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Abstract.   In this paper, we consider the two equations   p3 + q3 = z2  and  p3 - q3 = z2  
when  p, q are primes. Among the various results attained, it is shown that both equations 
have no solutions when   q = 2, and  z2  is a multiple of  9  in each and every solution.  In 
particular, when  3 ≤  q < p ≤ 101, all the possibilities for solutions of each equation are 
examined for all primes   p,  q.  It is established that each equation has exactly one 
solution which is exhibited. For primes larger than 101, it is presumed that both equations 
may have additional solutions by using a computer.  
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1. Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions. 
       The famous general equation  

px + qy = z2 
has many forms.  The literature contains a very large number of articles on non-linear 
such individual equations involving primes and powers of all kinds.  Among them are for 
example [1, 4, 5, 6].   
       In this paper, we consider the two equations 

p3 + q3 = z2, 
p3 - q3 = z2 

where   p,  q  are primes,  and  z  is a positive integer. 
 
       When the conditions on  p,  q  are relaxed,  i.e.,  at least one of   p,  q  is composite, 
the two equations have solutions.  Bruin  [1]  demonstrated seven such solutions which 
are as follows. 

(p,  q,  z)  =  (8,  4,  24) 
 

for the first equation, whereas 
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(p, q, z)  Є  {(8, 7, 13),   (32, 28, 104),   (33, 6, 189),   (72, 63, 351),   (132, 24, 1512), 
(288, 252, 2808)} relate to the second equation. 
 
       In the two self-contained Sections 2 and  3,  the two equations are respectively 
investigated for solutions.  Among the results attained, we establish that each equation 
has exactly one solution when  3  ≤  q < p ≤ 101  where for all primes  p and  q, all the 
possibilities  have been examined. 
 
2.   On the solutions of  p3 + q3 = z2   when   p,  q  are primes  
In our discussion, all the integers are positive, and we distinguish two cases, namely:  q = 
2  and   q > 2.   
 
The  case   q = 2.  
The equation  p3 + 23 = z2  yields  
                                          p3 + 23  =  (p + 2)(p2 - 2p + 4) =  z2.                                           (1) 
 
Theorem  2.1.   If   p  is prime, then the equation  p3 + 23 = z2  has no solutions. 

Proof:   Let   A, B  and  R  > 1  be odd integers. If (1) has a solution, then the solution 
satisfies at least one of the following two possibilities: 
(i)      p + 2  =   A2    and    p2 - 2p  +  4  =  B2, 
(ii)     p + 2  =  A2R   and   p2 - 2p  +  4  =  B2R.                     
In  (i)  and in  (ii)  both conditions must exist simultaneously.  
       We will now show that (i)  and  (ii)  are impossible. 
 
       Suppose  (i),  i.e.,  p + 2 = A2  and   p2 – 2p + 4 = B2.  To prove our assertion, it 
suffices to show for every prime  p,  that  p2 – 2p + 4  is not a square. We shall assume 
that there exists a  prime  p  for which  p2 – 2p + 4 = B2,  and  reach a contradiction.  
  
       By our assumption, let   p2 – 2p + 4 = B2.  Then  p(p – 2) =  B2 – 4 = (B – 2)( B + 2).  
Hence,   p  divides at least one of the values  (B – 2), (B + 2).   
       If   p|(B – 2),  then  Cp = B – 2  where  C  is an odd integer, and  Cp + 4  =  B + 2.  
Thus   p(p – 2) = (Cp)(Cp + 4)  or  p – 2 =  C(Cp + 4)  which is impossible.   
       If   p|(B + 2),  then  Dp  =  B + 2  where  D  is an odd integer,  and  Dp – 4 =  B – 2.  
We have   p(p – 2) = (Dp - 4)(Dp)  or  p – 2 =  D2p – 4D  implying  p(D2 – 1) = 4D – 2   

and  
1

24
2 −

−=
D

D
p .  The  value  D = 1  is impossible,  and for all integers  D > 1,  it 

follows that  
1

24
2 −

−=
D

D
p   is  not an integer. 

