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Abstract. The incompressible Navier-Stokes equation with mitlal conditions or simply null
Navier-Stokes equation was developed from the impressible Navier-Stokes equations by
subtracting the incompressible Navier-Stokes eqoatéevaluated at the initial time, 0, from itself
at some future time, t. A solution of the null NavStokes is obtained via Laplace transform
valid for a finite time interval to obtain Duhanel'solution. Additionally, by setting the
kinematic viscosity to zero the solution becomesohtion for the incompressible null Euler
Equations for all t in [Op). Theorem 1 and Lemma 1 shows the methodologyrowvep
Duhamel’s solution satisfies both the divergenceatign for incompressible fluids and the
incompressible null Navier-Stokes momentum equatidiheorem 2 shows how to obtain the
incompressible Euler solution by taking the limit the kinematic viscosity to zero on the
Duhamel’'s Navier Stokes solution vector functiohisTarticle demonstrates a clear path of how
the solutions for the null Navier-Stokes and null€g equations are obtained.

Keywords. Duhamel’s solutions, Incompressible Navier-Stoggsations, Incompressible Euler
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1. Introduction

This article was inspired by Duhamel’s formulaseiquations 19 [3] and 1.5 [4] in Professor
Terrence Tao impressive articles. This articleetteps the concepts and methods of solving the
incompressible null Navier-Stokes and the inconmgbés null Euler equations via the Laplace
transform and the Newtonian potential found in [Bhe Eulerian velocityuk(t,Xk(t)), is
usually prescribed in the academic literature Higt, x; )were the spatial Eulerian coordinate
is a normal size letters, and spatial time cootéma,, not an explicit function of time (i.e. no
time arguments). In this article, the approactiiferent, we treat both Eulerian (Caps Letters)
and Lagrangian (normal size letters) spatial cotdis for the same spatial location and time to
represent the same fluid parcel, and since ther® idifference between them, therefore both
Eulerian and Lagrangian velocities are identicaltfee same location and time as found in the
sampling process of reference [6] but if the tiraes different they may represent different fluid
parcels which may happen to pass through the saca¢idn. Therefore, the Eulerian velocities
field with Eulerian spatial coordinates are denodad, (t, X, (t)). In this article the Eulerian
spatial coordinate X, (t), is replaced by the Lagrangian spatial coordinaies.
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e (6, Xie () | x (0)=xr(txgr) = Uk (6 Xk (8, %0x)) Where  the Lagrangian spatial coordinate
argument,x, (t, x,;,) is a function of time and has a parameter arguneitil location,
Xor,Which is not a function of time and it representseve the fluid parcel crossed some stream
line at initial coordinate,,. Therefore, if Lagrangian and Eulerian spatialrdowte locations
are identicak (t, x,,) = X, (t)at a given time t (See reference [6] Section Jntthey maybe
not at any other time for that fluid parcel, i.gpitallyx;(t,x,r) # x (T, xox), Unless of
courset = t, or a periodic process is occurring. Partial tofifeerentiation ofx, (¢, x,x) = Xi (t)
yields
i 0 xk(t,x k) an(t) ka(t) .
uchagranglan(t, Xk(t, ka)) — o o — R — n — ugulerlan(t’ Xk(t))
Both velocity representations are numerically equ@herefore, the spatial representation used in
this article is Lagrangian, while the flow fieldpresentation is Eulerian Following reference
[6] each time particular time can be treated aamapding point along all the streamlines with all
the path-lines, which may be composed, of extredaetie number of different fluid parcels path-
lines crossing points in the streamline as showrthigysampling process in [6], although the
notation used in [6] was a vector field notatiopger arrows) and the notation used here is
component index notation. In this article we tregery point as a possible intersection of
streamlines and path-lines in the flow field, natja sampling of a single streamline as in [6].
The Navier-Stokes and Euler equations areimeenl equations, which no exact solution has
been found so far for the most general cases. Feryetime t_>0, the divergence of the
incompressible fluid flow is given by (Eq.%1)
Oug(txx(tXok)
Zkuk(#xw 0 1)
The incompressible Navier-Stokes momentum equatongiven by (Eqg. 2).
Auy (txp (tXok)) Ay (txk (tXok)) __ 09(x(txok))
R 1 3y (6, 2 x00)) TEGE S — v (1,30 (8, i) = — (PR
1 9p(xk(txok))
o ox, ) @

+

The field or material derivative is given as
X (t, (I EAG
R R LCEACEM)

Where% is the material or field derivative [G} is the external force potential,is the pressure,

Po IS the constant density, ands the constant kinematic viscosity (in meter sgqdaer second).
Moving the Laplacian term to the left side of tlopiation to obtain (Eq. 3).
d _ (9 Cxk(tixor)) | 1 Op(xp(txor)) _ 0 i
(E B VA) Uk (t’ X (¢, x"k)) - ( Xy + o Xy ) T ax, (¢ + po) (3)
Notice that when t = 0, in (Eq. 2) this equatiocdrees,

Ay (txp (t.xok))
6X]'

INote: At this point Eulerian and Lagrangian fieldlacities are shown to be identical, therefore we u
Eulerian field velocities nomenclature to followethistorical nomenclature. This statement is @trgpn
of a statement in Section 3.3 of reference [6].

2Note: The fluid Eulerian velocity is denoted by mal size letteu, except for the fluid velocity with null
initial conditions, which is denoted by capitaltégtU. In this article, all fluid velocities are Eulan, but

they have Lagrangian spatial coordinates. Thet&m#&otation convention is not used in this agti€Dnly

variables with indices in the explicit sigma symbo¢ being sum, the indices always are equal 2oahd 3

but not shown.
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5um d¢p, 1 0dp,
+Z toj ax ~ VAU =~ 9k,

With initial conditions anng the streamllnes oé telocity field are given by (Eq. 4).

(0, x0k) = Uk 4)
The Euler momentum equation is obtained by settiegkinematic viscosity to zero in (Egs. 2 or
3) to obtain (Eqg. 5).

duk(t,xk(t,xok)) auk _ a P
dt + 21 J ax Xy (¢ + E) ®)

The above equations are valid throughout the floid ,we WI|| concentrate on the movement or
flow of a parcel of fluid moving through or crosgia streamline and the center of the fluid parcel
volume,V(t), isx (£, x,1)-

In Section 2, the null Navier-Stokes equatiaas developed from the incompressible Navier-
Stokes equations by subtracting the incompressiaeier-Stokes equations evaluated at the
initial time, 0, from itself at some future time, t

In Section 3 consists of finding the solutid@aghe null Navier-Stokes equations via Laplace
transform. Although we will check the Duhamel'sluimn satisfy the null Navier-Stokes
equations with the understanding the time dependenlinear terms are nulled out. Section 3
contains two theorems and a lemma, which provediligamel’s solutions do indeed, solves
both Navier-Stokes equations and Euler equationts thie understanding the time dependent
nonlinear terms are nulled out for incompressitléd$, although, at the expense of practical
applications. This article shows a clear patho# the solution is obtained, but the Duhamel’s
solution does not contribute to a solution whictiudes the nonlinear part of a field derivative,
since it actually zeros or nulls out the nonlindare dependent terms (see Appendix A). The
Duhamel’'s solution, which solves the null Navieol& equations, was found via Laplace
transforms to be a convolution integral as showlHxy 6)

Ui (&, x5 (t, Xox)) = wie(t, X (t, Xox) ) — Uore = — fot(e(t_r)m -1 wd’f (6)
where,A is the Laplacian operator with respect to the iap&ulerian coordinatek, ,(i.e.A =
Az)of a fluid parcel. Both symbols andAgare used interchangeably. The Lagrangian cooslinat
X (t, x,,)in the argument of the Eulerian fluid veIocizy(t, X (t, xok)),is the center coordinates
of the fluid parcel at time t with spherical cortreolume, V(t) ,where asx; (T, x,;) in
Wk(r,xk(r,xok))is the Lagrangian spatial coordinate center of rottheid parcel at other
previous timerin the spherical control volum&(t). Both may have different spatial locations
and different times; therefore, theyay represent different parcels of fluids even thoulgbyt
may have started from the same locatiqpa, This description at,, can be visualized as a
movement of an inserted tiny dropxgfof colored fluid with the same density as the mdghe
fluid, at first the tiny drop is concentrated invary small space and then it moves with the
currents as time passes. The kef@,7) = (e¢=PV2 — 1), is the kernel operator which is also
a transfer function of time, and the Laplacian ap@r which “operates” on the input vector

’;"(”"")) The kernel operator acts as a momentum averagidgliffusion effect.

