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Abstract. The incompressible Navier-Stokes equation with null initial conditions or simply null 
Navier-Stokes equation was developed from the incompressible Navier-Stokes equations by 
subtracting the incompressible Navier-Stokes equations evaluated at the initial time, 0, from itself 
at some future time, t.  A solution of the null Navier-Stokes is obtained via Laplace transform 
valid for a finite time interval to obtain Duhamel’s solution.  Additionally, by setting the 
kinematic viscosity to zero the solution becomes a solution for the incompressible null Euler 
Equations for all t in [0, ∞) .  Theorem 1 and Lemma 1 shows the methodology to prove 
Duhamel’s solution satisfies both the divergence equation for incompressible fluids and the 
incompressible null Navier-Stokes momentum equations. Theorem 2 shows how to obtain the 
incompressible Euler solution by taking the limit of the kinematic viscosity to zero on the 
Duhamel’s Navier Stokes solution vector function. This article demonstrates a clear path of how 
the solutions for the null Navier-Stokes and null Euler equations are obtained. 

Keywords: Duhamel’s solutions, Incompressible Navier-Stokes equations, Incompressible Euler 
equations 
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1. Introduction 
This article was inspired by Duhamel’s formulas in equations 19 [3] and 1.5 [4] in Professor 
Terrence Tao impressive articles.  This article develops the concepts and methods of solving the 
incompressible null Navier-Stokes and the incompressible null Euler equations via the Laplace 
transform and the Newtonian potential found in [3]. The Eulerian velocity, ����, 	�
�)�, is 
usually prescribed in the academic literature [1] as ��
�, ��)were the spatial Eulerian coordinate 
is a normal size letters, and spatial time coordinates, ��, not an explicit function of time (i.e. no 
time arguments).  In this article, the approach is different, we treat both Eulerian (Caps Letters) 
and Lagrangian (normal size letters) spatial coordinates for the same spatial location and time to 
represent the same fluid parcel, and since there is no difference between them, therefore both 
Eulerian and Lagrangian velocities are identical for the same location and time as found in the 
sampling process of reference [6] but if the times are different they may represent different fluid 
parcels which may happen to pass through the same location.  Therefore, the Eulerian velocities 
field with Eulerian spatial coordinates are denoted as��
�, 	�
�)). In this article the Eulerian 
spatial coordinate,	�
�),  is replaced by the Lagrangian spatial coordinate, i.e. 
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��
�, 	�
�))|��
�)���
�,���) = ����, ��
�, ���)� where  the Lagrangian spatial coordinate 
argument, ��
�, ���)  is a function of time and has a parameter argument initial location, ��� ,which is not a function of time and it represents where the fluid parcel crossed some stream 
line at initial coordinate ���. Therefore, if Lagrangian and Eulerian spatial coordinate locations 
are identical,��
�, ���) = 	�
�)at a given time t (See reference [6] Section 3), then they maybe 
not at any other time for that fluid parcel, i.e. typically��
�, ���) ≠ ��
�, ���),  unless of 
course,� = �, or a periodic process is occurring. Partial time differentiation of ��
�, ���) = 	�
�) 
yields  

��������������, ��
�, ���)� = � ��
�, ���)
��  = �	�
�)

�� = �	�
�)
�� = �� !"#����
�, 	�
�)) 

Both velocity representations are numerically equal.   Therefore, the spatial representation used in 
this article is Lagrangian, while the flow field representation is Eulerian1.  Following reference 
[6] each time particular time can be treated as a sampling point along all the streamlines with all 
the path-lines, which may be composed, of extremely large number of different fluid parcels path-
lines crossing points in the streamline as shown by the sampling process in [6], although the 
notation used in [6] was a vector field notation (upper arrows) and the notation used here is 
component index notation.   In this article we treat every point as a possible intersection of 
streamlines and path-lines in the flow field, not just a sampling of a single streamline as in [6].  
     The Navier-Stokes and Euler equations are nonlinear equations, which no exact solution has 
been found so far for the most general cases. For every time t > 0, the divergence of the 
incompressible fluid flow is given by (Eq. 1)2. 

∑ %!���,��
�,���)�
%��� = 0    (1) 

The incompressible Navier-Stokes momentum equations are given by (Eq. 2). 
%!���,��
�,���)�

%� + ∑ �(��, ��
�, ���)� %!���,��
�,���)�
%�) −( +Δ����, ��
�, ���)� = −
%-
��
�,���))

%�� +
.

/�
%0
��
�,���))

%�� ) (2) 

The field or material derivative is given as 
1!���,��
�,���)�

1� = %!���,��
�,���)�
%� + ∑ �(��, ��
�, ���)� %!���,��
�,���)�

%�)( . 

where 
1
1� is the material or field derivative [6], 2 is the external force potential, 3 is the pressure, 

4� is the constant density, and + is the constant kinematic viscosity (in meter squared per second).    
Moving the Laplacian term to the left side of the equation to obtain (Eq. 3). 