       Our assumption that  p2 – 2p + 4 = B2  is therefore false,  and the assertion follows.  
Case  (i)  does not exist.   
 
       Suppose  (ii),  i.e.,  p + 2  =  A2R   and   p2 - 2p  +  4  =  B2R  where R  > 1.  Then  p + 
2  =  A2R   yields  p  =  A2R – 2,  and   p2 - 2p  +  4  =  A4R2 - 6A2R  + 12  =  B2R .  Hence  
R | 12.  Since   R  > 1  is odd,  therefore  R = 3.   
 
       We then have   
                                   p  +  2  =  3A2      and        p2 - 2p + 4  =  3B2                                  (2) 
which must exist simultaneously.  Both equalities in  (2)  do not exist  simultaneously.  A 
formal proof which is lengthy and includes many technical details is not given here.  
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Nevertheless, the validity of the above statement can be verified by the reader.  Case  (ii)  
does not exist, and hence the equation  p3 + 23 =  z2  has no solutions. 
 
        The proof of Theorem 2.1 is complete.                            □  
 
The case   q > 2. 
The equation   p3 + q3 =  z2  yields 
                                   p3 + q3 = (p + q)(p2 - pq + q2) =  z2.                                                (3) 
Let   A  be an even integer,  and  B,  R  > 1  odd integers.  Any solution of  (3)  must now 
satisfy at least one of the following two cases: 
(i)      p + q  =   A2    and   p2 - pq + q2 = B2, 
(ii)     p + q  =  A2R  and   p2 - pq + q2 = B2R.   
In each case, both conditions must exist simultaneously.  
 
       In Theorem  2.2,  we show that case  (i)  does not exist. 
 
Theorem  2.2.   If   p,  q  are primes, then  p2 -  pq + q2 ≠ B2.  
 
Proof:  Without loss of generality let   p > q. To prove our assertion, we shall assume that 
there exist primes  p,  q  satisfying   p2 - pq + q2  =  B2,  and reach a contradiction.  
 
       By our assumption, we have  p2 - pq + q2  =  B2  or   

p(p - q) =  B2 -  q2 = (B – q)(B + q) 
implying   that   p  divides at least one of the values  (B – q),(B + q). 
       If   p|(B – q),  then   pa  =  B – q  where  a  is an even integer, and  pa + 2q = B + q.  
Thus,   p(p - q) =  (pa)( pa + 2q)  or  p - q =  a(pa + 2q)  which is impossible for all 
values  a.  
       If   p|(B + q),  then   pb =  B + q   where  b  is an even integer, and   pb -  2q  =  B – q.  
Hence,  p(p - q) = (pb -  2q)( pb)  or  p - q =  b( pb -  2q)  implying that  p(b2 – 1) = q(2b - 

1)  and   
1

)12(
2 −
−=

b

qb
p .   When   b = 2,  then   p = q  which is impossible, and therefore   

b  ≠  2.  Since  p > q,  it follows that  
1

12
1

2 −
−=<

b

b

q

p
.  But,  for all integers  b > 2,  we 

have that  1
1

12
2

<
−
−

b

b
,  a contradiction. 

 
       Our assumption  that  there exist  primes   p,  q  for which    p2 - pq + q2  =  B2   is 
therefore false,  and the assertion follows. 
 
       This concludes the proof of  Theorem  2.2.                            □ 
 
Remark  2.1.   The first condition in  (i)  is satisfied for infinitely many primes  p,  q.  
For example:  13 + 3 = 42,  19 + 17 = 62,   41 + 23 = 82,  and so on.  By  Theorem 2.2,  the 
second condition in  (i) does not exist.  The two conditions in  (i)  are not satisfied 
simultaneously.  Therefore, in this case the equation   p3 + q3 = z2  has  no solutions.  
 