The vector functloer(T x (1, xok)) is given by (Eq. 7) a Newton potential of the exs
forces and pressure gradient divided by constamisitie p,, within the spherical control
volumé/ (t), centered at coordinaig,(t, x,x)-

function Wi
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Wk(T' x (T, xok)) = ny(ﬂ {aiyk (¢(Yk) + p(p:k))} MT\/md\,_y + lpk(T' xx (T, xok))

(7)

The vector functioer(r, x (1, xok))is not unique since adding any arbitrary vectorcfiom,
z,bk(r, xi (1, xok)), with the property that it's partial time derivagigatisfies the Laplace equation,
will also be a solution sinok%z/)k = 0. Note thatlY = dY;dY,dY; in (Egs. 7& 9) are the sides

of the differential volume (cube). The non-uniqgueh2mel solution to the incompressible null
Euler equations for all times,> 0, is given by (Eqg. 8).

Euler
U}fuler(t’ Xy (t, xok)) — uEuler(t’ Xj (t, ka)) — Uy = — fot [(t _ T)A)? oWy, (;:Ck(f,xok)) d‘L‘(8)

The vector functiow£*¢" (¢, X,.) is given by (Eq. 9) below.
WEHET (T, x, (t, x0k)) =

3 (Y1) -1 Euler
W,y (9010 + Y -+ T (1,0 ) ©)
V(T) avy ( . Po )4ﬂ\m ’ ( ) )

The vector function,F*¢"(z, x,.(z, x,,)) is not unique since adding any arbitrary vector
function,lp,fuler(r,xk(r, xok)), with the property that its partial time derivatigatisfies the

. . . . ad
Laplace equation, will also be a solution sw;ea;wﬁ“l” = 0.

Sections 4 and 5 will discuss whether the kernedrajor can zero out the vector function
oW (T xk(T.x0k)) AW (Txk (T x01))

ot ot !
respectively.

, and meaning of the kernel operating on vectorction

In Appendix A, the Duhamel’s solution is shown v the property to zero out the nonlinear
time dependent part of the material or field denxaoperator.
aWk(T' xk(Ti x()k)) dr

t
Upe(t, 21 (t, Xo10)) = e (£, %1 (£, Xo1) ) — Uore = —f (et™VA —1) £
0

That is Uk(t, x (¢, xok)) satisfies the following equation, which shows dluivelocity
vectorUj(t, x (t, xok)) is in the null space of matﬁaw along a streamline.
Z RACEMCEDS) Uit ;’f’ Xor)) =0
j j

See Section 2, Section 3, and Appendix A for actlippoof and more details on the proof. The
Duhamel’s solutions do not meet the criteria ofyChaillennium prize [11] due to its finite
duration of the solution’s validity in time and rto¢ating the nonlinear terms adequately (i.e. not
zero them out), whereas the Clay prize requireglldNfvier-Stokes solution with finite energy
for all time [11]. Although, we hope the Duhame$slution might lead to the full nonlinear
solution to the Navier-Stokes incompressible eguatior at least a better understanding of what
is required to solve these equations.

There have been many claims to solve the incessjisle Navier-Stokes equation, since they
are too many space won't permit their inclusiothis articlé. Others have claimed to obtain the

3Note: | am not claiming a general solution, butpacalized solution achieved when the Navier-Stokes
equations have zero initial conditions for the flbeld, the pressure gradient, and the externalefolhey
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first integral of the incompressible Navier-Stolesgiation (for example [2,6]). Scholle et al. [2]
wrote the first integral of the Navier-Stokes imnts of a tensor potential method. The tensor
potential method was used to obtain the first irgkegf Navier-Stokes equations is based on the
use of classical Maxwell electromagnetics techrsqide highlight of this method is to change
the Navier-Stoke PDE to a linear diffusion non-hgemeous equation. Unfortunately, in page 6,
equation 27 (% below),the tensor potential depends on the fl@iaities, which are supposed to
be given as curl of a vector potentigl= ¢;;,0;¥,,, but this nonlinearity of the equation is
ignored in page 7 second paragraph as the equiidreated as non-homogeneous linear
diffusive equation in equation 28"fBelow). (Notice: BelowU is the external force potential
used in [2], and Einstein summation conventiondsva for only the following two equations
since Scholle et al. used it in [2]).

pugt + (p + U)8;j = =00, Gy > °? p(&j0;Wn) (€jmnOm¥n) + (0 + V)55

= =0, 0,0 (0, & jn Prn&jimn¥n 0, U)

pOt¥n — 10,0 ¥y = _Snklak?mdml —corrected pg W, — 0y 0, Wy
= — &1 Ok Om Ami (P, gijnajq"ngjmnamlpn' p,U)

These equations are a nonlinear diffusion partfédréntial equation and there is no reduction of
the (quadratic)nonlinearity as claimed in page & th;j, 0,y &jmndm ¥y input argument of
G- This problem can be resolved by the assumptiorzend initial conditions, since the
neglecting of these nonlinear terms in the null ide®tokes is allowed as shown in Appendix A.
Yet, an additional statement needs to be madefénergce to variational principles involving the
Navier-Stokes equations found in Section C Selfeidjform of [2] in the first paragraph which
needs to be clarified:
"In terms of the latter, it was Millikan who showele non-existence of a
Lagrangian, in terms of the velocity, the pressurg@ and their first order
derivatives, that would enable the NS equationsetavritten as Euler-Lagrange
equations.”
This statement gives the impression of authoritydinwviously, Millikan paper is of a steady state
nature and is an incorrect predictor because thenipressible Navier-Stokes equations has
already been written in Euler-Lagrangian form g#jd the Bernoulli Principle for incompressible
viscous fluids (i.e. first Navier-Stokes momentuquation integral) was obtain in an insight in
[5], and mathematical proven in [6]. Other thaa #bove comments, the article [2] by Scholle et
al. gives excellent examples and illustrations @who solve the Navier-Stokes equations
numerically exactly with particular boundary coinafis.

2. The null Navier-Stokes equations

In this section, most equations will not be numbesince every equation follows from the
previous in a logical way, and almost every stefhefproof will be provided so anyone with the
understanding of calculus, Laplace transform, ammdesknowledge of the Dirac delta function
(see reference [7]) will easily follow these steps.

are many claims of solving the Navier-Stokes e@uati and it is amazing that not a single one ahthall
correctly test the solution into the Navier-Stoleegiations to see that it does indeed satisfy thaea
Stokes equations. | do recommend seeing the othiened solutions in the literature.
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The divergence of the incompressible fluid velogtgiven as (Eq. 1),

Z duy, (t, xp (¢, xok))
k

=0
09Xy

By setting time to zero, we obtain the divergencehe initial fluid velocity,

Z auk(ovxok)zz auok ~0
k  0Xp k an

Subtracting the bottom equation from the top, tssuol

z 0 (ux — Upk) ~-0
k Xy

Define U, = u;, — u,y SO the initial conditions are nully |;—¢ = uox — Uor = 0. The
divergence equation for the null initial conditidhgd velocity is

I (10)
The incompressible Navier-Stokes momentum equaacmgiven by (Eq. 2)

auk Ouk 1 P

F'szuja—)(j—VAuk = - aﬁ'gﬁ
In particular if we apply to the Navier-Stokes martugn equation to initial conditions, but using
the same flow fielmj in the material derivative, we obtain
Uy Uy dp, 1 dp,

at T Z Hoi5x; ~ VAt =~ t 9k,

Subtracting both sets of equatlérm‘ter maklng some algebraic manipulation, thesddttoss
terms below keeps the equation balanced,

0 (ux — Upk) 0 (U — Ugk) Z duy Uy Z
) L o) =g+ 2, (i gy ax % 5x, ) oy 2 ax

(09 1 0p 0¢o 1 apo
— v = o) = = (G o5 ) + G+ o)
Neglect the termgj(uoj Oue -+ U a;;’f‘) 2% i(uy; aa ) in order to simplify the equations.
J

Define the null Navier- Stokes equation as the NaStekes equations with null initial conditions
as shown below in (Eq. 11).

