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 “To solve a mathematical problem does not mean to discover something new, it means to 

understand the connections as old as the universe itself.” 

David Stacha 

Abstract. The principal aim of this paper is to provide a solution of the Erdös-

Moser equation, based on the properties of Bernoulli polynomials, and prove that 

there is only one solution satisfying the above-mentioned equation. 
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1. Notation 

1 + 2𝑝 + 3𝑝 + ⋯ +𝑘𝑝 = (𝑘 + 1)𝑝 represents the Erdös-Moser equation, where 

𝑘, 𝑝 ∈  ℕ∗. Let 𝑏𝑛 denote Bernoulli numbers and 𝐵𝑛(𝑥) = ∑ (𝑛
𝑘

)𝑏𝑛−𝑘𝑥𝑘
𝑛

𝑘=0
 denote 

Bernoulli polynomials for 𝑛 ≥ 0. 

1. Introduction 

The Erdös-Moser equation (EM equation), named after famous mathematicians 

Paul Erdös and Leo Moser, represents an exponential Diophantine equation. 

Moreover, this equation differs from any other Diophantine equation since 

combines addition, powers and summation together. These properties make the 

equation even more interesting, and therefore it has been studied by many number 

theorist throughout history. The open and very fascinating conjecture of Erdös-

Moser states that there is no other solution of the EM equation than trivial 1+2=3. 

So far, there have been only partial results defining the lower bound of 𝑘 for 

which the EM equation could have another solution, but a complete solution had 

been missing. In general, Diophantine equations are widely studied object in 

mathematics, mainly in number theory. The unknowns of these equations take 

only integer values, and exactly this restriction makes them interesting on the one 

hand, and on the other hand much more difficult. This is also the case of the EM 
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equation because if we would solve this equation, where 𝑝 ∈  ℝ, there would be 

infinitely many solutions, but only one restriction, namely an adjective 

Diophantine, has a big impact on the number of solutions and causes that 

infinitely many solutions of the EM equation will be reduced to only one. 

Moreover, if any Diophantine equation is solved in ℕ∗, as in our case, the 

equation can be related to some problem including counting and ordering. Aiming 

for a proof, an investigation of the properties and identities of the EM equation 

will be discussed in the following sections. 
 

3. Solution 

Lemma 3.1. The EM equation is equivalent to 

∑ 𝑘𝑝

𝑥

𝑘=0

≡  
𝐵𝑝+1(𝑥 + 1)

𝑝 + 1
= (𝑥 + 1)𝑝 (3.1) 

𝑥, 𝑝 ∈ ℕ ∧ 𝑥 > 2 ∧ 𝑝 > 1 since we are seeking other solution than trivial.  

 

Proof: Sum of pth powers is defined as 

∑ 𝑘𝑝

𝑥

𝑘=0

=
𝐵𝑝+1(𝑥 + 1) − 𝐵𝑝+1(0)

𝑝 + 1
 

Leo Moser proved that for another solution of the EM equation two must divide 𝑝, see 

[1], which yields that 𝑝 + 1 must be odd and 𝐵𝑝+1(0) with odd subscripts is equal to 

zero. 

 

Lemma 3.2. 
𝐵𝑝+1(𝑥 + 1) − 𝐵𝑝+1(𝑥) = (𝑝 + 1)𝑥𝑝 (3.2) 

 
𝐵𝑝+1(𝑥 + 2) − 𝐵𝑝+1(𝑥 + 1) = (𝑝 + 1)(𝑥 + 1)𝑝 (3.3) 

Proof: Relation of Bernoulli polynomials given by Whittaker and Watson, see [2], in 
general form is defined as 𝐵𝑛(𝑥 + 1) − 𝐵𝑛(𝑥) = 𝑛𝑥𝑛−1. 

 

Lemma 3.3. Eq. (3.1) in combination with rearranged Eq.(3.2) gives a relation 
𝐵𝑝+1(𝑥 + 1)

𝐵𝑝+1(𝑥)
=  

(𝑥 + 1)𝑝

(𝑥 + 1)𝑝 − 𝑥𝑝
 (3.4) 

Proof: Let us express 𝑝 + 1 from Eq.(3.2) as 
𝐵𝑝+1(𝑥 + 1)

𝑥𝑝
− 

𝐵𝑝+1(𝑥)

𝑥𝑝
= 𝑝 + 1 (3.5) 

after substitution of LHS of Eq. (3.5) in Eq. (3.1) we get 

𝐵𝑝+1(𝑥 + 1) = (𝑥 + 1)𝑝 (
𝐵𝑝+1(𝑥 + 1)

𝑥𝑝
−

𝐵𝑝+1(𝑥)

𝑥𝑝 ) 

and after elementary rearrangements we can rearrange Eq. (3.1) to the form defined in 

Lemma (3.3.). 
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Theorem 3.4. The EM equation has other solution than trivial if and only if holds the 

following equation. 
𝐵𝑝+1(𝑥 + 2)

𝐵𝑝+1(𝑥 + 1)
= 2 (3.6) 

𝑥, 𝑝 ∈ ℕ ∧ 𝑥 > 2 ∧ 𝑝 > 1. 