       In the following  Proposition  2.1,  case  (ii)  is considered, and the value R  > 1 is 
determined.   
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Proposition  2.1.   Suppose  that   p,  q  are  primes.  If   p + q = A2R  and   p2 - pq + q2 = 
B2R  are satisfied simultaneously,  then   R = 3.   
 
Proof:  The integer  p + q  =  A2R  implies  p  =  A2R  - q.  Substituting  p  in   p2 - pq + q2  
= B2R  yields  A4R2 - 3A2R q + 3q2  =  B2R.  Hence  R | 3q2.  Since  R  > 1,  the only 
possible value  R  is  R = 3.                                                         □ 
 
       Any solution of   p3 + q3 = z2   now satisfies the conditions: 

p + q  =  3A2,         p2 - pq + q2 = 3B2,         z2 = 9A2B2.   
 

Remark  2.2.   For all primes   p,  q  satisfying  3 ≤  q < p ≤ 101,  all  the  possibilities    
have been examined for solutions of   p3 + q3 = z2.  It is established that the equation   has  
exactly  one solution when   p = 37,   q = 11  and   z = 228,  namely:  
 
Solution  2.1.                               373  +  113  =  2282. 
In  accordance  with  Proposition  2.1,  this solution satisfies:   

p  +  q  =   A2R  =  3·42,  
p2 - pq + q2  =  B2R  =  3·192, 

z2  =  9A2B2  =  9·42
·192. 

 
3.   On the solutions of   p3 - q3 = z2   when   p,  q  are primes  
Although the two equations are distinct, we follow here the procedure outlined in Section  
2.  Since both sections are each self-contained, we shall apply here the same style and 
notation as in  Section  2. 
 
       We shall consider the two cases   q = 2  and   q > 2.  
 
The  case   q = 2.  
The equation   p3 - 23  =  z2  yields  
                                     p3 - 23 = (p - 2)(p2 +2p + 4) =  z2.                                                (4) 
 
Theorem  3.1.    If   p  is  prime, then the equation  p3 - 23  =  z2  has no solutions. 
 
Proof:   Let   A, B  and  R > 1  be odd integers.  Any solution of  (4)  must satisfy  at 
least one of the following two possibilities: 
(i)      p - 2  =   A2     and    p2 + 2p + 4 = B2, 
(ii)     p - 2  =  A2R   and    p2 + 2p + 4 = B2R.   
In each case, both conditions must exist simultaneously. 
       We will show that  (i)  and  (ii)  are impossible. 
 
       Suppose (i),  i.e.,  p - 2 = A2  and   p2 + 2p + 4 = B2.  To prove our assertion, it 
suffices to show for all primes  p  that  p2 + 2p + 4  is not a square.  We shall assume that 
there exists a prime  p  for which  p2 + 2p + 4 = B2,  and  reach a contradiction.  
 
       By our assumption, let   p2 + 2p + 4 = B2.  Then  p(p + 2) =  B2 – 4 = (B – 2)( B + 2).  
Thus,   p  divides at least one of the values  (B – 2), (B + 2).   
       If   p|(B – 2),  then  Cp = B – 2  where  C  is an odd integer, and  Cp + 4  =  B + 2.  
Hence,   p(p + 2) = (Cp)(Cp + 4)  or  p + 2 =  C(Cp + 4)  which is impossible.   
       If   p|(B + 2),  then  Dp  =  B + 2  where  D  is an odd integer,  and  Dp – 4 =  B – 2.  
We obtain   p(p + 2) = (Dp - 4)(Dp)  or  p + 2 =  D2p – 4D  implying  that  p(D2 – 1) = 4D 
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+2   and  
1

24
2 −

+=
D

D
p .  The  value  D = 1  is impossible,  and for all integers  D  > 1,  it 

follows that  
1

24
2 −

+=
D

D
p   is not an integer.  

