Annals of Pure and Applied Mathematics Vol. 18, No. 2, 2018, 129-134 ISSN: 2279-087X (P), 2279-0888(online) Published on 10 October 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v18n2a1

Annals of Pure and Applied <u>Mathematics</u>

On the Diophantine Equation $\{(q^2)^n\}^x + p^y = z^2$ where q is any Prime Number and p is an Odd Prime Number

Surya Prakash Gautam¹, Hari Kishan² and Satish Kumar³

¹Department of Mathematics, DN College, Ch. Charan Singh University Meerut – 250002, Meerut, India. Corresponding author. Email: <u>spgautam128@gmail.com</u> Email: ²<u>harikishan10@rediffmail.com</u>; <u>3skg22967@gmail.com</u>

Received 16 September 2018; accepted 9 October 2018

Abstract. In this paper, we have solved the Diophantine equation $\{(3^2)^n\}^x + p^y = z^2$ and $\{(5^2)^n\}^x + p^y = z^2$ where $n \in Z^+$ and p is an odd prime. Also, we have discussed the generalization of $(4^n)^x + p^y = z^2$ to $\{(q^2)^n\}^x + p^y = z^2$, where $n \in Z^+$, q is any prime number and p is an odd prime number. Some solutions of these Diophantine equations have been obtained.

Keywords: Diophantine equations, Exponential Diophantine equations and Catalan's conjecture

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

Diophantine equations are central objects of number theory in mathematics with a vital importance in the field of Cryptography, Computer Science, Chemistry, Geometry and many more. According to Cao [4], the Diophantine equation $a^{x} + b^{y} = c^{z}$ has at most one solution for z>1. Suvarnamani et al. [9] proved that the Diophantine equation $4^{x} + 7^{y} = z^{2}$ and $4^{x} + 11^{y} = z^{2}$ have not any non-negative integer solution. Chatchaisthit [5] have presented that the Diophantine equation $4^x + p^y = z^2$ have the solutions of the form $(x, p, y, z) \in \{(2, 3, 2, 5)\} \cup \{(r, 2^{r+1} + 1, 1, 2^r + 1): r \in N \cup \{0\}\} \cup$ $\{(r, 2, 2r + 3, 3, 2^r): r \in N \cup \{0\}\}$ where p is a prime number. Peker and Cenberci [8] worked on the Diophantine equation $(4^n)^x + p^y = z^2$ and the obtained solutions are (x, y, z, p) = (1, 2, 5, 3), (2, 2, 5, 3) and $(k, 1, 2^{nx} + 1, 2^{nx+1})$, where k is a non-negative integer and p is an odd prime number, $n \in \mathbb{Z}^+$. Burshtein [1] discussed the conditions for the solution of Diophantine equation $p^{x} + q^{y} = z^{2}$ based on the various values of p and q where p, q both are prime such that p < q and differ by an even value k. Burshtein [2] discussed and found that the Diophantine equation $p^{x} + q^{y} = z^{2}$ has infinitely many solutions when p =2, 3 and also demonstrated that if prime p > 3 than the equation has a solution for each and every integer $x \ge 1$. Burshtein [3] discussed all the solutions to an open problem of Chotchaisthit on the Diophantine equation $2^{x} + p^{y} = z^{2}$ when y = 1 and p = 7, 13, 29, 37,

Surya Prakash Gautam, HariKishan and Satish Kumar

257. Kumar, Gupta and Kishan [6] solved the Diophantine equation $61^x+67^y=z^2$ and $67^x+73^y=z^2$ and proved that the equations have not any non-negative integer solution. In this study, we discuss the Diophantine equation $\{(q^2)^n\}^x + p^y = z^2$ where q is any prime number and p is an odd prime number. We will use the Catalan's conjecture [7] and factor method to solve this Diophantine equation.

2. Preliminary

Lemma 2.1. Catalan's conjecture state that the only solution of the Diophantine equation $a^x - b^y = 1$ is (a, b, x, y) = (3, 2, 2, 3) with a > 1, b > 1, x > 1, and y > 1.

Lemma 2.2. If p is an odd prime $\&n \ge 2$ is integer, than $x^2 - 1 = p^n$ has no solutions [7].

