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Abstract. The connectivity indices are helpful for medicalestists, chemical scientists
to find out the chemical and biological charactarssof drugs. In this study, we compute
the sum connectivityfF-index, product connectivitiF-index, atom bond connectivify-
index and geometric arithmeftcindex of certain nanotubes.
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1. Introduction
We consider only finite, simple connected graphst G be a connected graph with
vertex selV(G) and edge séi(G). The degreels(v) of a vertexv is the number of edges
incident tov. We refer to [1] for undefined term and notatidntopological index is a
numerical parameter mathematically derived fromdteph structure. The connectivity
indices are used in the analysis of drug molecstiarctures in Chemical and Medical
Sciences. Several topological indices have beesidered in Chemistry and have found
some applications, especially in QSPR/QSAR stuely,[2, 3].

The firstF-index [4] and seconB-index [5] of a grapl are defined as

RG) = 3 |de (W +ds ()], RG)= 3 [de (W ds ()]

uweE(G) uweE(G)

The sum connectivitiF-index and product connectivifirindex were introduced

by Kulli in [5] and defined as

1
SF(G)= (1)
w§e>Jde (W’ +dg (v)?

1
weE©) [ dg (u)’ dg (v)?

We now introduce the atom bond connectiitindex and geometric arithmetic
F-index of a grapl®, defined as

PF(G) = (2)

ABCF(G)= >

weE(G)

de (u) +2dG (v) 2—2 3
ds (W) dg (v)
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PF(G)— 2,/d; (u)?d, (v)° @)
weE(G) dG (U)z +dG (V)2

Recently, the reduced connectivity indices [6pdurct connectivity leap index
and ABC leap index [7], atom bond connectivity ind8], multiplicative connectivity
ve-degree indices [10], multiplicative connectivBanhatti indices [11], multiplicative
connectivity Revan indices [12], sum connectivigap index [13], multiplicative atom
bond connectivity index [14] were studied. In thaper, the sum connectivigIndex,
product connectivityF-index, atom bond connectivify-Index and geometric arithmetic

F-index of HCsC; [p, g] and SCsC4[p, g] nanotubes are determined. For nanotubes, see
[15].

2. HCsC; [p, q] Nanotubes

We consider nanotubes, denotedHiysC-[p, q], in which p is the number of heptagons
in the first row andj rows of pentagons repeated alternately. The 2tigdaof nanotube
HCsC4[p, q] is depicted in Figure 1.

Figure 1: 2-d|men5|onal Iattlce of nanotubkCsC; [8, 4]

Let G be the graph of a nanotubC:C;[p, g]. By algebraic method, we obtain

thatG has 4q vertices and Bg—p edges. The grapB has two types of edges based on
the degree of end vertices of each edge as giv€abte 1.

ds(u), ds(V)\uv O E(G) (2,3 3,3

Number of edge ap 6pg — 5p

Table 1. Edge partition oHC:C/[p, q]

Theorem 1. The sum connectivitiz-index of a nanotubECsC/[p, q] is

5
S (HC.C, =2 +[ J
Proof: Let G=HC:C[p, q]. By using equation (1) and Table 1, we derive
SF(HCC,[p =

uveE(G \/d _|_d (V
:[;]4p+[;]<6pq— 5p)
24+3F VF+ F
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4 _LJ )

V13 (18"

Theorem 2. The product connectivitlf-index of a nanotubElCsC;[p, q] is given by

2 1
PF(HC.C,[p.q])= 5 pa+4P.
Proof: Let G = HCsC/[p, g]. From equation (2) and by using Table 1, we deduc

=2pa +

1
PF(HC.C,[p.af)= > T
weEG) \/dg (u)” dg (V)
1 1
- 4p+ (6pa— 5p)
[\/22><32 [\/32><32
_z Pq +} p
3 9
Theorem 3. The atom bond connectivifirindex of a nanotubECsC-[p, q] is
8 2/11 2
ABCF (HC,C,[p,q]) =3 pq—|—[T——Sj p

Proof: Let G = HCsC;[p, g]. By using equation (3) and Table 1, we obtain

ABCF (HC.C,[p.a)= \/de(w +ds (V)" -2

weE(G) dG (u>2 dG (V>2
2 —_ —
(25 |2 25 Yo

Theorem 4. The geometric-arithmetie-index of a nanotubEICsC-[p, q] is given by
17
GAF (HC,C,[p,q])= 6pq—1—3 p.