6Uk aUk _ ﬂ ia_p o 1 dpo
+ Z‘, VAUk - (an + Po an) + (an t pPo 0Xy ) (11)

The null Navier- Stokes momentum equation are tlwwrpressible Navier-Stokes equations
ifu,, = 0,and p,, p,are constantsor zero. The null Navier- Stokes tamnpsgmare given as
*  Fluid velocity null initial conditions
Uy (0,2,.(0,x0)) = 0
* Incompressibility of the fluid
Z OUk(t,xk(t,xok)) .
k aXk
e Null Navier-Stokes Momentum Equations

4Serrin employed a similar difference of Navier-&slequations in Section 72 Uniqueness of
viscous flows page 251 [1].
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AU (t, x,.(t, %) AU (t, xp (t, xok)
k( (;ct ok ) + Z ‘ Uj(t;xk(t,xok)) k( aI;( ok ) —VAUk(t,xk(t,xok))
j J
_ (% 19
- 0Xy  po 0Xx

WherdJ,, (¢, x, (¢, %o1)) = uge (£, x5 (¢, Xo1) ) = Uoks @ = P (31 (€, X01)) — P ANAP =
p(xk(tv xok)) — DPo-

3.0 The Duhamel’s solutions for the null equationsf incompressible fluids

Two theorems and a lemma, will prove the Duhamsthitions do indeed, solves the null
Navier-Stokes &null Euler equations with the untlmging the nonlinear time dependent terms
are nulled out for incompressible fluids, althoughthe expense of practical applications. This
article shows a clear path of how the solution Iidamed via Laplace transform of the null
Navier-Stokes equations. Therefore, the null equatiresemble the incompressible Navier-
Stokes equations with zero initial conditions ane tinderstanding the nonlinear time dependent
terms are nulled out for incompressible fluids.

Theorem 1. Duhamel’s solution of the incompressibleull Navier-Stokes equations
If the Duhamel’s formula is defined as the follogiconvolution integral

t aW ’ ’
Uk(t. xx (¢, xok)) = uk(t. x (t, Xok)) — Ug = —f (et=VA — 1) k(T J;kT(T ka)) dt
0

then modified Duhamel’s formula solves the nulldmpressible Navier-Stokes equations (Eq. 10
and 11) and remain valid solutiofiesr time, t, in the following approximated finite time

2
interval [0,§—v). The vector functioer(r, x (1, xok))are not unigue since adding any arbitrary
vector functiongy (7, x (7, xox) ), With the property that it's partial time derivagisatisfies the
Laplace equation, will also be a solution siﬂ%%t Y, =0.

Wi (T, %1 (T, Xox.))

- [[[ (v + 22— ——="

\%
V(1) 47'[\/2,1 (xn (T' xon) - Yn)z

+ P (7, %k (T, X01))
AnddY = dY,dY,dY;are the sides of the differential cube volume.Aiddlly, the spatial vector
argument of the flow fieldy (z, x,), is the Lagrangian coordinates of the fluid pasceénter at
time,r,within an arbitrary sized spherical control voluriiér), at fixed time.

5The solution represents a time convolution of aunm integral of a fluid parcel of
volume,V(7), with time Kernel operatafe ©~™V2 — 1). But the alternative representation due
to the convolution theorem may not provide an aeay to verify the solution to the null Navier-
Stokes equations (probably will need integration dayts, etc.), therefore the kernel will be
treated as a function of two variabl&t, ) = (e*=2 — 1), rather than a function of a single
variable,(t — 1).
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Proof of Theorem 1 Duhamel’s solution of the incompressible null NavieStokes equations
Part 0: Set up, finding Duhamel’s solution via Laq# Transforms

The null Navier-Stokes equations solution will higtly resemble the full Navier-Stokes
equation solution. The Navier-Stokes equatiorttiernull initial conditions for the fluid velocity

is
d 10 d 10
Z =t —VAU; = — (—¢+——p)+(¢°+— p")
6X 6Xl Po aXL aXl Po 6Xl
Notice, now at tlme zero, both sides of the eqigal are null or zero. Treat thé operator as a

constant as Oliver Heaviside would have done. eihe solution satisfies this requirement,
take the Laplace transform to obtain,

—st _ —st i
f f Z ]ath foe vAU;dt

@ 9] 10 0 0
=f e—sf[—(—¢+ p>+(¢"+— Poyde
0 0X;  po0X 0X;  po 0X;
where the Laplace transforms are given by,

« [ e=tZtde = sO;With null initial conditions

— aUL ad o  _ Y+ioco ~
* f Stzl JaX dt_Zja_Xjfo € StUjU"dt_ZJZmax fy ico U(s B xi(s =

B Xor)) U; (B, xk(ﬁ! xok))doﬁo R
o —J, et VAU dt = VA | e‘“ U dt = —vAU;

° — —st ia_p) - —(— ia_P
f (ax + po 0X; dt = + Po 0X;

— a0, 1 dp, 160 100
. f St(¢ i)dtz_((l) p)

Po 0X; s ~0X; Po 0X;
where
. —fowe‘Sf:—idtz %f ‘Sf¢dt——:—i
_st 1 0 1 0 _ 1 9P
s — Oooe Stp—oa—;dt=—za—xi Oooe Stpdtz_p_oﬁ_Xi

Therefore, we have a nonlinear integral partidedéntial equation with respect to the Eulerian
components in (Eg. 12). Solving this equation iandrting will provide the methods to solve
the incompressible Navier-Stokes momentum equéiqn 25.

y+ioo
L Yl L CEY Ry o) L GRS
_ o act;fm apo
=—16Gn o) - Get i) (12)

6 The complex convolutionzl; f;flf Ui(s = B,x1.(s = B, Xor)) Ui (B, %1 (B, x1.))df can be
evaluated with the help of the Bromwich contourt(sllown) and the complex residue theorem
using perturbation or asymptotic methods|[8].
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aul

To simplify this equation even further we requine solutionU; # 0, and ¢ 0, to satisfy

2iU; Z}Z‘ =0, i.e.U; is in the null space %%(see Appendix A for proof.)
Y+ico
d ~ -
=0 Y s | OB = B20) B 808 xod)df = 0
y—ico
Thus,

a9 1 ap)_(a¢o 1 6po)}

S
- = 1 - -
(s =vA)U: s (ax toax;) " \ax, T o, 9x;

Dividing by (s — vA) and multiplying byl (= ).
_ w1 (619 1 0P> (6(]50 1 apo)}

LT TS —vayvaC\ax; T p,ax,) ~ \ax; " p, 9%,
Notice the Laplace transform of the exponentialrae e is rEm—
- vA 1,09 1 0P 1 /0 10
Ui=——{s—(—+— )__( ¢o+ po>
s(s —vA) " vA\OX; p,0X; A\OX; p,0X

The Laplace transform of the kernel operator isoi@d out by partial fractions below.
vA 1 1
s(s —vA) ((s —vA) B E)

Plugging the expansion in

1 1. 1,39 1 0P 1 /0¢, 1 dp,
0i(sxe00) = ==y =903 (ox * r5x) ~ 78 (o + 5 ox)

Inverting, using the convolution theorem, to obtaiow complex variable s is a partial time

derivative, to easily obtain,

d 10
Ui(t, xi (t, xok)) = ui(t, x (¢, xok)) — f(e(t VA _ —{ (6)(? + Ea;‘)}dr
Or
t
ui(t, Xk(t, xok)) =u, — f(e(t—'r)vA _ 1) aWi(T, Jg‘f‘[, xok)) dr
Where, ’
d 1
Wk(T xk (7, xok)) {(’)X <¢ + pﬁ)} = Ef(xk(’fz xok)) = P(T: x (7, xok))

The meaning of the mverse Laplacian operator éswkell-known Newton’s potential integral
operatorP(r, x (T, xok)), as Professor Terrence Tao pointed out in equatoof [3] which has
been modified to integrate only over the movinddfiparcel or moving fluid volumé/(t), with
Lagrangian coordinate centet,(t,x,;), at timer, rather than through all three dimensional
spaceR3, which would cause a cancellation of the termsesiR?, is independent of time and
the origin is arbitrary.
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The moving volume or fluid parcel depends on a dyrimtegration time variable, but the
spatial coordinate$y,, are the dummy integration coordinate points st volumeV (1), with
center ate, (7, x,,) as shown in (Eq. 13).