Lemma 2.3. The Diophantine equation $\{(2^2)^n\}^x + p^y = z^2$ has the solutions (x, y, z, p) = (1, 2, 5, 3), (2, 2, 5, 3) and $(k, 1, 2^{nx}+1, 2^{nx+1})$ where k is a non-negative integer [5].

3. Main theorems

Theorem 3.1. The Diophantine equation $\{(3^2)^n\}^x + p^y = z^2$, has the solution (*x*, *y*, *z*, *p*) = (*k*, 1, $3^{nk}+1, 2.3^{nk}+1$), where *p* is an odd prime, $k \ge 0, n \in Z^+$ and *x*, *y*, *z* $\in Z^+ \cup \{0\}$.

Proof. We consider the Diophantine equation

$$\{(3^2)^n\}^x + p^y = z^2,\tag{1}$$

(2)

where $n \in Z^+$ and *x*, *y* and *z* are non-negative integers.

Now we discuss this problem in three cases.

Case 1. For *n*=1, equation (1) is given as

$$\{(3^2)^1\}^x + p^y = z^2$$

Or
$$(3^2)^x + p^y = z^2.$$

Now for
$$y > 0$$
, $(3^2)^x + p^y = z^2$

Or
$$z^2 - (3^2)^x = p^y$$

Or
$$(z - 3^x)(z + 3^x) = p^y$$
.

This implies that, $z - 3^x = p^v$, $z + 3^x = p^{y-v}$, where y > 2v.

Now, we have
$$p^{y-v} - p^v = 2.3^x$$

Or
$$p^{\nu}(p^{\nu-2\nu}-1) = 2.3^{\kappa}$$

On the Diophantine Equation $\{(q^2)^n\}^x + p^y = z^2$ where q is any Prime Number and p is an Odd Prime Number

- For v=0, $p^{y}-1=2.3^{x}$
- Or $p^y = 2.3^x + 1.$
- For y=1, $p = 2.3^x + 1$

and

Therefore we get $(x, y, z, p) = (k, 1, 3^k + 1, 2, 3^k + 1)$, where *k* is non-negative integer. For *x*=0, the equation (1) can be written as

 $z = 3^{x} + 1.$

Or
$$(3^2)^0 + p^y = z^2$$

 $z^2 - p^y = 1.$

By Lemma 2.1, it has no solution for *p* an odd prime.

Now, for y = 0, then the equation (2) can be written as $z^2 - 3^{2x} = 1$

Therefore, it has no solution for p is an odd prime $z^2 - 1 = 3^{2x}$ has no solution by Lemma 2.2.

Case 2. for n=2, equation (1) is given as

Case 2. for n=2, equation (1) is given as

$$\{(3^2)^2\}^x + p^y = z^2$$
Or
$$(3^4)^x + p^y = z^2$$
(3)
Now for $y > 0$,
$$(3^4)^x + p^y = z^2$$
Or
$$z^2 - (3^4)^x = p^y$$
Or
$$(z - 3^{2x})(z + 3^{2x}) = p^y$$
.
This implies that, $z - 3^{2x} = p^v$,
 $z + 3^{2x} = p^{y-v}$, where $y > 2v$
Now we have
$$p^{y-v} - p^v = 2.3^{2x}$$
Or
$$p^v(p^{y-2v} - 1) = 2.3^{2x}$$
.
For $v=0$,
$$p^y - 1 = 2.3^{2x}$$

Or
$$p^{y} = 2.3^{2x} + 1.$$

For y=1, $p = 2 \cdot 3^{2x} + 1$ and $z = 3^{2x} + 1$ Therefore we get $(x, y, z, p) = (k, 1, 3^{2k} + 1, 2 \cdot 3^{2k} + 1)$, where k is non-negative integer. For y=0 same as case 1, and for x=0 same as case 1.