5 1
1� − +Δ6 ����, ��
�, ���)� = − 5%-
��
�,���))

%�� + .
/�

%0
��
�,���)
%�� 6 = − %

%�� 52 + 0
/�6 (3) 

Notice that when t = 0, in (Eq. 2) this equation becomes, 

                                                        
1Note: At this point Eulerian and Lagrangian field velocities are shown to be identical, therefore we use 
Eulerian field velocities nomenclature to follow the historical nomenclature.  This statement is a repetition 
of a statement in Section 3.3 of reference [6]. 
2Note: The fluid Eulerian velocity is denoted by normal size letter u, except for the fluid velocity with null 
initial conditions, which is denoted by capital letter U.  In this article, all fluid velocities are Eulerian, but 
they have Lagrangian spatial coordinates.  The Einstein notation convention is not used in this article. Only 
variables with indices in the explicit sigma symbol are being sum, the indices always are equal to 1, 2 and 3 
but not shown. 



On the Duhamel’s Solutions to the Null Equations of Incompressible Fluids 

149 

 

������ + 7 ��(
�����	(( − +∆��� = −
�2��	� + 1

4�
�3��	� ) 

With initial conditions along the streamlines of the velocity field are given by (Eq. 4). ��
0, ���) = ���     (4) 
The Euler momentum equation is obtained by setting the kinematic viscosity to zero in (Eqs. 2 or 
3) to obtain (Eq. 5). 

1!���,��
�,���)�
1� = %!�

%� + ∑ �( %!�
%�)( = − %

%�� 52 + 0
/�6  (5) 

The above equations are valid throughout the fluid, but we will concentrate on the movement or 
flow of a parcel of fluid moving through or crossing a streamline and the center of the fluid parcel 
volume, V(t), is :;
<, :=;). 
     In Section 2, the null Navier-Stokes equations was developed from the incompressible Navier-
Stokes equations by subtracting the incompressible Navier-Stokes equations evaluated at the 
initial time, 0, from itself at some future time, t. 
     In Section 3 consists of finding the solutions to the null Navier-Stokes equations via Laplace 
transform.  Although we will check the Duhamel’s solution satisfy the null Navier-Stokes 
equations with the understanding the time dependent nonlinear terms are nulled out. Section 3 
contains two theorems and a lemma, which proves the Duhamel’s solutions do indeed, solves 
both Navier-Stokes equations and Euler equations with the understanding the time dependent 
nonlinear terms are nulled out for incompressible fluids, although, at the expense of practical 
applications.   This article shows a clear path of how the solution is obtained, but the Duhamel’s 
solution does not contribute to a solution which includes the nonlinear part of a field derivative, 
since it actually zeros or nulls out the nonlinear time dependent terms (see Appendix A). The 
Duhamel’s solution, which solves the null Navier Stoke equations, was found via Laplace 
transforms to be a convolution integral as shown by (Eq. 6) 

>���, ��
�, ���)� = ����, ��
�, ���)� − ��� = − ? 
@
�AB)CD − 1) %E��B,��
B,���)�
%B ��    �

F  (6) 

where, Δ is the Laplacian operator with respect to the spatial Eulerian coordinates,	� ,(i.e. Δ ≡Δ�HI)of a fluid parcel. Both symbols Δ and Δ�HIare used interchangeably.  The Lagrangian coordinate 
��
�, ���)in the argument of the Eulerian fluid velocity,����, ��
�, ���)�,is the center coordinates 
of the fluid parcel at time t with spherical control volume, J
�) ,where as ��
�, ���) in 
K���, ��
�, ���)� is the Lagrangian spatial coordinate center of other fluid parcel at other 
previous time �in the spherical control volume, J
�).  Both may have different spatial locations 
and different times; therefore, they may represent different parcels of fluids even though they 
may have started from the same location, ���.  This description of ��� can be visualized as a 
movement of an inserted tiny drop at ���of colored fluid with the same density as the rest of the 
fluid, at first the tiny drop is concentrated in a very small space and then it moves with the 
currents as time passes. The kernel,L
�, �) = 
@
�AB)CD − 1), is the kernel operator which is also 
a transfer function of time, and the Laplacian operator which “operates” on the input vector 

function 
%E��B,��
B,���)�

%B . The kernel operator acts as a momentum averaging and diffusion effect. 

The vector function K���, ��
�, ���)�,is given by (Eq. 7) a Newton potential of the external 
forces and pressure gradient divided by constant density, 4� ,  within the spherical control 
volumeJ
�), centered at coordinate,��
�, ���). 
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K���, ��
�, ���)� = ∭ N %
%O� 52
P�) + 0
O�)

/� 6Q A.
RST∑ 
�U
B,���)AOUU )V

1O
CW
B)   + X���, ��
�, ���)�

 (7) 
The vector function K���, ��
�, ���)�is not unique since adding any arbitrary vector function, 
X���, ��
�, ���)�, with the property that it’s partial time derivative satisfies the Laplace equation, 

will also be a solution since Δ %
%� X� = 0.   Note that �P = �P.�PY�PZ in (Eqs. 7& 9) are the sides 

of the differential volume (cube). The non-unique Duhamel solution to the incompressible null 
Euler equations for all times, � ≥ 0, is given by (Eq. 8). 

>� !"#���, ��
�, ���)� = �� !"#���, ��
�, ���)� − ��� = − ? \
� − �)Δ�HI %E�]^_`a�B,��
B,���)�
%B b ���

F (8) 

The vector functionK� !"#�
�, 	�) is given by (Eq. 9) below. 
K� !"#���, ��
�, ���)� =
∭ %

%O� 52
P�) + 0
O�)
/� 6 A.