P(T' xk(T' xok)) = if(xk(r' xok)) = fffv(-[) f(Yk)

-1 d_Y
47'[\/271 (xn(TXon)—Yn)? Y
Where for simplicity and space consideratiofi,= dY,dY,dY; are the sides of the differential

cube volume.
‘ Wy (T, x5 (T, Xo1)
wi (8, 21 (8, X)) = ok —f (e(t=DVA — 1) i akr ok )dr
0

Thus,i is the Newtonian potential given in [3] with som@or modifications already

(13)

discussed. The application of (Eq. 13) tofet; (7, x,x)) toaixk (¢> + pﬁ) gives rise to
Wi (7, % (T, x,01) ) (i.€. the potentiaP).
Wi (T: x (T, xok))

C((f(e p(Y) -1 ar
) M e (000, >}4nJ2n (en T Xon) = Ya)?

+ Y (T. xi (7, xok))
The vector functioer(r, x (T, xok)) is not unique since adding any arbitrary vectarction,
Yy (T, x (7, xok)), with the property that its partial time derivatisatisfies the Laplace equation,

. o 9
will also be a solution sinaky - = 0.

Although, the kernel of the solution can be obtdim Laplace transforms, there are many other
representations that could have been chosen. natiees kernels could have been obtained such
s_ s _ s

as different products df = Tl T ect.,
vA 1 VA ) VA s 1 1 1 .
s(s—=vA) vA ¥/s(s—vA) VA 3s(s—vA) VA 2 (LA — l) vA
V. S

The Inverse Laplace Transform (ILT) of these opmmais shown below by use of fractional
calculus techniques [9] and tables found in [G]hese operator kernels are quite complicated and

will not be pursued further other than the simptes below (Note thz%tis the Newton potential
operator [3]).

t
1 1 1
(m - E) P (05, %) = = f (i) T f dr(et-TvA
Jd 1 0
B DE Ef(xk(fr Xor))}

Bessel representation, kernel operator, is intniguvherel; is a Bessel function order 1 found in
formula 18, pg. 244 of [8]. Recallis the Laplacian operator.
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1

1 1

2
S — — —
(vA s)

(viA F(xi (s, %ox))

o)) T NV f %4, (2 fqvht >eqm {—f( (@200}

The fractional integral and derivative of %2 orc@rl{epresentation kernel operator.

d‘[e(t T)VA Kl
A F(xy (s, x LT, VAJ f xx(q,x
%/_(S—VA)\/— ( k( Ok)) 7'[({:—‘[ a_[_ m f( k(q Ok))}

And fractional integral of 1/3 order convolve with fractlonal derivative of 1/3 order [9]
representation, kernel operator

vA 3 ILT_>_ — 3 l,(t-ova 2 4
oD \/_ F(xk(s Xox)) Jdr(t T) e f

(T

re
- CI)3 {Ef(xk(% xok))}-

The first and simplest kernel was selected sinaeoitld be easier to show it satisfies the null

Navier-Stokes equations. The kernel contains atip@sexponential Laplacian operator;

therefore, it will be referred as the Laplacian axgntial operator. We will derive some
properties of this exponential operator using thgldr series representation.

The infinite series represents the Taylor serieth@fexponential operatart¥2, inside the kernel

is given as
I T
tvA _ iy,iAL
= ) ——tWV'A
¢ ZF(i+1) v
=0
1 1

. . 1 . 1
The Laplace transform of the exponential operafttis =il (1_%). The ratlo@ can

be expanded as a series’i%)fusing the geometric series representation as asll}ng—| < 1. The

-1

Heaviside integral operatof, = dt ,is the Laplace Inverse of - If Heaviside integral
operator,T, and the Laplaman operator need to satisfy thlevfmhg mequalitylvTAl < 1, then

the |nequaI|ty|T| < ﬁ means the solution representation is only valid time periodsl =

2 . y .
= 1 = f dtl=t< VA == Wheremwas modeled using Newton’s potentiablume

integral to bephysically approximately proportional to spherical surfaceaaof an equivalent

spherical volume of the fluid due to the simpleepat 1 of(ll—vA). Therefore, the trial solution is

valid for finite times,te [0,’32—12/) . So, for R= 1 myfor20 °Cwater~107° r:z V|1A|

90 hours, for R=10 m, then the time validity is 100 timeeger ~ 9,000 hours > 1 year by

using 1 significant digit in the calculation. Thiees not represent a blowout of the solution, but
simply the accuracy of the solution goes awayniktis beyond the specified limit.

11 4nR3 R? ., , ,
T— = — ~—— = — i.e.volume of a sphere with a constant radius, R;
v|A| 4mv | ﬂf sphere R 4mVR 3 3v fasp e
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Additionally, it is easily seen the Laplacian ofgerand the exponential operator commute,
vAetVA = etVAyA

Thus, let time- spatial functioR, = Fy.(¢, x, (¢, x,1)), be applied an operator as follows

th iAL
F A A'F,
RV ZF( 1) CVAE,
=vA(F + tWWIALF +1t2v2A2F +~--+;tiviAiF +)
k L) k rGi+1) k

1 S
= (VAFk+t1V2A2Fk+§t2V3A3Fk+"'+ thl+1Al+1Fk+"')

1

rGi+1)
1 1 o
= (1 + thviAl + EtZVZAZ + -+ mthlAl + “')VAFk = etVAVAFk
Using the same technique with the material derreatiperators

i(et"AF )= i(et"A)F + etV iF

_ _ dt T ot & dt * o
since the Laplacian operatdy, has no time dependence, i.e. a constant in time.

d d 1 .0 1 1 S
tvAy — ILyIAD — 1,,1 A1 24,2 A2 iy,IAL
— =— ) ————t'WA' = — |14 t'VIAT + otvEA e —— A+-~->
) atzol"(i+1) v at( Ve Tty i+ 1) "
i=
1
= (0 1A1 tl 2A2 _tl 1 lAL .
(0 4+ viA* +t veAs + - +F(k) \ )
1 1 S
=(1 tl 1A1 _tZ ZAZ tiviAL VA = tvA A
1+t +2v + +I‘(i+1)v + )V eV
Using the Leibniz’s rule for differentiation [1GJye Laplacian operatdyy, can commute with the
time integral,fot K(t, T)Fy (T, x4 (T, x5 ))dt for any functionFy, (z, x4 (1, x,,)) and any kernel
K(t, 7).

f K(t T)Fk(T xk(T xok,))dT = Az leltn—mo Z K(t TL)FK(Tka(T xok)) (Tl+1 )

i=0
LaplacianAy operator commutes with the limit (it does not depen n or time) and finite series

of n

f K(t, T)Fk(T xi (7, xok))dT = Limity, e z K(t, TL)A_)FR(TU‘XK(T xok)) (Tiv1 — 7))

