), we deduce 
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Theorem 2. The F-reverse index and F-reverse polynomial of KTUC4C8[p,q] nanotubes 
are given by 
 (i) FC(K) = 24pq + 20(p+q). 
 (ii) FC(K, x) = (2p + 2q + 4)x8 + (4p + 4q – 8)x5 + (12pq – 8p – 8q +4)x2.  
Proof: (i) By using Table (1) and from equation (3), we derive 
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  = (22+22)(2p+2q+4)+(22+12)(4p+4q–8)+(12+12)(12pq–8p–8q +4) 
  = 24pq + 20(p+q). 
 
(ii) By using Table (1) and from equation (4), we derive 
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= (2p+2q+4) x8 + (4p+4q–8) x5 + (12pq–8p–8q +4) x2. 
 
3. Results for GTUC4C8(S) nanotubes 
In this section, we focus on the graph structure of family of TUC4C8(S) nanotubes. The 2-
dimensional lattice of TUC4C8(S) is denoted by G=GTUC4C8[p,q] where p is the number 
of columns and q is the number of rows, see Figure 2. 
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Figure 2: The graph of GTUC4C8[4,3] nanotube 
 

 Let G be the molecular graph of GTUC4C8[p,q] nanotube. From Figure 2, one 
can see that the vertices of G are either of degree 2 or 3. Thus ∆(G) = 3. Therefore cu = 
∆(G) – dG(u) + 1 = 4 – dG(u). In G, by calculation, three types of edges as follows: 
 E22 = {uv ∈ E(K) | dK(u) = dK(v) = 2}, |E22| = 2p. 
 E23 = {uv ∈ E(K) | dK(u) =2, dK(v) = 3}, |E23| = 4p. 
 E33 = {uv ∈ E(K) | dK(u) = dK(v) = 3}, |E33| = 12pq – 8p. 
 Thus there are three types of reverse edges based on the degree of end reverse 
vertices of each reverse edge as given in Table 2. 
 

cu, cv\uv ∈ E(G) (2, 2) (2, 1) (1, 1) 
Number of edges 2p 4p 12pq – 8p 

Table 2: Reverse edge partition of G 
 
Theorem 3. The modified first and second reverse indices of GTUC4C8[p,q] nanotubes 
are given by 
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Theorem 4. The F-reverse index and F-reverse polynomial of GTUC4C8[p,q] nanotubes 
are given by 
 (i) FC(G) = 24pq + 20p. 
 (ii) FC(G, x) = 2px8 + 4px5 + (12pq – 8p)x2.  
Proof: (i) By using Table (2) and from equation (3), we derive 
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  = (22+22)2p + (22+12)4p + (12+12)(12pq – 8p) 
  = 24pq + 20p. 
 
(ii) By using Table (2) and from equation (4), we derive 
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4. Results for HTUC4C8(R) nanotorus 
In this section, we focus on the graph structure of family of HTC4C8(R) nanotorus. The 2-
dimensional lattice of HTUC4C8(R) is denoted by H=HTUC4C8[p,q], where p is the 
number of columns and q is the number of rows, see Figure 3. 
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Figure 3: The graph of HTUC4C8[p,q] nanotorus 
 

 Let H be the graph of HTUC4C8[p,q] nanotorus. From Figure 3, we see that the 
degree of each vertex of H is 3. Thus ∆(H) = 3. Therefore cu=∆(H) – dH(u) + 1 = 4 – 
dG(u). In G, there is only one type of edges as follows: 
 E33 = {uv ∈ E(H) | dH(u) = dH(v) = 3}, |E33| = 12pq. 
 Thus there is only one type of reverse edges as follows: 
 E33 = {uv ∈ E(H) | cu = cv = 1}, |RE3| = 12pq.         (5) 

 
Theorem 5. Let H be the graph of HTUC4C8[p,q] nanotorus. Then 
(i) 

mC1(H) = 6pq.  (ii)  
mC2(H) = 12pq.  
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(iii)  FC(H) = 24pq.  (iv) FC(H, x) = 12pqx2. 
Proof: (i) By using (5) and from equation (1), we deduce 

 
 

  
 

 (ii) By using (5) and from equation (2), we deduce 
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(iii) By using (5) and from equation (3), we deduce 

( ) ( )
( )

( )2 2 2 21 1 12 24 .u v
uv E H

FC H c c pq pq
∈

= + = + =∑  

(iv) By using (5) and from equation (4), we deduce 
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