RST∑ 
�U
B,���)AOUU )V
�PW
B) + X� !"#���, ��
�, ���)�                               (9) 

The vector function K� !"#���, ��
�, ���)� is not unique since adding any arbitrary vector 
function, X� !"#���, ��
�, ���)�,  with the property that its partial time derivative satisfies the 

Laplace equation, will also be a solution since Δ�HI %
%B X� !"#� = 0. 

Sections 4 and 5 will discuss whether the kernel operator can zero out the vector function 
%E��B,��
B,���)�

%B , and meaning of the kernel operating on vector function 
%E��B,��
B,���)�

%B , 

respectively. 
 
In Appendix A, the Duhamel’s solution is shown to have the property to zero out the nonlinear 
time dependent part of the material or field derivative operator. 

>���, ��
�, ���)� = ����, ��
�, ���)� − ��� = − c 
@
�AB)CD − 1) �K���, ��
�, ���)�
�� ��    �

F
 

That is >���, ��
�, ���)�  satisfies the following equation, which shows fluid velocity 

vector>(��, ��
�, ���)� is in the null space of matrix
%d���,��
�,���)�

%�)  along a streamline. 

7 >(��, ��
�, ���)� �>���, ��
�, ���)�
�	(( = 0 

See Section 2, Section 3, and Appendix A for a direct proof and more details on the proof. The 
Duhamel’s solutions do not meet the criteria of Clay millennium prize [11] due to its finite 
duration of the solution’s validity in time and not treating the nonlinear terms adequately (i.e. not 
zero them out), whereas the Clay prize requires a full Navier-Stokes solution with finite energy 
for all time [11].  Although, we hope the Duhamel’s solution might lead to the full nonlinear 
solution to the Navier-Stokes incompressible equations or at least a better understanding of what 
is required to solve these equations. 
   There have been many claims to solve the incompressible Navier-Stokes equation, since they 
are too many space won’t permit their inclusion in this article3.  Others have claimed to obtain the 

                                                        
3Note: I am not claiming a general solution, but a specialized solution achieved when the Navier-Stokes 
equations have zero initial conditions for the flow field, the pressure gradient, and the external force. They 
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first integral of the incompressible Navier-Stokes equation (for example [2,6]).  Scholle et al. [2] 
wrote the first integral of the Navier-Stokes in terms of a tensor potential method.  The tensor 
potential method was used to obtain the first integral of Navier-Stokes equations is based on the 
use of classical Maxwell electromagnetics techniques. The highlight of this method is to change 
the Navier-Stoke PDE to a linear diffusion non-homogeneous equation.  Unfortunately, in page 6, 
equation 27 (1st below),the tensor potential depends on the fluid velocities, which are supposed to 
be given as curl of a vector potential,�� = e�(��(Ψ� , but this nonlinearity of the equation is 
ignored in page 7 second paragraph as the equation is treated as non-homogeneous linear 
diffusive equation in equation 28 (2ndbelow). (Notice: Below U is the external force potential 
used in [2], and Einstein summation convention is active for only the following two equations 
since Scholle et al. used it in [2]). 4���( + 
3 + >)g�( = −����hi�( →k���#k�#1 4
e�(��(Ψ�)
e(l��lΨ�) + 
3 + >)g�(= −����hi�(
4, e�(�Ψ�e(l�Ψ�, 3, >) 
 4��Ψ� − m����Ψ� = −e��"���lhil" →k���#k�#1 4��Ψ� − m����Ψ�= −e��"���lhil"
4, e�(��(Ψ�e(l��lΨ�, 3, >) 
 
These equations are a nonlinear diffusion partial differential equation and there is no reduction of 
the (quadratic)nonlinearity as claimed in page 7 due to e�(��(Ψ�e(l��lΨ� input argument of hil" . This problem can be resolved by the assumption of zero initial conditions, since the 
neglecting of these nonlinear terms in the null Navier-Stokes is allowed as shown in Appendix A. 
Yet, an additional statement needs to be made in reference to variational principles involving the 
Navier-Stokes equations found in Section C Self-Adjoint form of [2] in the first paragraph which 
needs to be clarified: 

"In terms of the latter, it was Millikan who showed the non-existence of a 
Lagrangian, in terms of the velocity �� , the pressure p and their first order 
derivatives, that would enable the NS equations to be written as Euler-Lagrange 
equations.” 

This statement gives the impression of authority but obviously, Millikan paper is of a steady state 
nature and is an incorrect predictor because the incompressible Navier-Stokes equations has 
already been written in Euler-Lagrangian form [5], and the Bernoulli Principle for incompressible 
viscous fluids (i.e. first Navier-Stokes momentum equation integral) was obtain in an insight in 
[5], and mathematical proven in [6].  Other than the above comments, the article [2] by Scholle et 
al. gives excellent examples and illustrations on how to solve the Navier-Stokes equations 
numerically exactly with particular boundary conditions. 
 
2. The null Navier-Stokes equations 
In this section, most equations will not be numbered since every equation follows from the 
previous in a logical way, and almost every step of the proof will be provided so anyone with the 
understanding of calculus, Laplace transform, and some knowledge of the Dirac delta function 
(see reference [7]) will easily follow these steps. 
 

