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Abstract. In this paper, we have solved the Diophantine equation �������
�
+	
� = �� 

and �������
�
+	
� = ��		where � ∈ 	�� and p is an odd prime. Also, we have discussed 

the generalization of ����� +	
� =	�� to �������
�
+	
� =	��		,	where � ∈ 	��, q is 

any prime number and p is an odd prime number. Some solutions of these Diophantine 
equations have been obtained. 
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1. Introduction  
Diophantine equations are central objects of number theory in mathematics with a vital 
importance in the field of Cryptography, Computer Science, Chemistry, Geometry and 
many more. According to Cao [4], the Diophantine equation �� + �� = �� has at most 
one solution for z>1. Suvarnamani et al. [9] proved that the Diophantine equation 
4� + 7� = "# and 4� + 11� = "# have not any non-negative integer solution. 
Chatchaisthit [5] have presented that the Diophantine equation4� + %� = "# have the 
solutions of the form (x,p,y,z) ∈ ��2,3,2,5�� ∪ *�+, 2,�- + 1,1, 2, + 1�: + ∈ / ∪ �0�1 ∪
*�+, 2,2+ + 3,3. 2,�: + ∈ / ∪ �0�1 where p is a prime number. Peker and Cenberci [8] 
worked on the Diophantine equation �43�� +	%� =	"# and the obtained solutions are 
(x,y,z,p) = (1,2,5,3),	(2,2,5,3)and	(k,1,2nx+1, 2nx+1), where k is a non-negative integer and 
p is an odd prime number	, 7 ∈ Z�. Burshtein [1] discussed the conditions for the solution 
of Diophantine equation px + qy = z2 based on the various values of p and q where p, q 
both are prime such that p < q and differ by an even value k. Burshtein [2] discussed and 
found that the Diophantine equation px + qy = z2 has infinitely many solutions when p = 
2, 3 and also demonstrated that if prime p> 3 than the equation has a solution for each 
and every integer x≥1. Burshtein [3] discussed all the solutions to an open problem of  
Chotchaisthit on the Diophantine equation 2x + py= z2 when y = 1 and p = 7, 13, 29, 37, 
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257. Kumar, Gupta and Kishan [6] solved the Diophantine equation 61x+67y=z2 and 
67x+73y=z2 and proved that the equations have not any non-negative integer solution. 
In this study, we discuss the Diophantine equation ��9#�3�� +	%� =	"#		where q is any 
prime number and p is an odd prime number. We will use the Catalan’s conjecture [7] 
and factor method to solve this Diophantine equation.  

2. Preliminary 
Lemma 2.1. Catalan’s conjecture state that the only solution of the Diophantine equation 
�� − �� = 1 is (a,b,x,y) = (3,2,2,3) with  a>1,b>1,x>1, and y>1. 

Lemma 2.2. If p is an odd prime &n ≥2 is integer, than ;# − 1 = %3has no solutions [7]. 

Lemma 2.3. The Diophantine equation ��2#�3�� +	%� =	"#		has the  solutions (x,y,z,p) 
= (1,2,5,3), (2,2,5,3) and (k,1,2nx+1, 2nx+1) where k is a non-negative integer [5]. 

3. Main theorems 
Theorem 3.1. The Diophantine equation ��3#�3�� +	%� = "#, has the solution (x, y, z, 
p) = (k, 1, 3nk+1, 2.3nk+1), where p is an odd prime, k ≥ 0,7 ∈ <� and ;	, =, " ∈ <� ∪ �0�. 

Proof. We consider the Diophantine equation 

��3#�3�� +	%� = "#,    (1) 

where 7 ∈ <� and x,y and z are non-negative integers. 

Now we discuss this problem in three cases. 

Case 1. For n=1, equation (1) is given as  

  ��3#�-�� +	%� = "# 

Or  �3#�� +	%� = "#. (2) 

Now for y > 0, �3#�� +	%� = "# 

Or "#−�3#�� = p� 

Or �" − 3���" + 3�� = %�. 

This implies that, " − 3� = %? ,					" + 3� = %�@?		, where	= > 2F. 

Now, we have %�@? − %? = 2. 3� 

Or %?�%�@#? − 1� = 2. 3�. 
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For v=0,    %� − 1 = 2. 3� 

Or     %� = 2. 3� + 1. 

For y=1,    % = 2. 3� + 1 

and     " = 	3� + 1. 

Therefore we get (x, y, z, p) =(k, 1,3G + 1, 2. 3G + 1), where k is non-negative integer. 

For x=0, the equation (1) can be written as  
�3#�H +	%� = "# 

Or     "# − %� = 1. 

By Lemma 2.1, it has no solution for p an odd prime.  
 
Now, for y = 0, then the equation (2) can be written as 

"# − 3#� = 1 

Therefore, it has no solution for p is an odd prime"# − 1 = 3#�has no solution by 
Lemma 2.2. 

Case 2. for n=2, equation (1) is given as  
     ��3#�#�� +	%� = "# 

Or �3I�� +	%� = "#. (3) 

Now for y > 0, �3I�� +	%� = "# 

Or "#−�3I�� = %� 

Or �" − 3#���" + 3#�� = %�. 

This implies that, " − 3#� = %? ,					z + 3#� = %�@?		, where	= > 2F 

Now we have    %�@? − %? = 2. 3#� 

Or     %?�%�@#? − 1� = 2. 3#�. 