Case 3. for all $n \in Z^+$ equation (1) is given as

Surya Prakash Gautam, HariKishan and Satish Kumar

$$\{(3^2)^n\}^x + p^y = z^2. \tag{4}$$
Now for $y > 0$, $(3^{2n})^x + p^y = z^2$
Or $z^2 - (3^{2n})^x = p^y$
Or $(z - 3^{nx})(z + 3^{nx}) = p^y$.
This implies that $z - 3^{nx} = p^v$, $z + 3^{nx} = p^{y-v}$, where $y > 2v$
Now we have $p^{y-v} - p^v = 2.3^{nx}$
Or $p^v(p^{y-2v} - 1) = 2.3^{nx}$
Or $p^y - 1 = 2.3^{nx}$
Or $p^y = 2.3^{nx} + 1$.
For $y=1$, $p = 2.3^{nx} + 1$ and $z = 3^{nx} + 1$
Therefore we get $(x, y, z, p) = (k, 1, 3^{nk} + 1, 2.3^{nk} + 1)$, where k is non-negative integer.
For $y=0$ same as case 1, and for $x=0$ same as case 1.

Hence The Diophantine equation $\{(3^2)^n\}^x + p^y = z^2$, has the solution $(x, y, z, p) = (k, 1, 3^{nk}+1, 2.3^{nk}+1)$, where p is an odd prime, $k \ge 0, n \in Z^+$ and x, $y, z \in Z^+ \cup \{0\}$.

Theorem 3.2. The Diophantine equation $\{(5^2)^n\}^x + p^y = z^2$ has the solution $(x, y, z, p) = (k, 1, 5^{nk}+1, 2.5^{nk}+1)$, where p is an odd prime, $k \ge 0$, $n \in Z^+$ and x, y, $z \in Z^+ \cup \{0\}$.

Proof: The Diophantine equation

$$\{(5^2)^n\}^x + p^y = z^2,\tag{5}$$

(4)

where $n \in Z^+$ and $x, y, z \in Z^+ \cup \{0\}$

Now for
$$y > 0$$
, $(5^{2n})^x + p^y = z^2$
Or $z^2 - (5^{2n})^x = p^y$

Or
$$(z - 5^{nx})(z + 5^{nx}) = p^y$$
.

 $z - 5^{nx} = p^{v}$, $z + 5^{nx} = p^{y-v}$, where y > 2vThis implies that,

We have
$$p^{y-v} - p^v = 2.5^{nx}$$

Or
$$p^{\nu}(p^{\nu-2\nu}-1) = 2.5^{nx}$$
.

For
$$v=0$$
, $p^{y}-1=2.5^{nx}$

Or
$$p^y = 2.5^{nx} + 1$$

 $p = 2.5^{nx} + 1$ and $z = 5^{nx} + 1$ For y=1, For y=1, $p = 2.5^{nx} + 1$ and $z = 5^{nx} + 1$ Thus we get $(x, y, z, p) = (k, 1, 5^{nk} + 1, 2.5^{nk} + 1)$, where k is non-negative integer. $(5^{2n})^0 + p^y = z^2$ For x=0,

On the Diophantine Equation $\{(q^2)^n\}^x + p^y = z^2$ where q is any Prime Number and p is an Odd Prime Number

Or
$$z^2 - p^y = 1$$

By Lemma 2.1, it has no solution for *p* is an odd prime. Now, *y*=0, we have $z^2 - 5^{2nx} = 1$.

Therefore, $z^2 - 1 = 5^{2nx}$ has no solution by Lemma 2.2.

Hence the Diophantine equation $\{(5^2)^n\}^x + p^y = z^2$ has the solution $(x, y, z, p) = (k, 1, 5^{nk}+1, 2.5^{nk}+1)$, where p is an odd prime, $k \ge 0, n \in Z^+$ and x, $y, z \in Z^+ \cup \{0\}$.

Theorem 3.3. The Diophantine equation $\{(q^2)^n\}^x + p^y = z^2$ has the solution $(x, y, z, p) = (k, 1, q^{nk}+1, 2.q^{nk}+1)$, where q is any prime number, p is an odd prime, $k \ge 0, n \in Z^+$ and $x, y, z \in Z^+ \cup \{0\}$.