       Our assumption that  p2 + 2p + 4 = B2  is therefore false,  and the assertion follows.  
Case  (i)  does not exist.  
 
        Suppose  (ii),  i.e.,  p - 2  =  A2R   and   p2 + 2p  +  4  =  B2R  where R  > 1.  The 
integer  p - 2  =  A2R   yields  p  =  A2R + 2  implying that   p2 + 2p  +  4  =  A4R2 + 6A2R  
+ 12  =  B2R .  Thus  R | 12.  Since   R  > 1  is odd,  therefore  R = 3.   
 
       We then have   
                                   p  -  2  =  3A2      and        p2 +2p + 4  =  3B2                                  (5) 
which must exist simultaneously.  Both equalities in  (5)  do not exist  simultaneously.  
The proof which is rather long, very detailed and tedious will not be given here.  The 
validity of the above statement may be verified by the reader.  Case  (ii)  does not exist, 
and hence the equation  p3 - 23 =  z2  has no solutions as asserted. 
 
        This concludes the proof of   Theorem  3.1.                            □  
  
The case   q > 2. 
The equation   p3 - q3 =  z2  yields  
                                         p3 - q3  =  (p - q)(p2 + pq + q2) =  z2.                                         (6) 
Let  A  be an even integer, and   B,  R  > 1  odd integers.  Any solution of  (6)  must now 
satisfy at least one of the following two cases: 
 
(i)       p - q  =   A2    and   p2 + pq + q2 = B2, 
(ii)     p - q   =  A2R  and   p2 + pq + q2 = B2R.   
In each case, both conditions must exist simultaneously.  
 
       In  Theorem  3.2,  we show that case  (i)  does not exist. 
 
Theorem  3.2.   If   p,  q  are primes, then  p - q  =  A2  and  p2 +  pq + q2 = B2  do not 
exist  simultaneously.  
The equation   p3 -  q3 =  z2  has no solutions. 
 
Proof:  We shall assume in  (i)  that there exist  primes   p,  q  which satisfy both 
conditions simultaneously,  and reach a contradiction.  
       By our assumption, we have   p2 + pq + q2  =  B2  or   

p(p + q) =  B2 -  q2 = (B – q)(B + q) 
implying  that   p  divides at least one of  the values  (B – q),(B + q). 
       If   p|(B – q),  then   pa =  B – q  where  a  is an even integer, and   pa + 2q =  B + q.  
Thus,  p(p + q) =  (pa)( pa + 2q)  or  p + q =  a(pa + 2q)  which is impossible for all 
values  a. 
       If   p|(B + q),  then   pb =  B + q   where  b   is an even  integer, and   pb -  2q  =  B – 
q.  Hence,  p(p + q) = (pb -  2q)( pb)  or  p + q =  b( pb -  2q)  implying that  p(b2 – 1) = 

q(2b + 1)  and   
1

)12(
2 −
+=

b

qb
p .  When   b = 2,  then  3p = 5q.  Thus  q = 3,  p = 5  and  

B2 = 49  are the unique values of this equality.  But  5 – 3 ≠ A2,  hence (i)  is not satisfied 
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simultaneously. Therefore  b  ≠  2.  Since  p > q,  we have 
1

12
1

2 −
+=<

b

b

q

p
.  For all 

integers b > 2,  then  1
1

12
2

<
−
+

b

b
,  a contradiction. 

       Our  assumption  in  (i)  that there exist primes  p,  q  which satisfy both conditions 
simultaneously is false, and the assertion follows.  Case  (i)  does not exist, and the 
equation has no solutions. 
 
       This completes the proof of Theorem 3.2.                                   □ 
 
       In the following  Proposition 3.1 we consider case (ii), and determine the value R.  
 
Proposition  3.1.   Suppose that   p,  q  are  primes.  If   p - q  =  A2R  and   p2 + pq + q2 = 
B2R  are satisfied simultaneously,  then   R = 3.   
 