Taking the limit as n goes to infinity shows theplai:lan operator commutes
t

t
A’?f K(t,T)Fk(T,xk(T,xok))dT=f K(t, T)AgFy (T, x (T, X01))dT.
0

0
We need also to review the Leibniz rule [10] foz field or material derivative operating on a
time integral on the variable time t. (I forgotihclude this property in examples section of [6]).
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t+h

d (¢ 1
Ef K(t, T)Fk(‘r, x (1, xok))dr = Limith_,oﬁ(f K(t+h, T)Fk(‘[, x (7, xok))d‘c
0
0
t

— f K(t,T)Fy (T, x (7, xok))d‘r)

0
Notice, the definition of the limit is on the vauia time t only. In order to evaluate this limitca
0.
t+h t

1
Limity,_, H(f K(t + h, D) F (7, % (T, X01) )dT — J K(t + h, D) F (7, %, (T, X01) )dT)
0

0
t

t
1
+ Limit,_o o (f K(t+h, T)Fk(‘[, x (T, xok))dr - f K(t, ‘L')Fk(‘l.', x (T, xok))dr)
0 0
This simplifies to
1 t+h t
Limity_, A (f K(t+h, T)Fk(‘[, x (T, xok))dr - f K(t+h, ‘L')Fk(‘[, x (T, xok))dr)
0 0

K(t+h,1t)—K(t,7T
+fLimith_,0 ( }2 ( )Fk(T,Xk(T,ka))dT

0
Thus, using I'Hospital’s rule [10] on the first litnand the definition of the partial time derivedi
[10] on the second limit to obtain (Eq. 14)

oK(t,
= s K DF(r, 20 (7, %010) )T = K (6, O)F (6% (T, x01)) + J KD b (1200 x0) )dT (14)

at
Notice if there is no explicit time dependence afigble t in the integrand kernel, t aK(?T) =

0, as expected, this was used in reference [6]Kiithr) = 1, but not explicitly stated.

In particular if the KernelK (¢, 7), is given aget~"2 — 1) then K(t,t) = 0 and% =
e(t—r)vAvA

t
d
Ef(e(t_r)w - 1)Fk(T: xx (T, xok))dT = (e(O)VA - I)Fk(t: xx (T, xok))
0
t

t
+fe(t_T)"AvAFk(T,xk(T,xok))dT =f€(t_T)VAVAFk(T,xk(T, Xor))dT
0 0

Part 1. Proof of (Eq. 1): Divergence of the Duhams@lution flow field is incompressib{&q. 10)
Let G(Yy) = (V) + pi)y"), then

Uk(t. xi (¢, xok)) = uk(t' X (t, xok)) — Uk

t ) 0 -1 dy
—— [ e - f[f -6 ~lds
0 V() * 4‘7T\/Zn (xn (T, Xon) — Yp)?

The divergence of the equation is given by
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Z aUk _ auk auok
w0X,  LudX, 00Xy

a t
_ _z _f (e(t—‘r)vA
Kk 0X}

-1 a._
i vf(ﬂ 9 G(Yk)4njzn(xn(r Xo) ~1)? ERai

It is well known that the divergence of the initidld must be zero, [by setting t=0 in (Eq. 1)].

2 U, —0
K 0Xj
Thus,

41 | ¥n (0 (T, Xon) — Yp)?
Thus, notice the partials derivative operators comerthus within the integrand curly brackets

-1 dy
k an aT f] aYk G(Yk) 47-[\[211 (xn(T, xon) - Yn)z T

_ d z d J‘ff 0 Gv) -1 ay
T otlagax, J)) oy, VK v
V(7) 4 | Yn (xn (T, Xon) — Yn)z

Thus, by integration by parts of the volume intégra

3o oo —=——%
L 0X, J)) oy, T F v
V(1)

4'7T\/Zn (xn(T: xon) - Yn)z

# (M) Zk aX,, aYk \/Z

-1 ds

S(7) (xn (T, X0p) — ¥p)?

fﬂG(Yk)zk Xy aYk — Ci’_y

v(r) \/Zn (X0 (T, Xon) — V)2

: a2
Notice,Ap= Yk == o7
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266 -1 _262 -1

K 0Xj 0% 7
4‘”\/271 (20 (T, Xon) — V)2 i 47'[\/Zn (X0 (T, Xon) — V)2

= —A;
47T\/Zn (xn(T: xon) - Yn)z
ad 0 -1 dy
Thus— —G(Y, ar _
DXk fffv(r) Ee (%) a7 |5 enCerramy Y2 ¥
o -1 s 02 -1 avr
~ By 6 ) Tz T My 60 Bt e

47'[\/Zn (xn(TxXon)—Yn)? 477\/211 (xn(T.Xon)—Yn)?
Recall,x; (1, x,;) is a center Lagrangian coordinate of the finiteesjzal volumey (7).As time
flows, the Lagrangian fluid parcels flow along theth-lines and cross the stream lines as time
increases. To see how both Eulerian and Lagrangpandinates and velocities relate to each
other please refer to [6] in Section 3.3.Also, st well known [7] that the Laplacian of

L becomes a Dirac delta function.Since the contodlime size is arbitrary;
4T [Xn (xn (T x0n)—Yn)?
therefore we can shrink the control voldrt®V, (1) « 1where epsilon is the radius of the sphere,
during the evaluation of the volume integral of thedta function as spatial average specified in
equation 16 of reference [7].

AsoV (1)
— V(1) with both control volumes have Lagrangian center x, (T, X,,) as the limit €

( )

-1
— 0,then A?i f - 63(xn(7:v Xon) — Yn)ar?,k = 63(xk(‘[: Xok) — Yi)-

47[\/Zn (X (T, Xon) — ¥3)?
The Lagrangian coordinate center ¥r) or V(1) is xi (1, x,), Since they both are co-centered

spheres, thus, the Lagrangian coordinate cewrjgr, x,;), is syphon off to yield a time
dependent Dirac delta function.

sSee section 3 of reference 7, which suggest a raefelition of the Laplacian of 1/r using the
. 41T 3 . . . . .

spatial average volum%,—s , concept of the Laplacian where epsilon is théusadf the arbitrary

small sized volume sphere of fluid. Although, timmenclature for the Laplacian operator in [7]

is not being followed exactly. Additionally, we Wwihot describe the arguments of the epsilon

limit; the reader can see it in [7].

9See section 3 of [7] for detailed arguments nabdpeeproduced here in this article. Note,

63 (T,%0n) = Yn) O s = 6% (xe(t,%0k) = Yi) =8 (a(T,%0) = Y1)8  (x2(T, %0k) —
Y2)8  (x3(t,x01) — Ya) = 83(x(t,x,) — Y) is the style used the academic literature such as

reference [7]. Notej3 ,, = (%)3
’ k
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0? -1 -1
vz =4y = &3 (o (T, Xok) — Vi)
Zk 6Yk 477\/271 (xn(T' xon) - Yn)z 47T\/Zn (xn(Tt xon) - Yn)z

Thus, the original volume integral is given by #dwpiation below,

Z 0 J‘ff d (YY) -1 dy
kan aYk K \Y
V(r)

47-[\/Zn (xn(T' xon) - Yn)z

as dy
=~ 4 6O Grxa) = T T+ [[] 60008 Grexo) ~ T -
Se(1) Ve(7)
The surface integral does not contribute sincetitedinate center of the fluid parc&l,(t) ¢
Se(1), thuss® (x, (T, x,k) — Yx) = 0 becausé&y e S, (7).
Thus,

ds
~ B 6008 Cxenx00) ~ i) - = 0

SS(T)
Results in,

. |
K an| ]ff Y, 60 4n\/2n (xn(‘[,lxok) = Yp)? dV_YJI

d dr 10
-1 (f f) GO8* (a7, o) = 1)) 1 = == 6 (e r, %)
Ve(T

10 10 N
= Ve (00 Xo)) =357 (0 o) + p(xLOXk))

Sinceg (xy (7, %)) andp(x (7, xo1)) are not explicit functions of time, Therefore, we have

)=0

P -1 ay
shownY, — axk P fffv(t) {ayk( D)} 4nm — = 0 as expected, and thus,
r(M) -1 dy
f(e(t o 1)Zkax ot M 3, <¢(Y")+ k) \/ V]
Xn

(xn(Tr xok) - Yn)z

=0
Thus, the divergence of the fluid velocity is zeoothe fluid is incompressible, satisfying (Eq.