                                                                                                                                                                     
are many claims of solving the Navier-Stokes equations, and it is amazing that not a single one of them will 
correctly test the solution into the Navier-Stokes equations to see that it does indeed satisfy the Navier-
Stokes equations.  I do recommend seeing the other claimed solutions in the literature.  
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The divergence of the incompressible fluid velocity is given as (Eq. 1), 

7 �����, ��
�, ���)�
�	�� = 0 

 
By setting time to zero, we obtain the divergence of the initial fluid velocity, 

7 ���
0, ���)
�	�� = 7 �����	�� = 0 

Subtracting the bottom equation from the top, results in 

7 �
�� − ���)
�	�� = 0 

Define >� = �� − ��� so the initial conditions are null, >�|��F = ��� − ��� = 0.    The 
divergence equation for the null initial conditions fluid velocity is 

∑ %d�
%��� = 0     (10) 

The incompressible Navier-Stokes momentum equations are given by (Eq. 2)  ����� + 7 �(
����	(( − +∆�� = −
 �2

�	� + 1
4�

�3
�	�) 

In particular if we apply to the Navier-Stokes momentum equation to initial conditions, but using 
the same flow field �( in the material derivative, we obtain ������ + 7 ��(

�����	(( − +∆��� = −
�2��	� + 1
4�

�3��	�) 
Subtracting both sets of equations4, after making some algebraic manipulation, the added cross 
terms below keeps the equation balanced,  �
�� − ���)

�� + 7 
�( − ��() �
�� − ���)
�	(( + 7 
��(

����	(( + �(
�����	( ) − 2 7 
��(

�����	(( )
− +∆
�� − ���) = − p �2

�	� + 1
4�

�3
�	�q + 
�2��	� + 1

4�
�3��	�) 

Neglect the terms,∑ 
��( %!�%�)( + �( %!��%�) ) − 2 ∑ 
��( %!��%�)( ), in order to simplify the equations.  

Define the null Navier-Stokes equation as the Navier-Stokes equations with null initial conditions 
as shown below in (Eq. 11). %d�

%� + ∑ >( %d�
%�)( − +∆>� = − 5 %-

%�� + .
/�

%0
%��6 + 
%-�

%�� + .
/�

%0�
%��)  (11) 

The null Navier-Stokes momentum equation are the incompressible Navier-Stokes equations 
if��� ≡ 0, hr� 3�, 2�are constantsor zero.  The null Navier- Stokes equations are given as 

• Fluid velocity null initial conditions 
>��0, ��
0, ���)� = 0 

• Incompressibility of the fluid 

7 �>���, ��
�, ���)�
�	�� = 0 

• Null Navier-Stokes Momentum Equations 

                                                        
4Serrin employed a similar difference of Navier-Stokes equations in Section 72 Uniqueness of 
viscous flows page 251 [1]. 
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�>���, ��
�, ���)�
�� + 7 >(��, ��
�, ���)� �>���, ��
�, ���)�

�	(( − +∆>���, ��
�, ���)�
= − s �2t

�	� + 1
4�

�3i
�	�u 

 
Where>���, ��
�, ���)� = ����, ��
�, ���)� − ��� , 2t = 2���
�, ���)� − 2� and 3i =
3���
�, ���)� − 3� . 
 
3.0 The Duhamel’s solutions for the null equations of incompressible fluids 
Two theorems and a lemma, will prove the Duhamel’s solutions do indeed, solves the null 
Navier-Stokes &null Euler equations with the understanding the nonlinear time dependent terms 
are nulled out for incompressible fluids, although, at the expense of practical applications.   This 
article shows a clear path of how the solution is obtained via Laplace transform of the null 
Navier-Stokes equations. Therefore, the null equations resemble the incompressible Navier-
Stokes equations with zero initial conditions and the understanding the nonlinear time dependent 
terms are nulled out for incompressible fluids.  
 
Theorem 1. Duhamel’s solution of the incompressible null Navier-Stokes equations  
If the Duhamel’s formula is defined as the following convolution5 integral 

>���, ��
�, ���)� = ����, ��
�, ���)� − ��� = − c 
@
�AB)CD − 1) �K���, ��
�, ���)�
�� ��    �

F
 

then modified Duhamel’s formula solves the null incompressible Navier-Stokes equations (Eq. 10 
and 11) and remain valid solutions for time, t, in the following approximated finite time 

interval [0, wV
Zx) . The vector function K���, ��
�, ���)�are not unique since adding any arbitrary 

vector function, X���, ��
�, ���)�, with the property that it’s partial time derivative satisfies the 

Laplace equation, will also be a solution since Δ %
%� X� = 0. 

K���, ��
�, ���)�
= y z �

�P� p2
P�) + 3
P�)
4� q{ −1

4}T∑ 
��
�, ���) − P�� )Y
�P
νW
B)

  
+ X���, ��
�, ���)� 

And�P = �P.�PY�PZare the sides of the differential cube volume.Additionally, the spatial vector 
argument of the flow field,��
�, ���), is the Lagrangian coordinates of the fluid parcel’s center at 
time,�,within an arbitrary sized spherical control volume, J
�), at fixed time, �. 

