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Abstract. In this paper, we consider the two equatiopd + ¢ =Z and p®-¢* =7
when p, g are primes. Among the various results attained,shown that both equations
have no solutions wherg = 2, andZ is a multiple of 9 in each and every solutidn.
particular, when 3 q<p <101, all the possibilities for solutions of eacfuation are
examined for all primes p, g. It is established that each equation has exattty
solution which is exhibited. For primes larger tHa1, it is presumed that both equations
may have additional solutions by using a computer.
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1. Introduction
The field of Diophantine equations is ancient, yvastd no general method exists to
decide whether a given Diophantine equation hassalions, or how many solutions.
The famous general equation
P+ =7
has many forms. The literature contains a vergedatumber of articles on non-linear
such individual equations involving primes and poswef all kinds. Among them are for
example [1, 4, 5, 6].
In this paper, we consider the two equations
pP’+q =7,
p-q? =2
where p, q are primes, and is a positive integer.

When the conditions op, q are relaxed, i.e., atleast one pf q is composite,

the two equations have solutions. Bruin [1] dastmted seven such solutions which
are as follows.

(b a, 2 = (8, 4, 24)

for the first equation, whereas
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(9,2 € {(8,7,13), (32,28,104), (33,6, 189)72(63, 351), (132, 24, 1512),
(288, 252, 2808)} relate to the second equation.

In the two self-contained Sections 2 and tBe two equations are respectively
investigated for solutions. Among the resultsiattd, we establish that each equation
has exactly one solution when 8 g <p <101 where for all prime$ and g, all the
possibilities have been examined.

2. Onthesolutionsof p®+q*=7Z when p, q areprimes
In our discussion, all the integers are positivel we distinguish two cases, namety=
2 and q> 2.

The case q=2.
The equationp® + 22 = Z yields
PP+2 = p+2p*-p+4)=7. 1)

Theorem 2.1. If p is prime, then the equatiop’ + 2° =7 has no solutions.

Proof: Let A B and R >1 be odd integers. If (1) has a solution, ttrensolution
satisfies at least one of the following two podgibs:
() p+2=A" and p*-2p + 4 =B
(i) p+2 =AR and p*-2p + 4 =B°R
In (i) andin (i) both conditions must existsiltaneously.
We will now show that (i) and (ii) arepassible.

Suppose (i), i.e.p+ 2 =A? and p’— 2 + 4 =B% To prove our assertion, it
suffices to show for every prime, that p?— 2 + 4 is not a square. We shall assume
that there exists a primg for which p>— 20 + 4 =B? and reach a contradiction.

By our assumption, lep* — 20+ 4 =B% Thenp(p—2)=B*—4 =8 -2)(B + 2).
Hence, p divides at least one of the valuds {2), 8 + 2).

If p|(B-2), thenCp =B -2 whereC is an odd integer, an@€p +4 =B + 2.
Thus p(p—2) =Cp)(Cp+4) orp—2=C(Cp+4) which is impossible.

If p|(B+2), thenDp = B+ 2 whereD is an odd integer, anBp—-4 =B — 2.
We have p(p—2) = Op-4)Dp) or p—2=D’p—-4D implying p(D*-1) =D -2

4D -2

and p= . The valueD = 1 is impossible, and for all integefd® > 1, it
D?-1

follows that p =

5 is not an integer.
D —

Our assumption that’ — 20 + 4 =B? is therefore false, and the assertion follows.
Case (i) does not exist.

Suppose (i), i.ep+2 =AR and p’-2p + 4 =B°R whereR >1. Thenp +
2 = AR yieldsp = AR-2, andp’-2p + 4 =A'R*-6A’R + 12 =B’R. Hence
R|12. SinceR >1 is odd, therefor® = 3.

We then have
p+2=3 and p’-p+4=3F (2)
which must exist simultaneously. Both equalities(R) do not exist simultaneously. A
formal proof which is lengthy and includes manyhtgical details is not given here.
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Nevertheless, the validity of the above statemantle verified by the reader. Case (i)
does not exist, and hence the equaidr 2 = Z has no solutions.

The proof of Theorem 2.1 is complete. O

Thecase gq>2.
The equationp®+q* = Z yields
PP+’ =P+aE*-pa+ ) = 2. 3)
Let A be aneveninteger, a8l R > 1 odd integersAny solution of (3) must now
satisfy at least one of the following two cases:
() p+q= A’ andp’-pg+q’ =B’
(i) p+q = AR and p°-pq+q°=BR
In each case, both conditions must exist simultasigo

In Theorem 2.2, we show that case (i@sdwot exist.
Theorem 2.2. If p, q are primes, thep? - pq + g’ # B2

Proof: Without loss of generality letp > g. To prove our assertion, we shall assume that
there exist prime®, q satisfying p*-pg+q® = B and reach a contradiction.