10), 3, 22X — g ang (Eq. 1, 2D _ o,

Part 2: Proof the Duhamel solution satisfies thdl Mavier-Stokes momentum equations (Eqg.11)

The incompressible null Navier-Stokes momentum ggusis given by (Eq. 11) and repeated
below.
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6Uk d
Z J aX VAUk = (E — VA) Uk(t, Xk(t, Xok))

d 10 d 10
:_( ¢ L p)+(¢>o+_ Po,
0Xy  po 0Xy 00X  po 0Xy

where
t ow,
_ (t-t)va _ 1k
fo (e 1) . dt

Appendix A demonstrates the nonlinear terms adub @ero,
ou t _ ow,
YU —k_ 0 for Uy = — [/ (e — 1) —*d

Therefore, the equation can be represented asiding the null time dependent nonlinear terms)

(6(;[) 1 ap) (6(1)0 1 dp,

ox, T ooox.) Y Gx, T oo ax,)

(% - vA) Uk(t, x (¢, xok)) - _

Plugging inU;, = — fot(e(t—r)vA _ 1)%&

d t aw,
— _ VA (t-ova _ 1y K
(dtv)foe ) dr

t aw,
= —J (E=tvAyp —— P dr+f (e~ T)VAVA—VA)—dT = —vAf —dr
0

By the Leibniz Rule [10] the material derivativecbenes a partial time derivative |nS|de thlee
integral as explained in Part O (Eq. 14). Althougot noticeable here, the solution nulls out the
nonlinear operator terms since the material daviediecomes a partial time derivative as a result
of the Leibniz Rule (see Eqg. 14 in Part 0 and AipeA).

Thus, the equation finally simplifies to

d ~ oW, (3¢ 1 ap\ . 0¢, 10p,
(dt VA) (& 21 (8, 01)) = "Afo de (axk T axk) Gx. T o, ox,
Need to provevAf —"d _aixk (¢ + ) + —(¢>0 ) via byLemma 1

Lemma 1.If A is the Laplacian operator of the spatial coordisgf,, then we conjecture

— Aftawk _61&((¢+p0)+ﬁ(¢0 —0)
Proof:
GiverW, (¢, x, (t, xo1)) = i{i (qb + %)} found in Part 0 above.

t
o W2 _ya [ 2 1{a(+p)}d

VOB t=v aT[VAan¢pO]T
Integrating both time integrals, wherg(0, xok) = X,k

—VA (Wk(t' xi(t, %o1)) + @1 (i (t, X01)) — (Wi (0, x01) + (pk(o'xok))

= [_VA%{GLXR (¢ +50)} — 1 (xie (&, %01 ) 1520
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_(r 9o r (Lo r i
Thus,Wk(t, X (¢, xok)) = {VA % (¢ + po)}ﬁt’ andW, (0, x,,) = {VA A (d) + po)}fzo since
the arbitrary termg,,, cancel out, because they are on both sides @gthal sign. Thus,
1 0 p\)
—VAWi(t, %1 (£, Xo1) ) — Wi (0, X1)) = —VA {EG_X,( (‘Ib + E»no
Thus,

—VAW(t, %k (8, %01)) — Wi (0, x01))

| v

4-7'[\/2,1 (xn(t: xon) - Yn)z

(
9 p(Ye) ~1 dy
o e SN e

SinceA = Ay, moving the Laplacian inside the volume integral,
—VAGWi (&, 21 (8, %ox) ) + VAW (0, Xo1)

( )
e

v(t) \/Zn (xn (t: xon) - Yn)z
)

(
) (Y)\) VA» -1 dy
' I-/Il):l)- {m <¢(Yk) ' ljl.Tk)}\i}_Tfiw’Zn (Xon - Yn)zjT

-1

= 63(xk(t, xok) - Yk), Whel‘exk(t, xok) is the

. Ay
It is well known [7] that4—"
4 Zn (en(txon)—Yn)?

Lagrangian coordinate center of the fluid parcélir®e (See Part 1, near Eq. 13).
—VA)—(’Wk(t, xk(t, xok)) + VA)—(’WR(O, xok)

- [ (oo 557

Ve(t)

« [l i Lo <52
V(D) ?

)} 6% Gt x00) = vioay

)} % G — Y2

Thus,

- I oo+ 52

Ve(t)

)} 6% Geet x) = Yioay

p(xk (¢, xok)))

0
= ——<¢(Xk(t, Xok)) + o

09X,
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and
p(Yy) p( ) d p
] 5 (0050 + =2 6% = iy = 2 (80 +2522) = o2 (9, +2)
AQ) * 0
Thus,Lemma 1 has been proven to be a correct conjecture, thus
—vAf —dr = —vAW, (&, 1 (¢, xXo1)) + VAW, (0, x4
_ 0 p(x (t, xok))

The null Navier-Stokes momentum equatlons arefeatiEq. 11) above.
Low,

d
(a — vA) Ur(t, % (£, x01)) = —VA . a—d‘t =

d p(xk(t xok))
—a—&(¢(xk(t,xak))+ ; ) 7 (90+77)

o

Thus far, we have thus shown the divergence ofltive field is incompressible (Eq. 1%% =
0, the null Navier-Stokes momentum equations (Eq.HelMe been satisfied although by nulling
out the nonlinear time dependent terms (see Apgeffi Thus the field velocity which solves
the null Navier-Stokes equations is given By(t,x; (¢, xor)) = (€, %, (£, Xor)) — Uor =

_ [t (t-T)vA _ aWk(T'xk(T:xok))
INC 1) et o)

2
times, t, in [O,g—v). The vector functioer(r,xk(r,xok)) is not uniquely identified since

dr and these equations are approximately valid foitefin

Wi (7, % (T, xo1) ) are given within any arbitrary vector functiapy (z, x, (7, xox)), which it's
partial time derivative satisfies the Laplace ehpmﬂ%zpk =0.
Wi (T, x5 (T, Xo1))

[T ——
V(T

41 | ¥n (cn (T, X0n) — Y)?

S ACEACE D)
Therefore, the solution is not unique, unless wermake thessumption to set all components of
Yy, to zero, to obtain after moving the constant kiagowiscosity outside the volume integral,

U (t, % (t, X01))

(e -1 a P(Yi) —1
L o

Setting time to zero yields
U (0, x,(0,x,1))
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B J-O(e(o T)VA __ 1) a
= . "

} ! dy |dz =0
*an Yn (e (T, x0n) — V)2 J

Therefore, the initial condltlon is satisfied tally.

QED.

An added benefit of the incompressible null Na\Béokes solution is to obtain the solution to the
incompressible null Euler fluid momentum equatignsktting the kinematic viscosity to zero as
shown in the proof of Theorem 2.

Theorem 2.Duhamel’s solution for the incompressibl&uler equation
If the null incompressible Navier-Stokes Duhamélison where the kinematic viscosity, is set
to zero via a limit,

Uy (&, x5 (8, %01))

fe -1 1)6 p(Yi) ~1
B e 1 L

Then the solution is given & “eT(t, x;, (t, X)) = uE™eT (¢, x; (t, x01)) — uorthen a solutiot?
of the incompressible null Euler equations fottiafles,t > 0, is obtained, as
UE™er (&, x5, (8, Xox.))

t[ 0 0 p(Yy) -1 ]
== | €0z, []] a5 (00 +5,5) ar|d=
0 [ V(1) g P 4 Zn (xn(T: xon) - Yn)z J
wheredY = dY;dY,dY; are the sides of the differential cube volume.