                                                        
5 The solution represents a time convolution of a volume integral of a fluid parcel of 
volume, J
�),  with time Kernel operator 
@
�AB)CD − 1).   But the alternative representation due 
to the convolution theorem may not provide an easy way to verify the solution to the null Navier-
Stokes equations (probably will need integration by parts, etc.), therefore the kernel will be 
treated as a function of two variables, L
�, �) = 
@
�AB)CD − 1), rather than a function of a single 
variable, 
� − �). 
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Proof of Theorem 1. Duhamel’s solution of the incompressible null Navier-Stokes equations  
Part 0: Set up, finding Duhamel’s solution via Laplace Transforms 
The null Navier-Stokes equations solution will hopefully resemble the full Navier-Stokes 
equation solution.  The Navier-Stokes equation for the null initial conditions for the fluid velocity 
is �>��� + 7 >(

�>��	(( − +∆>� = − p�2
�	� + 1

4�
�3
�	�q + p�2��	� + 1

4�
�3��	�q 

Notice, now at time zero, both sides of the equal sign are null or zero.  Treat the +∆ operator as a 
constant as Oliver Heaviside would have done.   Given the solution satisfies this requirement, 
take the Laplace transform to obtain, 

c @A���
F

�>��� �� + c @A���
F

7 >(
�>��	(( �� − c @A���

F
+∆>���

= c @A��[�
F

− p�2
�	� + 1

4�
�3
�	�q + 
�2��	� + 1

4�
�3��	�)]�� 

where the Laplace transforms are given by, 

• ? @A���
F

%d�
%� �� = �>��With null initial conditions 

• ? @A���
F ∑ >( %d�

%�)( �� = ∑ %
%�) ? @A��>(>��

F �� =( ∑ .
YS�

%
%�) ? >�(
� − �, ��
� −����

�A��(
�, ���)) >��  
�, ��
�, ���))�� 

• − ? @A���
F +∆>��� = −+∆ ? @A���

F >��� = −+∆>�� 
• − ? @A���

F 5 %-
%�� + .

/�
%0
%��6 �� = −
 %�

%�� + .
/�

%�
%��) 

• ? @A���
F 
%-�%�� + .

/�
%0�%��)�� = .

� 
%-�%�� + .
/�

%0�%��) 

 
where 

• − ? @A���
F

%-
%�� �� = − %

%�� ? @A���
F 2�� = − %�

%�� 

• − ? @A�� .
/�

�
F

%0
%�� �� = − .

/�
%

%�� ? @A���
F 3�� = − .

/�
%�
%�� 

 
Therefore, we have a nonlinear integral partial differential equation with respect to the Eulerian 
components in (Eq. 12).   Solving this equation and inverting will provide the methods to solve 
the incompressible Navier-Stokes momentum equation (Eq. 2)6. 


� − +∆)>�� +  7 1
2}�

�
�	( c >�(�� − �, ��
� − �, ���)�>����, ��
�, ���)���

����

�A��(  

= − .
� {� 5 %�

%�� + .
/�

%�
%��6 − 5%-�

%�� + .
/�

%0�
%��6}                                                                         (12) 

                                                        
6 The complex convolution 

.
YS� ? >�(
� − �, ��
� − �, ���)) >��  
�, ��
�, ���))������

�A��  can be 

evaluated with the help of the Bromwich contour (not shown) and the complex residue theorem 
using perturbation or asymptotic methods[8]. 
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To simplify this equation even further we require the solution, >( ≠ 0, and 
%d�
%�) ≠ 0, to satisfy 

∑ >( %d�
%�)( = 0, i.e. >( is in the null space of 

%d�
%�)(see Appendix A for proof.) 

7 >(
�>��	(( = 0 →�� 7 1

2}�
�

�	( c >�(
� − �, ��
� − �, ���)) >��  
�, ��
�, ���))��
����

�A��( = 0. 
Thus,  


� − +∆)>�� = − 1
� 1{� p ��

�	� + 1
4�

��
�	�q − p�2��	� + 1

4�
�3��	�q} 

 

Dividing by 
� − +∆) and multiplying by 1 5= x∆
x∆6. 

>�� = − +∆
�
� − +∆)

1
+∆ {� p ��

�	� + 1
4�

��
�	�q − p�2��	� + 1

4�
�3��	�q} 

 

Notice the Laplace transform of the exponential operator @�CDis 
.


�AxD).  
>�� = − +∆

�
� − +∆) {� 1
+∆ p ��

�	� + 1
4�

��
�	�q − 1

+∆ p�2��	� + 1
4�

�3��	� q 

 
The Laplace transform of the kernel operator is factored out by partial fractions below. +∆

�
� − +∆) = 
 1

� − +∆) − 1

�) 

Plugging the expansion in 

>����, ��
�, ���)� = −
 1

� − +∆) − 1

�){� 1
+∆ p ��

�	� + 1
4�

��
�	�q − 1

+∆ p�2��	� + 1
4�

�3��	� q} 
Inverting, using the convolution theorem, to obtain, now complex variable s is a partial time 
derivative, to easily obtain,  