 

Proof: Let us rearrange Eq. (3.1) as 
𝐵𝑝+1(𝑥 + 1) = (𝑝 + 1)(𝑥 + 1)𝑝 (3.7) 

the RHS of Eq. (3.3) and Eq. (3.7) are equal, so we can define 

𝐵𝑝+1(𝑥 + 2) − 𝐵𝑝+1(𝑥 + 1) = 𝐵𝑝+1(𝑥 + 1) 

𝐵𝑝+1(𝑥 + 2) = 2𝐵𝑝+1(𝑥 + 1) 

𝐵𝑝+1(𝑥 + 2)

𝐵𝑝+1(𝑥 + 1)
= 2 

 

Lemma 3.5. Let us define a set 

𝑍 = {
𝐵𝑝+1(𝑥𝑧 + 1)

𝐵𝑝+1(𝑥𝑧)
=

(𝑥𝑧 + 1)𝑝

(𝑥𝑧 + 1)𝑝 − 𝑥𝑧
𝑝

∶ 𝑥𝑧, 𝑝 ∈  ℕ ∧ 𝑝 > 1} 

which contains Eq. (3.4) defined in Lemma (3.3.) 

 

Example 3.6. 𝑍 = {
𝐵𝑝+1(1)

𝐵𝑝+1(0)
=

(1)𝑝

(1)𝑝−0𝑝 ,
𝐵𝑝+1(2)

𝐵𝑝+1(1)
=

(2)𝑝

(2)𝑝−1𝑝 … }. 

 

and a set 

𝐹 = {
𝐵𝑝+1(𝑥𝑓 + 2)

𝐵𝑝+1(𝑥𝑓 + 1)
= 2 ∶ 𝑥𝑓 , 𝑝 ∈  ℕ ∧ 𝑥𝑓 > 2 ∧ 𝑝 > 1} 

which contains all Eq. (3.6) with all possible non-trivial solutions 𝑥𝑓 satisfying this 

equation 

 

Example 3.7. Let us assume that 𝑥𝑓 = 4 is the non-trivial solution. Then  𝐹 =

{
𝐵𝑝+1(6)

𝐵𝑝+1(5)
= 2}. 

then 

𝐹 ⊆ 𝑍 
 

Remark 3.8. From the definitions of the sets in Lemma (3.5.) follows that 𝑥𝑓 is a 

variable of a corresponding element 
𝐵𝑝+1(𝑥𝑓+2)

𝐵𝑝+1(𝑥𝑓+1)
= 2 and 𝑥𝑧 is a variable of a 

corresponding element 
𝐵𝑝+1(𝑥𝑧+1)

𝐵𝑝+1(𝑥𝑧)
=

(𝑥𝑧+1)𝑝

(𝑥𝑧+1)𝑝−𝑥𝑧
𝑝. 

 

Proof: The rules in the sets 𝑍 and 𝐹 are sufficient to prove Lemma (3.5.) since we are 

seeking other solution than trivial and for 𝑥𝑓 > 2 ∧ 𝑝 > 1. It is more than clear that  

𝐹 ⊆ 𝑍 since for every variable 𝑥𝑓 holds the following relation 
∀𝑥𝑓 ∶  𝑥𝑓 = 𝑥𝑧 − 1 (3.8) 
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and the corresponding elements of the variables 𝑥𝑧 , 𝑥𝑓, which are in relation (3.8), in both 

sets are equal. This finishes the proof, see Example 3.9. 

 

Example 3.9. Similarly as in Example (3.7.), let us assume that 𝑥𝑓 = 4 would be the non-

trivial solution. This example demonstrates the fact that 𝐹 ⊆ 𝑍, which follows from 

Lemma (3.5.), since the elements in both sets of corresponding variables 𝑥𝑧 , 𝑥𝑓, which are 

in relation (3.8), are equal. In this case when 𝑥𝑓 = 4, according to relation (3.8) 𝑥𝑧 = 5, 

and the corresponding elements are equal (see below). 