Proof: Let G be the graph of a nanotubCsC;[p, g]. From equation (4) and by using
Table 1, we have

GAF(HC5C7[D:CID: E 2 dG(u) dG(V)

weE(G) dG (u)z + dG (V>2

| 2NZxF A/3x 3
{22 o[22 o050
—6pg_ 2’

=0pq 13p-
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3. SCsC+[p, ] Nanctubes

We consideS8CsC-[p, g] nanotubes in which is the number of heptagons in the first row
and g rows of vertices and edges are repeated alternakbly 2D lattice a nanotube
C:C4[p, q] is presented in Figure 2.

Figure2: 2-dimensional lattice of nanotube s&Z[p, q]

Let G be the graph of a nanotul#sC,[p, g] with 6pg-p edgesBYy algebraic
method, we obtain th& has three types of edges based on the degree efitheertices
of each edge as given in Table 2.

do(U) do(V)\WIE(G) 2, 2 2, 3) (3.3)

Number of edge q 6q 6pg-p-79q

Table 2: Edge partition of SEC; [pq]

Theorem 5. The sum connectivitiF-index of a nanotub&CsC [p, q] is given by
1 1 6 7

SF(C.C,[p.al)=+2pg——— +[—+———J.

(sC.C/[pa)) =V2pa——=p+| -+ =

Proof: Let G be the graph of a nanotuls€:C; [p, g]. From equation (1) and by using
Table 2, we obtain

S (SC,C, 1

+dg (v)°

p.q))=
[ D uv;(:G) \/dG (u)2

{@]w ﬁ]Bw[ﬁ](Bm—p—m)
—V2pg——+

1 6 7
= Pp+|=+—=—-——"7—|a
VTR WARNEE He]q
Theorem 6. The product connectivitlf-index of SCsC/[p, q] is

2 1 17
PF(SC.C,|p,q|)==pa—=p+—0Q.

(SCCy[pal) =5 Pa—5 P+ 30

Proof: Let G = SC:sC[p, q]. By using equation (2) and Table 2, we derive

1
PF ($5C7[ p’qD - UV;G) d (U)Z dg (V)

2
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—[@JH[@ 6q+[ﬁ (6pa— p— 5a)
2

*—pq——1p+1—7q
3 9 36

Theorem 7. The atom bond connectivifrindex of SCsC/[p,q] is

8 4 (6 28
ABCF(SC5C7[p,q]):§ pa— p+[—4+x/ﬁ——9}q.

Proof: Let G be the graph of a nanotuBEsC-[p, q]. By using equation (3) and Table 2,
we obtain

do ()° +dg (W)* -2
ABCF (SC.C,[p.q])= MEE;@\/ ° (dU)(J;Z ; (2/3)2

2 2 o o
2T [ 2 e [ oo

J6 e 28]
MO 11—,
4" 9/

~Zpa-ap+
37 9

Theorem 8. The geometric-arithmeti€-index of SCsC-[p, q] is given by

66
GAF (SC,C,[p.a)) = 6pa— p— 20
Proof: Let G = SCsC; [p, g]. From equation (4) and by using Table 2, we have

GAF(SC,C[p.a))= 3 2,/ dg (u)"d; (v)

weE(G) dG (U)Z + dG (V)2

(222 +[ /2% 32]6q+[ 2/ 3x 3 (60— p— 70)
2> + 2 2+ 3 I+ 3
66

=6pq— P—13%
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