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Abstract. In this paper, we introduce the modified first as@tond reverse indices of a
graph. Also we present exact expressions for theified first and second reverse
indices, F-reverse index and F-reverse polynonfiaédain nanostructures.

Keywords: modified reverse indices, F-reverse index, nanosire.
AMS Mathematics Subject Classification (2010): 05C05, 08207, 08535

1. Introduction
A molecular graph is a graph such that its vertamsespond to the atoms and the edges
to the bonds. Chemical graph theory is a brandlathematical Chemistry which has an
important effect on the development of ChemicaleBcés. A topological index is a
numeric value that is graph invariant. Numerousokogical indices have found some
applications in Theoretical Chemistry, especiallfdSPR/QSAR study, see [1].

Let G be a finite, simple connected graph with vertedX46) and edge sdi(G).
The degredg(v) of a vertexv is the number of vertices adjacenwtd.et A(G) denote the
maximum degree among the verticessofThe reverse vertex degree of a veréx G is
defined ag, = A(G) —dg(V) + 1. The reverse edge connecting the reverseesu andv
will be denoted byv. Any undefined term here may be found in Kulli.[2]

In [3], Ediz introduced the first reverse Zagreliabiedex and the second reverse
Zagreb index of a grapfihey are respectively defined as

CM(G)= > (o +g) CM,(G)= 2. &G

uE(G) uJE(G)
Recently, many reverse indices were studied, famgte, in [4, 5, 6, 7, 8].
We introduce the modified first and second reverdizes of a grapks as

1
"C,(G)= 1
HO° Zlare) @
1
"C,(G) = — 2
2(©) U\EZE(G)CUCV @
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The forgotten topological index or F-index of agt&s is defined as

FE)= X [de(W+&(¥°]= T (9
wE(G) wv g
The F-index was studied by Furtula and Gutman Jraf#l also it was studied,
for example, in [10,11, 12, 13, 14, 15,16].
Motivated by the definition of the F-index and ipplications, Kulli [17]
introduced the F-reverse index and F-reverse patyalocof a graph as follows:
The F-reverse index of a gra@his defined as
Fe(e)= X (€+¢) ®3)
udE(G)
The F-reverse polynomial of a gra@tis defined as
FC(G XY= Y A%+, (a)
uIE( G)
Some other F-indices were studied, for gxaimin [18,19,20].
In this paper, the modified first and setoaverse indices, F-reverse index and F-
reverse polynomial of certain nanostructures araprded. For more information about
nanostructures see [21, 22].

2. Resultsfor KTUC,Cg(S) nanctubes

In this section, we focus on the graph structura t&mily of TUC,Cg(S) nanotubes. The
2-dimensional lattice ofTUC,Cg(S) is denoted byK=KTUC,Cg[p,q where p is the
number of columns anglis the number of rows, see Figure 1.

Figure 1: The graph oKTUC,Cg[p,q] nanotube

Let K be the graph oKTUC,Cg[p,q nanotube. Clearly the vertices Kfare either of
degree 2 or 3. Thua(K) = 3. Thereforec, = A(K) — dk(u) + 1 = 4 —dk(u). In K, by
calculation, there are three types of edges asvistl

Bz = {uv D E(K) |d(u) = dk(v) = 2}, |Exd] =2+ 20+ 4.

Ezs = {uv O E(K) |dk(u) =2, dk(v) = 3}, |Ezxsl =40 + 49— 8.

Ess = {uv O E(K) |di(u) = dk(v) = 3}, |Esql = 12pq— 8- 8q+ 4.

Thus there are three types of reverse edges as givlable 1.

Cu, AUV O E(K) 2,2, (2,1) (1, 1)
Number of edge 2p+2g+4 4p+4g-8 12pq- 8p - 8qg+4
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Table 1. Reverse edge partition Kf
Theorem 1. The modified first and second reverse indiceK®UC,Cg[p,q nanotubes
are given by

(i) "C,(K)= 6pg- 1_63( p+ g+ —; (i) "C,(K)=12pg- 1—21( p+ g+ 1.
Proof: (i) By using Table 1 and from equation (1), we wiesl

"C(K)= D 1 (_1j(2p+ 2q+ 4)+(2_i]j(4p+ 4g- 9

u\A]E(K)Cu+Cv_ 2+2

1
+-—= (12pq-8p—8q+4
157 42Pa-8p-8q+4)

13 1
= 6pg- g(p+ a)+§-
(i) By using Table 1 and from equation (2), we deel

T EY !
U\EE(K)E_(ZXZJ(ZF)-FZ(HA')-F(ZXJ(A'p"' 4q 8

"C,(K)=

1
+— @2pg-8p-8q+4
1-1(1 pg—-8p—8q+4)
= 12pq- —121(p+ Q-+ 1.