Proof: The Diophantine equation

$$\{(q^2)^n\}^x + p^y = z^2,$$
(6)

where $n \in Z^+$ and $x, y, z \in Z^+ \cup \{0\}$

Now for
$$y > 0$$
, $(q^{2n})^x + p^y = z^2$
Or $z^2 - (q^{2n})^x = p^y$

Or
$$(z-q^{nx})(z+q^{nx})=p^y.$$

This implies that, $z - q^{nx} = p^{\nu}$, $\& z + q^{nx} = p^{\nu-\nu}$, where $y > 2\nu$

We have
$$p^{y-v} - p^v = 2.q^{nx}$$

Or
$$p^{\nu}(p^{\nu-2\nu}-1) = 2.q^{n\nu}$$

For v=0, $p^{y} - 1 = 2. q^{nx}$ Or $p^{y} = 2. q^{nx} + 1.$ For y=1, $p = 2. q^{nx} + 1 \text{ and } z = q^{nx} + 1.$ Therefore we get $(x, y, z, p) = (k, 1, q^{nk} + 1, 2, q^{nk} + 1)$, where q is any prime number, p
is an odd prime and k is non-negative integer.
For x= 0, $(q^{2n})^{0} + p^{y} = z^{2}$

Or
$$z^2 - p^y = 1.$$

By Lemma 2.1, it has no solution for *p* is an odd prime. Now, for *y*=0, we have $z^2 - q^{2nx} = 1$.

Therefore, $z^2 - 1 = q^{2nx}$ has no solution by Lemma 2.2.

Surya Prakash Gautam, HariKishan and Satish Kumar

Hence The Diophantine equation $\{(q^2)^n\}^x + p^y = z^2$ has the solution $(x, y, z, p) = (k, 1, q^{nk}+1, 2, q^{nk}+1)$, where q is any prime number, p is an odd prime, $k \ge 0$, $n \in Z^+$ and $x, y, z \in Z^+ \cup \{0\}$.

4. Conclusion

In this paper, we find out the solution $(x, y, z, p) = (k, 1, q^{nk}+1, 2.q^{nk}+1)$ of the Diophantine equation $\{(q^2)^n\}^x + p^y = z^2$, where p is an odd prime and $k \ge 0$.

Acknowledgements. Surya Prakash Gautam indebted to the Human Resource Development Group Council of Scientific & Industrial Research (HRDG-CSIR), for providing financial assistance in the term of Junior Research Fellowship (JRF). The authors are indebted to the referees for their valuable suggestions.

REFERENCES

- 1. N.Burshtein, On solutions of the Diophantine equation $p^x + q^y = z^2$, Annals of Pure and Applied Mathematics, 13 (1) (2017) 143 149.
- 2. N.Burshtein, On the Diophantine equation $p^x + q^y = z^2$, Annals of Pure and Applied Mathematics, 13 (2) (2017) 229 233.
- 3. N.Burshtein, All the Solutions to an Open Problem of S. Chotchaisthit on the Diophantine Equation $2^{x} + p^{y} = z^{2}$ when y = 1 and p = 7, 13, 29, 37, 257, *Annals of Pure and Applied Mathematics*, 16(1) (2018) 31-35.
- 4. Z.Cao, A note on the Diophantine equation $a^x + b^y = c^z$, *Acta Arithmetica XCI*, No1 (1999) 85-89.
- 5. S.Chotchaisthit, On the diophantine equation $4^x + p^y = z^2$, American Journal of *Mathematics and Science*, 1 (2012) 191–193.
- 6. S.Kumar, S.Gupta and H.Kishan, On the Non-Linear Diophantine Equation $61^{x} + 67^{y} = z^{2}$ and $67^{x} + 73^{y} = z^{2}$, Annals of Pure and Applied Mathematics, 18 (2018) 91-94.
- 7. P.Mihailescu, primary cyclotomic units and a proof of Catalan's conjecture, *J.Reine Angew. Math.*, 572 (2004) 167-195.
- 8. B.Peker and S.I.Cenberci, On the solutions of the equation $(4^n)^x + p^y = z^2$, arXiv:1202.2267 (2012) 2–5.
- 9. A.Suvarnamani, A.Singta and S.Chotchaisthit,On two diophantine equations $4^{x} + 7^{y} = z^{2}$ and $4^{x} + 11^{y} = z^{2}$, *Science and Technology RMUTT Journal*, 1 (2011) 25–28.