By our assumption, we hayé - pq +¢° = B? or
p(p-q) = B*- ¢*=B-q)(B+0)
implying that p divides at least one of the valueB <{q),(B + q).

If p|/(B-q), then pa = B—qg wherea is an even integer, anpa + 20 =B + q.
Thus, p(p-9) = @Pa)(pa+ 29) or p-q= a(pa+ 29) which is impossible for all
values a.

If p|B+q), then pp= B+q whereb is an even integer, angb- 2q = B—q.
Hence, p(p- q) = (pb - 2o)(pb) or p-q= b(pb- 2q) implying that p(b®— 1) =q(2b -

1) and p :%. When b =2, then p =g which is impossible, and therefore

b # 2. Sincep>gq, it follows that 1< P_ Eg_i But, for all integersb > 2, we
q p—
have that 52 — <1, a contradiction.

Our assumption that there exist primgsq for which p*-pgq+q® = B? is
therefore false, and the assertion follows.

This concludes the proof of Theorem 2.2. i
Remark 2.1. The first condition in (i) is satisfied for infiely many primesp, q.
For example: 13+3 =419+ 17=6 41+ 23=8 andsoon. By Theorem 2.2, the
second condition in (i) does not exist. The tvemditions in (i) are not satisfied
simultaneously. Therefore, in this case the eqnap® + g° =7 has no solutions.

In the following Proposition 2.1, casi) (is considered, and the valle > 1 is
determined.
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Proposition 2.1. Supposethat p, q are primes. Ifp+q=A’R and p*-pq+q’ =
B°R are satisfied simultaneously, theR= 3.

Proof: The integerp +q = A’R implies p = AR -q. Substitutingp in p?-pq + ¢
= B°R yields A'RP - 3A°Rq + 33° = B’R Hence R| 3¢°. Since R > 1, the only
possible valuer is R= 3. O

Any solution of p* + ¢ =Z now satisfies the conditions:
p+q =3, p-pg+q =38, Z=0AB

Remark 2.2. For all primes p, g satisfying 3< q<p< 101, all the possibilities
have been examined for solutions pf + g° = Z. It is established that the equation has
exactly one solution whemp =37, g=11 and z= 228, namely:

Solution 2.1. §7+ 12 = 228
In accordance with Proposition 2.1, this dolusatisfies:
p+q= AR= 34
p’-pg+q® = BR = 319,
Z = OB = 94%19

3. Onthesolutionsof p*-g*=7 when p, g areprimes

Although the two equations are distinct, we follbere the procedure outlined in Section
2. Since both sections are each self-containedsha#t apply here the same style and
notation as in Section 2.

We shall consider the two cases=2 and g > 2.

The case q=2.
The equationp®- 2° = 7 vyields
p’-2=(p-2)p°+2p+4)=7. (4)

Theorem 3.1. If p is prime, then the equatignt - 22 = Z has no solutions.

Proof: Let A,B andR>1 be odd integers. Any solution of (4) nsedisfy at
least one of the following two possibilities:
() p-2=A> and p’+2p+4=B%
(i) p-2 =AR and p’+2p+4=BR
In each case, both conditions must exist simultasigo
We will show that (i) and (ii) are imdsle.

Suppose (i), i.e.p-2 =A% and p’+ 2 + 4 =B% To prove our assertion, it
suffices to show for all primeg that p° + 2p + 4 is not a square. We shall assume that
there exists a primg for which p®> + 2p + 4 =B? and reach a contradiction.

By our assumption, lep® + 20+ 4 =B°. Thenp(p+2)=B*-4=8-2)(B + 2).
Thus, p divides at least one of the valued (2), B + 2).

If p|B-2), thenCp =B -2 whereC is an odd integer, an@€p +4 =B + 2.
Hence, p(p+2) = Cp)(Cp + 4) orp+ 2= C(Cp+4) which is impossible.

If p|(B+2), thenDp = B+ 2 whereD is an odd integer, anbp—-4 =B - 2.
We obtain p(p+2) = Op - 4)(Dp) or p+ 2= D?p—4D implying thatp(D?*—1) =D
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4D +

D? -

2 L , . .
+2 and p= . The valueD =1 is impossible, and for all integeB®s > 1, it

follows that p = is not an integer.

D? -
Our assumption that’ + 2p + 4 =B? is therefore false, and the assertion follows.
Case (i) does not exist.