For v=0,    %� − 1 = 2. 3#� 

Or     %� = 2. 3#� + 1. 

For y=1,   % = 2. 3#� + 1 and " = 	3#� + 1 
Therefore we get (x, y, z, p) = (k, 1, 3#G + 1, 2. 3#G + 1), where k is non-negative integer. 
For y=0 same as case 1, and for x=0 same as case 1. 
 
Case 3. for all n∈ <� equation (1) is given as  
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��3#�3�� +	%� = "#.    (4) 

Now for y> 0, �3#3�� +	%� = "# 

 Or "#−�3#3�� = %� 

 Or �" − 33���" + 33�� = %�. 

This implies that " − 33� = %?,					" + 33� = %�@?		, where	= > 2F 

Now we have    %�@? − %? = 2. 33� 

Or     %?�%�@#? − 1� = 2. 33�. 
For v=0,    %� − 1 = 2. 33� 
Or     %� = 2. 33� + 1. 
For y=1, % = 2. 33� + 1 and " = 	33� + 1 
Therefore we get (x, y, z, p) =(k, 1, 33G + 1, 2. 33G + 1),where k is non- negative integer. 
For y=0 same as case 1, and for x=0 same as case 1. 

Hence The Diophantine equation��3#�3�� +	%� = "#, has the solution (x, y, z, p) = (k, 1, 
3nk+1, 2.3nk+1), where p is an odd prime, k ≥ 0,7 ∈ <� and ;	, =, " ∈ <� ∪ �0�. 

Theorem 3.2. The Diophantine equation ��5#�3�� +	%� = "# has the solution(x, y, z, p) 
= (k, 1, 5nk+1, 2.5nk+1), where p is an odd prime, k ≥0, 7 ∈ <�and ;	, =, " ∈ <� ∪ �0�. 

Proof: The Diophantine equation 

��5#�3�� +	%� = "#,    (5) 

where	7 ∈ <�and ;	, =, " ∈ <� ∪ �0� 

Now for y > 0, �5#3�� +	%� = "# 

Or "#−�5#3�� = %� 

Or �" − 53���" + 53�� = %�. 

This implies that, " − 53� = %? ,					" + 53� = %�@? , where	= > 2F 

We have    %�@? − %? = 2. 53� 

Or     %?�%�@#? − 1� = 2. 53�. 

For v=0,    %� − 1 = 2. 53� 

Or      %� = 2. 53� + 1. 

For y=1,  % = 2. 53� + 1  and  " = 	53� + 1 
Thus we get (x, y, z, p) = (k, 1,53G + 1, 2. 53G + 1) , where k is non- negative integer. 
For x=0,    �5#3�H +	%� = "# 
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Or     "# − %� = 1. 
By Lemma 2.1, it has no solution for p is an odd prime. 
Now, y=0, we have   "# − 5#3� = 1. 

Therefore, "# − 1 = 5#3�  has no solution by Lemma 2.2. 

Hence the Diophantine equation ��5#�3�� +	%� = "# has the solution(x, y, z, p) = (k, 1, 
5nk+1, 2.5nk+1), where p is an odd prime, k ≥0, 7 ∈ <� and ;	, =, " ∈ <� ∪ �0�. 

Theorem 3.3. The Diophantine equation ��9#�3�� +	%� = "# has the solution (x, y, z, p) 
= (k, 1, qnk+1, 2.qnk+1), where q is any prime number, p is an odd prime, k ≥0,7 ∈ <�and 
;	, =, " ∈ <� ∪ �0�. 

Proof: The Diophantine equation 

��9#�3�� +	%� = "#,    (6) 

where 7 ∈ <� and  ;	, =, " ∈ <� ∪ �0� 

Now for y > 0, �9#3�� +	%� = "# 

 Or "#−�9#3�� = %� 

 Or �" − 93���" + 93�� = %�. 

This implies that, " − 93� = %? , &	" + 93� = %�@?		, where	= > 2F 

We have     %�@? − %? = 2. 93� 

Or     %?�%�@#? − 1� = 2. 93�. 

For v=0,    %� − 1 = 2. 93� 
Or      %� = 2. 93� + 1. 
For y=1,     % = 2. 93� + 1 and  " = 	93� + 1. 
Therefore we get (x, y, z, p) = (k, 1,93G + 1,2. 93G + 1) , where q is any prime number, p 
is an odd prime and k is non-negative integer.  
For x= 0,    �9#3�H +	%� = "# 

Or     "# − %� = 1. 
By Lemma 2.1, it has no solution for p is an odd prime.  
Now, for y=0, we have   "# − 9#3� = 1. 

Therefore, "# − 1 = 9#3�   has no solution by Lemma 2.2. 
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Hence The Diophantine equation ��9#�3�� +	%� = "# has the solution (x, y, z, p) = (k, 1, 
qnk+1, 2.qnk+1), where q is any prime number, p is an odd prime, k ≥0, 7 ∈ <� 
and	;	, =, " ∈ <� ∪ �0�. 

4. Conclusion 
In this paper, we find out the solution (x, y, z, p) = (k, 1, qnk+1, 2.qnk+1) of the 
Diophantine equation ��9#�3�� +	%� = "#, where p is an odd prime and k ≥0. 
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