Proof of Theorem2.Duhamel’s solution for the null incompressible Eler equation
By taking the limit as the kinematic viscosity gdeszeroy — 0, in the Duhamel’s solution,

U (£, xi. (t, %01))

_.fot{Limit\HO( e - 1) 2 fﬂ av, d(Y)

P(Yk)
Po

dy]dr

4”\/Zn (Xn (T, Xon) — Yp)?
By L'Hospital’s rule [10], differentiating with reect tov on the numerator and denominator
yields,

o e(t—r)vA _ 1)
Limit,_, — Y - (t—1)Az

10 Obviously the solution is not unique, therefore theditional arbitrary vector functions
YEuer (1, x,. (1, x,,) ) terms are neglected or set to zero

166



On the Duhamel’s Solutions to the Null Equationsna@bmpressible Fluids
Plug in the results of the limit, obtains the dedisolution

Ullcsuler(t: xk(t xok))
L ]
f ﬂf v (000 + P ")> dy | dr
477\/271 (2 (T, Xon) — V)2 J
Part 1. Divergence of Euler Flow Fldijc—UEuler

f |(t—T)AXa Z A ﬂfay ¢(Yk)+l’( k)) -1 vl

4”\[Zn (X (T, Xon) — ¥3)?

=0
By Theorem 1 Part 1-Proof of (Eq. 1): Divergencéhef flow field is incompressible, we proved
]
p(Y) -1 |
dy|=0.
6‘[ kaxk an W oY, <¢(Yk)+ >

4‘77\/211 (X (T, Xon) — V)2 J

Therefore}, 5~ UE”ler = 0.

Part 2. The Duhamel’s solution to Null IncompregsiBuler Momentum Equation
Since the solution is given@8*¢" (¢, X, (t)) = ub**" (¢, X;c(t)) — uox
Uter (&, 20 (t, xor))

= _fot O M aY, "’(y"”p( k)) — av

V(7) 47-[\/211 (xn(T xon) Y, )2 J

|
I
I

drt

The null Euler momentum equation is obtained btirggkinematic viscosity to zere,= 0, in
(Eq. 11)
dUEuler(t: xi (¢, xok)) 0 P(xk(t xok))
= — t
Plug in the solution into above equation,
dU,fuler(t,xk(t,xok))

=_%fot[(t_ T fﬂay ) + p(Yk)) \[ — arjde
2n

(xn (T xon) YTL)Z

By the Leibniz Rule [10] the material derivativecbenes a partial time derivative inside three

integral. SinceM =1
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ar fff oy, (Pt + (Yk)) dY}dr

Po /AT \/Zn (xn (T, Xon) — Yp)?

= §3(xx (1, x,1) — Y3). Recall the explanation of

AU (t, %, (£, Xo1)) _f
dt B

-1

1’Zn (xn(TXon)—Yn)?

this fact in Part 1& 2 and see reference [7].
dUkEuler(t, xp (¢, xok)) tla P -~
dt fo ot f(f) aY, (¢ + po) 83 (e (7, x01) — Vi)Y | d
Ve(T

Integration the partial derivative, and recall #ubitrary integration functions cancel out,
dU,fuler (t, Xk (t, xok))

From Theorem 1 part

g

4

dt
a p 3 d p 3
=[] 55 (#+2) 8 e 20 = v = [[[ 51 (# +2) 63 = Va7
aYk Po aYk Po
Ve(®) Ve(0)
Using the well known properties of Dirac delta ftiog [7],

dUZMeT (t, %, (¢, Xo1.)) d p (i (¢, xok))
dt - 90Xy ¢(xk(tt xok)) + Do an (¢o P0>
Thus, the null Euler Equation is satisfied. Thiigon of the null Euler equation has the validity
2
for all timetin[O,Limit:\HO i—v) i.e. t €[0,).
QED.

4. Does the convolution kernele¢~9v2 — 1, makes the function W null?
It's complicated, although the short answer is ootf> 0. The Taylor series of the operator
kernel is given by

o1 o
(t—r)vA_1= t —1)VIAL — 1
¢ ZOI‘(i+1)( oV
i=
- t — 7)%Vv2A?
E=ovA"

= Z;(t — T)iViAi — ((t _ T)1V1A1 +

= ri+1) 2

1=

_ (t — i iAi
TrarpE-OVAT)

Lt (t-T)vA 6Wk(‘r,xk(r,xok))

Therefore Uy (t, xic(t, Xox)) = ur(t, X (&, Xo1)) — o = — [, (e — 1) T g
Since
Wi (7, %1 (T, X01))

- || %(“Yk“pf"))} = T h(m e x00)
7D © AT B (e (T Xon) — Yy)?

Plugging in the Taylor series into the integral
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Upe(t, 21 (£, Xo1))
L N24U2 A2
- _ f((t — T)1V1A1 + (t‘[‘% 4 ot [‘(i i— 1) (t _ T)iViAi
BWk(T x (1, xok))

ot
Note that thep; (7, x, (t, x,1)) will cancel out so it will not be included.

U (, xi (t, Xo1))

+-)

W, (T, x5 (T, x01))  (t — T)2V2EA% Wy (T, x4 (T, X01))
_ _ 1yl
f((t T)'V'A P + > e
0
oW, (z, x, (, xok))
—  (t =D)AL
+F(i+1)(t i Jt )

Interchanging the Laplacian operator with the patime derivative on a term-by-term basis to
1 2 2 11
obtain Uk(t, xk(t ka)) _ ft((t ‘[)1\}1 oA Wk(‘[,xk(‘r,xok)) (t—1)%vZ 0A*A Wk(‘rxk(rxok))

- 2 at
) . Ai- AW (T,xk (T, %0k))
+ T(i+1) (=) o o

Taking the Laplacian inside the volume integratéteTheorem 1 Part 1 & 2), then tHeterms
reads (see [7])

)
L (Y )\ vy -1 ay
F(l D (t—1)'v —A 1{}’1{ aY, ¢( Yi) +pp0k )}"4_7;({\/211 o () —Yn)ZJ}T
=ﬁ(t—rw o [[f o (600 + B 00 e
Vs(f)

iy J . p (g (T, X0k))
= Ydy = N 1)( —1)'v 6_67 1<<¢(xk(f,xok)) +T>>
The first term, i=1, sa"! = 1
0 p(xk(z, xok))) 0

1 d
F(Z) (t _T)l ! (?X < ¢(xk(T xok)) +_ o

There is no explicit time dependence for pressndaea(ternal potentials. But the later terms are
nonzero. By taking the divergence operator orNtheier-Stokes momentum equations (Eq. 2),

auk au] auk 0 auk
ST L1
cox) V2 ox,ox, T 2 ax Lok,
d t,
_-VAZ uk A((p(xk(t:xok))'kM)
o

Since, the fluid is incompressible (Eq. 1)

Z o _
Kk 0 Xy

Thus, relabeling the dummy sum index k to n,
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p(xk(t, xok)) B ou; du,
A <¢(xk(tl xok)) + o - nj aXn aX]
For i> 2, the I term reads
a p(xk (T, X01))
_ _Al—ZAl
F(l + 1) ( T) a aX <¢(xk(T' ka)) + o
PN RV S U
TG+ D a X, nj 0%, OX;

Plugging it into the solution,
E)u] aun

Uy (t, ;. (t, x ))=fi#(t—r)iviiiAi_zz T#0
A" kS Sk 4T+ 1) T 0Xy 0X, 0X;
O =

Moving the partials inside the finite, n & j sunmgtice we change the component index from i to
n in the left and right part of the equation, toigvconfusion,

U (£, (6, %01)) = fz t ipi-2 0" 0% Ouny o btort > 0.
B Xi AL ok TG+ a0V nj 070X, {ax ax} e
0 =

Results in aonlinearintegral equation.
Upe(t, x5 (t, Xox)) = e (8, 21 (£, X01) ) — Uoic

t

1 0% (0u; du
— (t—=Tt)vA _ _ - j n f
f[e 1+t r)vA)] 22 anj 370X, {axn axj}dr #0fort > 0.
0

5.0 The meaning of the exponential Laplacian operat
The exponential Laplacian operatef, operating on some function is equivalent to tHetsm
of the heat equation with the initial conditionfgithe function, according to Professor Terrence
Tao in reference [3] in page 39 reads
“In eitherR3 or R3/LZ3, we letet? for t > 0 be the usual semigroup associated to the
heat equatiom; = Au. OnR3 this takes the explicit form

1 2
ef () = ez | e ROy

for f € LE(R?) for somel < p < 0.
Remark: A argument which may hold true, is as fefio
Let u(t,x) = e®®f(x) thenu, — Au = e®2Af(x) — Aet® f(x) = e®®Af (x) — e®®Af(x) = 0 and
u(0,x) = e®2f(x) = f(x), so indee@”f(x) behaves as if it's the unique solution of the Heat
equation, since it solves it. We will not purshistonnection any further.