Theorem 2. The F-reverse index and F-reverse polynomigk®tC,Cg[p,q nanotubes
are given by
(i) FC(K) = 24pqg + 20(p+q).
(i) FC(K, X) = (20 + 29 + 4)E¢ + (4p + 4q — 8) + (120q— & — 84 +4)&.
Proof: (i) By using Table (1) and from equation (3), weide
Fe(K)= 3 (¢ <)
= (2+2°)(2p+2qr-4)+(2+1%)(4p+4q-8)+(L+1°)(1200-8p-8q +4)
= 24q + 200+0).

(i) By using Table (1) and from equation (4), werigde
FC(K,x)= 3 #5)
uOE(K)
= @p+ 29+ X + (4p+ 4q- 9 XV +(12p¢ 8p 8 P KT
= (2p+2q+4) X+ (4p+4q-8) X+ (12p+-8p-8q +4) XC.
3. Resultsfor GTUC,Cg(S) nanotubes
In this section, we focus on the graph structuriawfily of TUC,Cg(S nanotubes. The 2-

dimensional lattice oTUC,Cy(S) is denoted bys=GTUC,Cqg[p,q wherep is the number
of columns andj is the number of rows, see Figure 2.
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q

Figure2: The graph o6TUGCg[4,3] nanotube

Let G be the molecular graph &TUC,Cg[p,d nanotube. From Figure 2, one
can see that the vertices Gfare either of degree 2 or 3. ThHA&S) = 3. Therefore, =
A(G) —dg(u) + 1 = 4 —dg(u). In G, by calculation, three types of edges as follows:

Eze = {uv U E(K) [dk(u) = dk(v) = 2}, |Exl = 2.

Ezs = {uv U E(K) [dk(u) =2, d(v) = 3}, |Ezgl = 4p.

Ess = {uv U E(K) | dk(u) = dw(V) = 3}, |Essl = 12pq— &p.

Thus there are three types of reverse edges lmaséie degree of end reverse
vertices of each reverse edge as given in Table 2.

Cy, G\uv 0 E(G) (2, 2, (2,1) 1,1
Number of edge 2p 4ap 12pq-8p
Table 2: Reverse edge partition 6f

Theorem 3. The modified first and second reverse indice&dfJC,Cg[p,q nanotubes
are given by
() "C.@= 6p- = p @ "c,@=12pe 2 p

Proof: (i) By using Table 2 and from equation (1), we wlezl

mCl(G):MZE(:G)cu icv :(2i2)2p+(2i1j4p+(1711j(12pq_ 8

13
= 6pg- — p.
pa- & P

(i) By using Table 2 and from equation (2), we deel
1 1 1 1
"C,(G)= —:( )2 (—J4 (—J 12 8
197, Zgae (2x)?Pr )t P (5 02ee 8

11
=12pg- = p.
pa- = P
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Theorem 4. The F-reverse index and F-reverse polynomigbdfJC,Cq[p,q nanotubes
are given by

(i) FC(G) = 24pq + 2(p.

(i) FC(G, X) = 205¢ + 4pxX° + (1200 — &)X
Proof: (i) By using Table (2) and from equation (3), weide

Fe(e)= % (¢+<)

= (22+22)2p + (Z+1%)4p + (1°+1%)(12pq - &)
= 24pq + 20p.

(ii) By using Table (2) and from equation (4), werige
Fe(G 9= 3 A%
wOE(G)
— 2px(2 +2) 4 4p)522+12)+ (12pg 89 &+ D)
= 205+ 4px¢ + (1209 — 8p) .

4. Resultsfor HTUC,Cg(R) nanotorus

In this section, we focus on the graph structuriafily of HTC,Cg(R) nanotorus. The 2-
dimensional lattice oHTUC,Cg(R) is denoted byH=HTUC,Cg[p,q], where p is the
number of columns anglis the number of rows, see Figure 3.

Figure 3: The graph oHTUC,Cg[p,q nanotorus

Let H be the graph oHTUC,Cg[p,q nanotorus. From Figure 3, we see that the
degree of each vertex éf is 3. ThusA(H) = 3. Thereforec,=A(H) —dy(u) + 1 = 4 —
ds(u). In G, there is only one type of edges as follows:

Ess = {uv E(H) |dn(u) = du(v) = 3},  |Esq = 1.

Thus there is only one type of reverse edgeslasvi

Ess={uvUE(H) [c.=¢c, = 1}, IREs| = 120 )

Theorem 5. LetH be the graph dfiTUC,Cg[p,q nanotorus. Then
(i) "Cy(H) = 6pq. (ii) "Cy(H) = 12pq.
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(iii) FC(H) = 24pq. (iv) FC(H, X) = 120g¥.
Proof: (i) By using (5) and from equation (1), we deduce

m _ 1 _( 1 j _
H)= = — |12pg=6pqg
M) u\A:IZE(H)Cu-FCv 1+1

(i) By using (5) and from equation (2), we deduce

m _ 1 (1 _
C,(H) —M%H)CUCV —(1X1j12pq— 12paq.

(i) By using (5) and from equation (3), we deduce

FC(H)= Y (@+&)=(12+12)12pg= 24pq
uiJE( H)

(iv) By using (5) and from equation (4), we deduce

FC(H,X)= > A%< =12 pglt*?) = 12 pgg.

uvJE( H)
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