 

𝑥𝑧 Elements of the set 𝑍 𝑥𝑓 Elements of the set 𝐹 

 𝐵𝑝+1(𝑥𝑧 + 1)

𝐵𝑝+1(𝑥𝑧)
=

(𝑥𝑧 + 1)𝑝

(𝑥𝑧 + 1)𝑝 − 𝑥𝑧
𝑝

 
 𝐵𝑝+1(𝑥𝑓 + 2)

𝐵𝑝+1(𝑥𝑓 + 1)
= 2 

3 𝐵𝑝+1(4)

𝐵𝑝+1(3)
=

(4)𝑝

(4)𝑝 − 3𝑝
 

  

4 𝐵𝑝+1(5)

𝐵𝑝+1(4)
=

(5)𝑝

(5)𝑝 − 4𝑝
 

4 𝐵𝑝+1(6)

𝐵𝑝+1(5)
= 2 

5 𝐵𝑝+1(6)

𝐵𝑝+1(5)
=

(6)𝑝

(6)𝑝 − 5𝑝
 

  

⋮ ⋮   

 

 

Theorem 3.10. There is no element of the set 𝑍 which is equal to two for 𝑥𝑧 > 2 ∧ 𝑝 > 1 

and because 𝐹 ⊆ 𝑍, the EM equation does not have any other solution than trivial. 

 

Proof: From Lemma (3.5.) follows 𝐹 ⊆ 𝑍. It is clear that the elements of each set are 

equations. The elements of corresponding variables 𝑥𝑧 , 𝑥𝑓, which are in relation (3.8), 

are equal, hence these equations must be equal as well. Let us recall that every 

element of the set 𝑍 is defined as 
𝐵𝑝+1(𝑥𝑧+1)

𝐵𝑝+1(𝑥𝑧)
=

(𝑥𝑧+1)𝑝

(𝑥𝑧+1)𝑝−𝑥𝑧
𝑝 and every element of the set 𝐹 

is defined as 
𝐵𝑝+1(𝑥𝑓+2)

𝐵𝑝+1(𝑥𝑓+1)
= 2. Since 𝐹 ⊆ 𝑍 and every element of the set 𝐹 is equal to two, 

in order to prove Theorem (3.10.), it is enough to prove that no element of the set 𝑍 has an 

integral solution, equal to two for 𝑝 > 1, since it will be in contradiction. It is trivial to see 

that the expression 
(𝑥𝑧+1)𝑝

(𝑥𝑧+1)𝑝−𝑥𝑧
𝑝 has integral solutions for 𝑥𝑧 > 1 if and only if 0 < 𝑝 < 2. 

We can easily prove this statement, since by using the binomial expansion of the elements 

of the set 𝑍 we get very useful relation 

 

𝐵𝑝+1(𝑥𝑧 + 1)

𝐵𝑝+1(𝑥𝑧)
=

(𝑥𝑧 + 1)𝑝

(𝑥𝑧 + 1)𝑝 − 𝑥𝑧
𝑝

=  
𝑥𝑧

𝑝
+ 𝑝𝑥𝑧

𝑝−1
+ ⋯ + 1

𝑝𝑥𝑧
𝑝−1

+ ⋯ + 1
=

𝑥𝑧
𝑝

𝑝𝑥𝑧
𝑝−1

+ ⋯ + 1
+ 1 

 

where is clear that (𝑝𝑥𝑧
𝑝−1

+ ⋯ + 1) ∤  𝑥𝑧
𝑝
 for 𝑝 > 1. In other words, there is no element 

of the set 𝑍 which is equal to two for 𝑝 > 1, and that is in contradiction with the fact that 

𝐹 ⊆ 𝑍. On the basis of these facts we can state that there is only a trivial solution of the 
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EM equation, when 𝑝 = 1, as it follows from the basic formula of summation∑ 𝑘1𝑥

𝑘=0
≡

𝑥(𝑥+1)

2
= 𝑥 + 1 ⇒

𝑥

2
= 1, where x must be equal to two. All of the above-mentioned facts 

unconditionally prove Theorem (3.10.) and at the same time the Erdös-Moser 

conjecture. 

 

Example 3.11. Let us assume that 𝑥𝑓 = 4 is the non-trivial solution. The 

corresponding Eq. (3.6) (after substitution
𝐵𝑝+1(6)

𝐵𝑝+1(5)
= 2) holds for this 𝑥𝑓 and this Eq. (3.6) 

is an element of the set 𝐹. Since 𝐹 ⊆ 𝑍, and thanks to the relation (3.8), we are able to 

define 𝑥𝑧 = 5 and the corresponding element of the set 𝑍 as 
𝐵𝑝+1(6)

𝐵𝑝+1(5)
=

(6)𝑝

(6)𝑝−5𝑝. LHS of the 

elements in both sets are equal so RHS must be equal as well, but there is no element of 

the set 𝑍 which is equal to two for 𝑝 > 1, which is in contradiction, and therefore 𝑥𝑓 = 4 

can not be the non-trivial solution of the EM equation. 
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