>���, ��
�, ���)� = ����, ��
�, ���)� − ��� = − c
@
�AB)x∆
�

F
− 1) �

�� { 1
+∆ p �2

�	� + 1
4�

�3
�	�q}�� 

Or 

����, ��
�, ���)� = ��� − c
@
�AB)x∆
�

F
− 1) �K���, ��
�, ���)�

�� �� 

Where, 

K���, ��
�, ���)� = 1
νΔ z �

�	� p2 + 3
4�q{ = 1

νΔ ����
�, ���)� = ���, ��
�, ���)� 

The meaning of the inverse Laplacian operator is the well-known Newton’s potential integral 
operator, ���, ��
�, ���)�, as Professor Terrence Tao pointed out in equation 15 of  [3] which has 
been modified to integrate only over the moving fluid parcel or moving fluid volume, J
�), with 
Lagrangian coordinate center, ��
�, ���), at time �,  rather than through all three dimensional 
space, ℝZ, which would cause a cancellation of the terms since, ℝZ, is independent of time and 
the origin is arbitrary.  
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The moving volume or fluid parcel depends on a dummy integration time variable, �, but the 
spatial coordinates, P�, are the dummy integration coordinate points inside the volume, J
�), with 
center at ��
�, ���) as shown in (Eq. 13).   

���, ��
�, ���)� = .
CD ����
�, ���)� = ∭ �
P�) A.

RST∑ 
�U
B,��U)AOUU )VW
B)
1O
C  (13) 

Where for simplicity and space consideration, �P = �P.�PY�PZ are the sides of the differential 
cube volume.   

����, ��
�, ���)� = ��� − c 
@
�AB)CD − 1) �K���, ��
�, ���)�
�� ��    �

F
 

Thus, 
.

CD is the Newtonian potential given in [3] with some minor modifications already 

discussed.  The application of (Eq. 13) to set ����
�, ���)� to 
%

%�� 52 + 0
/�6 gives rise to 

K���, ��
�, ���)� (i.e. the potential P).   
K���, ��
�, ���)�

= y z �
�P� p2
P�) + 3
P�)

4� q{ −1
4}T∑ 
��
�, ���) − P�� )Y

�P
νW
B)

  
+ X���, ��
�, ���)� 

The vector function K���, ��
�, ���)� is not unique since adding any arbitrary vector function, 

X� ��, ��
�, ���)�, with the property that its partial time derivative satisfies the Laplace equation, 

will also be a solution since Δ�HI %
%� X� = 0.   

 
Although, the kernel of the solution can be obtained via Laplace transforms, there are many other 
representations that could have been chosen.  Alternatives kernels could have been obtained such 

as different products of 1 = �
� = √�V

√�V = √��
√�� , @��., 

+∆
�
� − +∆) � 1

+∆ = +∆
√�V 
� − +∆) √�V 1

+∆ = +∆
√�� 
� − +∆) √�� 1

+∆ = 1
�Y 5 .

x∆ − .
�6 � 1

+∆  @��. 
The Inverse Laplace Transform (ILT) of these operators is shown below by use of fractional 
calculus techniques [9] and tables found in [8].   These operator kernels are quite complicated and 

will not be pursued further other than the simplest one below (Note that 
.
∆ is the Newton potential 

operator [3]). 

p 1

� − +∆) − 1

�q 
 �
+∆ ����
�, ���)� − 1

+∆ �
���)) →��� c ��
@
�AB)x∆
�

F
− 1) �

�� { 1
+∆ ����
�, ���)�} 

Bessel representation, kernel operator, is intriguing where J1 is a Bessel function order 1 found in 
formula 18, pg. 244 of [8]. Recall ∆ is the Laplacian operator. 
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1
�Y 5 .

x∆ − .
�6 
 �

+∆ ����
�, ���)�

− 1
+∆ �
���)) →��� √+∆� c ��

�� �.
2��+∆�
�

F
)@�x∆� �

��  { 1
+∆ ����
�, ���)�}; 

The fractional integral and derivative of ½ order [9] representation, kernel operator. 

+∆
√�V 
� − +∆) √�V 1

+∆ ����
�, ���)� →��� +∆ c ��@
�AB)x∆
�}
� − �)

�

F
�

�� c ��
�}
� − �)

B

F
{ 1
+∆ ����
�, ���)�} 

And fractional integral of 1/3 order convolve with a fractional derivative of 1/3 order [9] 
representation, kernel operator. 

+∆
√�� 
� − +∆) √�� 1

+∆ ����
�, ���)� →��� +∆
Γ
.

Z) c ��
� − �)�
�A.@
�AB)x∆

�

F
�

�� c ��
Γ
.

Z)
B

F

�

− �)�
�A.{ 1

+∆ ����
�, ���)�}. 
The first and simplest kernel was selected since it would be easier to show it satisfies the null 
Navier-Stokes equations.  The kernel contains a positive exponential Laplacian operator; 
therefore, it will be referred as the Laplacian exponential operator. We will derive some 
properties of this exponential operator using the Taylor series representation.  
 
The infinite series represents the Taylor series of the exponential operator, @�CD, inside the kernel 
is given as 

@�CD = 7 1
Γ
� + 1) ��ν�Δ�

�

��F
 

The Laplace transform of the exponential operator @�CDis 
.


�AxD) = .
�

.
5.A��

  6.  The ratio 
.

5.A��
  6 can 

be expanded as a series of 
xD
¡  using the geometric series representation as long as ¢xD

¡ ¢ <  1. The 

Heaviside integral operator, ¤ = 1¥�
1�¥� , �� �ℎ@ §h3¨h�@ ©rª@«�@ ¬� .