Proof:   The integer  p - q  =  A2R   implies  that   p  =  A2R  + q.  Substituting   p  into  p2 
+ pq + q2  = B2R  results in  A4R2 + 3A2Rq  +  3q2 = B2R.  Thus,  R | 3q2.  Since  R  > 1,  R 
= 3  is  the only possible value.                                □ 
                                                                                        
       Any solution of   p3 - q3 = z2   now satisfies the conditions: 

p - q  =  3A2,         p2 + pq + q2 = 3B2,         z2 = 9A2B2.   
 
Remark  3.1.   For all primes  p,  q  satisfying  3 ≤ q < p ≤ 101,  all  the  possibilities    
have been examined for solutions of   p3 - q3 = z2.  It is established that the equation has  
exactly one solution when   p = 71,  q = 23  and   z = 588,  namely:   
 
Solution  3.1.                               713  -  233  =  5882. 
Proposition   3.1 is satisfied by the solution as follows:   

p  -  q  =   A2R  =  3·42, 
p2 + pq + q2  =  B2R  =  3·492, 

z2  =  9A2B2  =  9·42
·492. 

 
4.  Conclusion    
Besides the demonstrated two solutions, we can sum up the other results achieved in this 
paper as follows. 
(a)   For all primes   p,  the equations  p3 + 23 = z2  and   p3 - 23 = z2  have no solutions.   
(b)   For  z2 =  p3 + q3 = (p + q)(p2 - pq + q2)  where 2 ≤ q < p,  each of the values  p2 –  
       2p + 4  and   p2 – pq + q2  is not a square. Hence, both factors are not squares  
       simultaneously. 
(c)   For  z2 =  p3 - q3  =  (p - q)(p2 + pq + q2)  where  2 ≤ q < p,  the value  p2 + 2p + 4   
        is not a square,  whereas  p2 + pq + q2  is a square only when   p = 5   and   q = 3,   
        but  5 – 3 is not a square.  Thus, both factors are not squares simultaneously. 
(d)   In any possible solution of   p3 + q3  =  z2  and of   p3 - q3  =  z2,  the value  z2  is  a  
        multiple of   9.  Indeed,  z2  is  a multiple of  9  in  Solutions  2.1  and  3.1.  
 
        For  primes  p > 101  onward,  both cubes of each equation are getting larger and 
larger.  Therefore, only with the aid of a computer one may obtain additional solutions if 
such exist.  We presume that such solutions exist.  
 



57 
 

REFERENCES 

1. N.Bruin,  The primitive solutions to  x3 + y9 = z2, Journal of Number Theory, 111   
(2005) 179 – 189.  

2. N.Bruin,  The diophantine equations   x2 ± y4 = ± z6  and  x2 + y8 = z3,  Compositio 
Mathematica 118 (1999) 305 – 321. 

3. N.Burshtein,  All the solutions of the diophantine equation   p3 + q2 = z3,   Annals    
of Pure and Applied Mathematics, 14 (2) (2017) 207 – 211. 

4. N.Burshtein,  All the solutions of the diophantine equation  p3 + q2 = z2, Annals of  
Pure and Applied Mathematics, 14 (1) (2017) 115 – 117. 

5. S.Chowla, J.Cowles and M.Cowles,  On  x3 + y3 = D,  Journal of Number Theory,  
14 (1982) 369 – 373. 

6. B.Poonen, Some diophantine equations of the form  xn + yn = zm,  Acta Arith., 86 
(1998) 193 – 205.  

7. B.Sroysang, More on the diophantine equation 8x +19y = z2,   Int. J. Pure Appl.    
Math., 81 (4) (2012) 601 – 604. 

8. A.Suvarnamani, Solution of the diophantine equation  px + qy = z2,  Int. J. Pure  
Appl. Math., 94 (4) (2014) 457 – 460.  

 
 