6. Conclusion

In Section 2, the null Navier-Stokes equations dasgeloped from the incompressible Navier-
Stokes equations by subtracting the incompresdilaeier-Stokes equations evaluated at the
initial time, 0O, from itself at some future time, t

Section 3 consists of finding the solutions to thdl Navier-Stokes equations via Laplace
transform. Although we checked the Duhamel’'s sofuindeed satisfies the null Navier-Stokes
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equations with the understanding the time dependemiinear terms are nulled out (see
Appendix A). Section 3 contains two theorems anktrama, which proves the Duhamel’s
solutions do indeed, solves both Navier-Stokes tunus and Euler equations with the
understanding the time dependent nonlinear teresiaied out for incompressible fluids. We
have shown the Duhamel’'s function satisfies theerdjgnce equation for incompressible fluids
(Eq. 10) and null incompressible Navier-Stokes muion® equations (Eq. 11) for finite times,

2
tin [O,g—v). Also the Duhamel’s solution nulls out the nonéinéerms of the null Navier-Stokes
(see Appendix A) and is given by the following farian,
6Wk(r X (T, xok))

t

Ur(t, %1 (t, %01)) = wie(t %0 (t %0k)) = tore = —f (e —1) a7
0

wherex, (7, x,)is the Lagrangian coordinate center of fluid paafetolume,V (7).

0 p -1 dy
Wi (T, xi (T, X01) ) = fff {W (¢) + p_>} > + P (7, 21 (T, X01.))
V() ‘ ° 4'77\/Zn (xn (T, %00) — Y)?
The vector functiorW (T, x (t, x,x)) is not uniquely identified, Sinc# (z,x(z,x,;))are
given within any arbitrary vector functioqb,k(r, x (7, xok)), which it's partial time derivative
satisfying the Laplace equation. Therefore, theitgmt is not unique, unless we can make the
assumption to set all componentsj@t(r, x (T, xok)) to zero. Theorem 1 and Lemma 1 shows
the methodology to prove Duhamel’s solution sasfboth the null divergence equation for
incompressible fluids and the incompressible n@lidr-Stokes momentum equations. Theorem
2 shows how to obtain the incompressible Eulertsmiuby taking the limit of the kinematic
viscosity to zero on the Duhamel’s solution. ThaeE solution is given by

UEuler(t xk(t xok)) _ ukuler(t xk(t xok)) Uok
3/ .
Az 9t 6Yk Po '

J‘t
0
T[\/Zn (Xn(‘[, xon) - Yn)z J

The Euler solution is valld for all times> 0,where the additional arbitrary vector functions
termsapEuer (7, x;. (7, x,1) ), are neglected or set to zero.

Due to null initial conditions the field derivativaperator in Navier-Stokes momentum equation
becomes linearized and the remaining linear opeliatas Professor Terrence Tao states “the
usual semigroup associated to the heat equatienAu” [3]. Therefore, the methods of linear
partial differential equations such as Laplacegfams worked even though the fieId derivative

is a nonlinear operator in terms of the field véles, i.e.— uk(t x (¢, xok)) * - uok+

|

%Uk(t, xi (t, Xox) ), Which is whywy (¢, x;, (¢, Xor)) = Uk + Uk(t, xi(t, xox)) does not solve the
full Navier-Stokes momentum equations.

Sections 4 showed the kernel operator does not @erche vector funcnoaM

Section 5described the meaning of the kernel operabn vector funcUonaW"(”;M

according to Professor Terence Tao.

Acknowledgements. The author would like to thank the anonymous reeissand chief editor of
APAM for their time and effort spent in reviewingd article.
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Uy

X, =0

7. Appendix A: Solution has null nonlinear terms; U; p

Let U (£, x5 (t, Xox)) = wie(t, X1 (t, Xox)) — o = — fo (e(t=mva — 1)%‘” where

—1(o¢ 1 0p 9 NLO) -1 av
Wie(T 2T, x01)) = 35 (axi i ax) Wy {ayi (o0 + Po )}471 B Cinrton) 12 ¥
By taking the material or field derivative [6] dfd¢ nonlinear terms,

d AU (t, x;,. (t, x0)
3 Yoo o)

U, (t, , X
= Z _d_{Uj(trxk(t'xok))} k(¢ i;’;((t Yor))

d OU; (&, %, (¢, X,
+Z U; (t Xk(t Xok)) ( xk)((j X k))

—(— f (et )aa ary = s f (et — 1) 2 gy
+ Z J—(e(t VA _ ] d ) ( f(e(t VA _ 1) ai a;/vk dT)

Cancelling the negative 5|gns and S|mpl|fy|ng Limybniz ruIe of differentiation [10] (see Part O
Eqg. 14) inside the time integral the material defiike becomes the partial time derivative of t,

i t. (t-T)vhA _ iawk to (t T)VA _ 9 0w (t— r)vA 9 0wy
(f (e 1)ax ot )_f e 1}ax o T fe Aax, o
rearrangmg the order of partial dlfferentlatlordaraplaman operator,
d
( f et-vA__ S VAW;dT) 5o~ ( f (e(t=DVA _ )—dr)
‘ d
+ Z (f(e(t VA _ ] d‘r) fe(t‘f)"AavAWk dr =0
ag 1ap_ _ 9 (o , 1 9p
smce—vAWk > (axk +Ea_xk) = Oan%vAW =3 (ax, +— o ax,) = 0 by proof of Theorem
1 Part 1 in this article. Therefoig; U; |s a constant along the stream line. Thus, asshene
constant isC = Y; J?ai,(k +0. But, by setting time to zero, notigg(0, x; (¢, x,)) = 0.
Therefore,C = 0, a contradiction has been obtained Z'gdlj “is zero along a streamline.
Thus,Y;; U % = 0.

Fort> 0, thls does not imp%«”—’f =0, thus

aUk T)V T)V
o= (f(e“ we 1) Dl ary = (- f(e“ w2

Since upon dlfferennatmg,

a7 6X dr);tO
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d d p(Yy) (xi(t,x,,) = Y}) dy
T Wil nexo0) = - || {57 (e 00 + B} R Lo
J V(1) : © 41 (X (0 (T, Xon) — Y)?)2
For t > 0, sincd/; # 0 (See Section 6) arge)ﬁ:—i_ # 0, then this implied/; is in the null space of
J

.U
matrix —x.
an

An alternate method to the demonstration abovéasve below field derivative methods found
in [6] and using the Leibniz rule [10].

6Uk(t,xk(t,x k)) _
[Zj Uj(t. xx (¢, xok)) — 2 _ =
fixedt

d ) du; @ t [(e)EDVA—1)(awy)
(E - [a]fixed 2a [Ziga—m]ﬁxed >Uk(t, Xk (t, %)) = dtf P dr +

a ct [(eJEDVA_1)(awy)
N 1=
fixed t

+s ou; 0 tm“ OVA—1)(@Wi) dr
fixed}?u hot au ot
_ [t (e=t)va, A Wik t (t-t)va, A Wk =
Joe vVA——=dt + [ e vA——=dr+0=0.

This method does not depend on the streamline gdErmbut on the definition of the field
derivative, therefore this proof is stronger thia@ previous method.
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