� .   If Heaviside integral 

operator, ¤, and the Laplacian operator need to satisfy the following inequality |+¤Δ| < 1, then 

the inequality |¤| < .x|D| means the solution representation is only valid for time periods ¤ =
1¥�1�¥� 1 = ? �� 1�F = � < .x|D| ≅ wVZx.   Where 

.x|D|was modeled using Newton’s potential7 volume 

integral to be physically approximately proportional to spherical surface area of an equivalent 

spherical volume of the fluid due to the simple pole at 1 of 
.5.A��  6.   Therefore, the trial solution is 

valid for finite times, � ®  [0, wVZx) .  So, for R= 1 m, ν for 20 C³  water~10A¹ l� Y ;  .C|D| ≈ 90 ℎ¬�«�, for R=10 m, then the time validity is 100 times greater ~ 9,000 hours > 1 year by 
using 1 significant digit in the calculation.  This does not represent a blowout of the solution, but 
simply the accuracy of the solution goes away if time is beyond the specified limit. 

                                                        
7 .C|D| = .RSC | ∭ A.w �J|�0¼#�# ≈ .RS .Cw RSw�Z = wVZx  �. @. ª¬¨�½@ ¬� h �3ℎ@«@ ¾��ℎ h �¬r��hr� «h����, ¿;  
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Additionally, it is easily seen the Laplacian operator and the exponential operator commute,  νΔ@�CD = @�CDνΔ 

Thus, let time-spatial function �� = ����, ��
�, ���)�, be applied an operator as follows 

νΔ@�CD�� = νΔ 7 1Γ
� + 1) ��ν�Δ���
�

��F= νΔ p�� + �.ν.Δ.�� + 12 �YνYΔY�� + ⋯ + 1Γ
� + 1) ��ν�Δ��� + ⋯ q
= 
νΔ�� + �.νYΔY�� + 12 �YνZΔZ�� + ⋯ + 1Γ
� + 1) ��ν��.Δ��.�� + ⋯ )
= p1 + �.ν.Δ. + 12 �YνYΔY + ⋯ + 1Γ
� + 1) ��ν�Δ� + ⋯ q νΔ�� = @�CDνΔ�� 

Using the same technique with the material derivative operators  ��� 
@�CD��) = ��� 
@�CD)�� + @�CD ��� �� 

since the Laplacian operator, Δ, has no time dependence, i.e. a constant in time. ��� 
@�CD) = ��� 7 1Γ
� + 1) ��ν�Δ��
��F = ��� p1 +  �.ν.Δ. + 12 �YνYΔY + ⋯ + 1Γ
� + 1) ��ν�Δ� + ⋯ q
= 
0 + ν.Δ. + �.νYΔY + ⋯ + 1Γ
Á) ��A.ν�Δ� + ⋯ )
= 
1 + �.ν.Δ. + 12 �YνYΔY + ⋯ + 1Γ
� + 1) ��ν�Δ� + ⋯ )νΔ = @�CDνΔ 

Using the Leibniz’s rule for differentiation [10], the Laplacian operator,Δ�HI, can commute with the 

time integral, ? L
�, �)��
�, ��
�, ���))���F  for any function ��
�, ��
�, ���)) and any kernel L
�, �). 

Δ�HI c L
�, �)����, ��
�, ���)��� = Δ�HILimit�→��
F 7 L
�, ��)����� , ��
�, ���)��

��F 
���. − ��) 
Laplacian Δ�HI operator commutes with the limit (it does not depend on n or time) and finite series 
of n 

Δ�HI c L
�, �)����, ��
�, ���)��� = Limit�→��
F 7 L
�, ��)Δ�HI����� , ��
�, ���)��

��F 
���. − ��) 
Taking the limit as n goes to infinity shows the Laplacian operator commutes 

Δ�HI c L
�, �)��
�, ��
�, ���))���
F = c L
�, �)Δ�HI��
�, ��
�, ���))���

F . 
We need also to review the Leibniz rule [10] for the field or material derivative operating on a 
time integral on the variable time t. (I forgot to include this property in examples section of [6]). 
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��� c L
�, �)����, ��
�, ���)��� = Limit¼→F 1h 
c L
� + ℎ, �)����, ��
�, ���)�����¼
F

�
F

− c L
�, �)����, ��
�, ���)���)�
F  

Notice, the definition of the limit is on the variable time t only.  In order to evaluate this limit add 
0. 

Limit¼→F 1h 
c L
� + ℎ, �)����, ��
�, ���)�����¼
F

− c L
� + ℎ, �)����, ��
�, ���)���)�
F

 

+  Limit¼→F 1h 
c L
� + ℎ, �)����, ��
�, ���)����
F − c L
�, �)����, ��
�, ���)���)�

F  

This simplifies to 

Limit¼→F 1h 
c L
� + ℎ, �)����, ��
�, ���)�����¼
F − c L
� + ℎ, �)����, ��
�, ���)���)�

F  

+ c Limit¼→F L
� + ℎ, �) − L
�, �)ℎ ����, ��
�, ���)����
F

 

Thus, using l’Hospital’s rule [10] on the first limit, and the definition of the partial time derivative 
[10] on the second limit to obtain (Eq. 14) 11� ? L
�, �)����, ��
�, ���)��� =�F L
�, �)����, ��
�, ���)� + ? %Æ
�,B)%� ����, ��
�, ���)����F     (14) 

Notice if there is no explicit time dependence of variable t in the integrand kernel, then 
%Æ
�,B)%� =0, as expected, this was used in reference [6] withL
�, �) = 1, but not explicitly stated.   