Suppose (i), i.ep-2 = AR and p’+2p + 4 =B’R whereR >1. The
integerp-2 = A’R vyieldsp = A’R+ 2 implying that p?+ 2p + 4 = A'R*+ GAR
+12 =B°R. Thus R|12. SinceR >1 is odd, therefor® = 3.

We then have
p-2=3° and p’+Pp+4= B (5)
which must exist simultaneously. Both equalities (5) do not exist simultaneously.
The proof which is rather long, very detailed aadidus will not be given here. The
validity of the above statement may be verifiediioy reader. Case (i) does not exist,
and hence the equatiqut - 2 = Z has no solutions as asserted.

This concludes the proof of Theorem 3.1. m

Thecase gq>2.
The equationp®-® = Z yields

p’-a° = P-aP°+pa+ ) = Z. (6)
Let A be an even integer, an®8, R > 1 odd integersAny solution of (6) must now
satisfy at least one of the following two cases:

() p-q= A andp’+pg+q =B’
(i) p-q = AR and p’+pg+q°=BR
In each case, both conditions must exist simultasigo

In Theorem 3.2, we show that case @gsinot exist.

Theorem 32. If p, q are primes, therp-q = A? and p?+ pq+q° =B? do not
exist simultaneously.
The equationp®- g° = Z has no solutions.

Proof: We shall assume in (i) that there exist primgs g which satisfy both
conditions simultaneously, and reach a contrauticti

By our assumption, we have? + pq + ¢ = B? or

p(p+0) = B*- g =B -0)(B +0)
implying that p divides at least one of the valu€&—q),(B + q).

If p|(B-q), then pa= B—-q where a is an even integer, angha + 29 = B + q.
Thus, p(p+q) = (Pa)(pa+29) or p+qg= a(pa+ 29) which is impossible for all
values a.

If p|B+q), then pp= B+q whereb isan even integer, angb- 20 = B -

g. Hence,p(p+q)=(@b- 29)(pb) or p+q= b(pb- 29) implying that p(b2 -1)=
g(2b + 1) and p:%. When b=2, then =53 Thusq=3, p=5 and

B?= 49 are the unique values of this equality. But 3# A%, hence (i) is not satisfied
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+
simultaneously. Therefordo # 2. Sincep >q, we have1<E = 25) i

q b -

For all

2b+1

integersb > 2, then b2 <1, a contradiction.

Our assumption in (i}hat there exist primep, q whichsatisfy both conditions
simultaneously is false, and the assertion followdase (i) does not exist, and the
equation has no solutions.

This completes the proof of Theorem 3.2. O
In the following Proposition 3.1 we considase (ii), and determine the valBe

Proposition 3.1. Supposéhat p, q are primes. Ifp-q = AR and p°+pg+q°=
B°R are satisfied simultaneously, theér= 3.

Proof: The integerp-q = A’R implies that p = AR +q. Substituting p into p?
+pg+g° =B°R results inA'R* + 30°Rg + 3 =B°R. Thus, R| . SinceR >1, R
=3 is the only possible value. i

Any solution of p* - ® =Z now satisfies the conditions:
p'ngb\z, p2+pq+q2::B21 22:%282.

Remark 3.1. For all primesp, q satisfying 3<q<p< 101, all the possibilities
have been examined for solutions @f - g° = Z. It is established that the equation has
exactly one solution whermp =71, g =23 and z=588, namely:

Solution 3.1 71- 23 = 588
Proposition 3.1 is satisfied by the solution@fvs:
p-q= AR = 34,
p’+pq+q = B°R = 349,
7 = WB® = 94749

4. Conclusion

Besides the demonstrated two solutions, we canuguthe other results achieved in this

paper as follows.

(@) For all primesp, the equationg®+ 2°=7 and p®- 2° =7 have no solutions.

(b) ForZ=p’+q°=(p+q)(p*-pq+ ) where X q<p, each of the valuep’ —

2 +4 and p?—pq+g* is not a square. Hence, both factors are notregua
simultaneously.

(c) ForZ=p*-¢® = p-q(p*+pg+q) where Xq<p, the valuep’+ 2p + 4
is not a square, whereps+pq+g° is a square onlywhep=5 and q= 3,
but 5 - 3is not a square. Thus, bottofaare not squares simultaneously.

(d) In any possible solution op®+q® = 7 and of p*-q® = 7, the valueZ is a
multiple of 9. Indeed? is a multiple of 9 in Solutions 2.1 andl.3.

For primesp > 101 onward, both cubes of each equation attengdarger and

larger. Therefore, only with the aid of a compuiae may obtain additional solutions if
such exist. We presume that such solutions exist.
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