In particular if the Kernel, L
�, �), is given as 
@
�AB)x∆ − 1) then  L
�, �) = 0 and 
%Æ
�,B)%� =@
�AB)x∆+∆ ��� c
@
�AB)x∆ − 1)����, ��
�, ���)��� =�

F

@
F)x∆ − 1)����, ��
�, ���)�

+ c @
�AB)x∆+∆����, ��
�, ���)����
F = c @
�AB)x∆+∆����, ��
�, ���)����

F  

 
Part 1. Proof of (Eq. 1): Divergence of the Duhamel solution flow field is incompressible (Eq. 10) 

Let Ç
P�) = 2
P�) + 0
O�)/� , then  >���, ��
�, ���)� = ����, ��
�, ���)� − ���
= − c 
@
�AB)CD − 1) ��� [ y ��P� Ç
P�) −1

4}T∑ 
��
�, ���) − P�� )YW
B)
�Pν ]��   �

F  

The divergence of the equation is given by 
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7 �>��	�� = 7 ����	� − �����	��=   − 7 ��	�� c 
@
�AB)CD�
F

− 1){ ��� [ y ��P� Ç
P�) −1
4}T∑ 
��
�, ���) − P�� )YW
B)

�Pν ]}��   = 0 

 
It is well known that the divergence of the initial field must be zero, [by setting t=0 in (Eq. 1)]. 7 �����	�� = 0 

Thus, 

− c 
@
�AB)CD − 1) 7 ��	�� { ��� [ y ��P� Ç
P�) −1
4}T∑ 
��
�, ���) − P�� )YW
B)

�Pν ]}��   �
F = 0 

Thus, notice the partials derivative operators commute, thus within the integrand curly brackets 

7 ��	��
��� y ��P� Ç
P�) −1

4}T∑ 
��
�, ���) − P�� )YW
B)
�Pν

= ��� 7 ��	�� y ��P� Ç
P�) −1
4}T∑ 
��
�, ���) − P�� )YW
B)

�Pν  

Thus, by integration by parts of the volume integral,   

7 ��	�� y ��P� Ç
P�) −1
4}T∑ 
��
�, ���) − P�� )YW
B)

�Pν
= È Ç
P�) 7 ��	��

��P�
−1

4}T∑ 
��
�, ���) − P�� )Y
�ÉνÊ
B)

− y Ç
P�) 7 ��	��
��P�

−1
4}T∑ 
��
�, ���) − P�� )YW
B)

�Pν  

Notice, ∆OHI= ∑ %V%O�V�  
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7 ��	��
��P�

−1
4}T∑ 
��
�, ���) − P�� )Y = − 7 �Y�P�Y�

−1
4}T∑ 
��
�, ���) − P�� )Y

= −∆OHI −1
4}T∑ 
��
�, ���) − P�� )Y 

Thus,
%%�� ∭ %%O� Ç
P�) A.

RST∑ 
�U
B,��U)AOUU )VW
B) 1OC =
− ∯ Ç
P�) ∑ %V%O�V� Ì A.

RST∑ 
�U
B,��U)AOUU )VÍ 1ÊCÊ
B) + ∭ Ç
P�) ∑ %V%O�V� { A.
RST∑ 
�U
B,��U)AOUU )VW
B) } 1OC  

 
Recall, ��
�, ���) is a center Lagrangian coordinate of the finite spherical volume, J 
�).As time 
flows, the Lagrangian fluid parcels flow along the path-lines and cross the stream lines as time � 
increases. To see how both Eulerian and Lagrangian coordinates and velocities relate to each 
other please refer to [6] in Section 3.3.Also, it is well known [7] that the Laplacian of A.
RST∑ 
�U
B,��U)AOUU )V becomes a Dirac delta function.Since the control volume size is arbitrary; 

therefore we can shrink the control volume8 to JÎ
�) ≪ 1where epsilon is the radius of the sphere, 
during the evaluation of the volume integral of the delta function as spatial average specified in 
equation 16 of reference [7]. Ð�9 J 
�)→ JÎ
�) ¾��ℎ Ñ¬�ℎ �¬r�«¬¨ ª¬¨�½@� ℎhª@ §hÒ«hrÒ�hr �@r�@« ��
�, ���) h� �ℎ@ ¨�½�� e
→ 0, �ℎ@r ΔOHI ÓÔ

Õ −1
4}T∑ 
��
�, ���) − P�� )YÖ×

Ø → gZ
��
�, ���) − P�)g�,�Z = gZ
��
�, ���) − P�). 
The Lagrangian coordinate center for J
�) ¬« JÎ
�) is ��
�, ���), since they both are co-centered 
spheres, thus, the Lagrangian coordinate center, ��
�, ���),  is syphon off to yield a time 
dependent Dirac delta function. 

                                                        
8See section 3 of reference 7, which suggest a novel definition of the Laplacian of 1/r using the 

spatial average volume, 
RSZ eZ, concept of the Laplacian where epsilon is the radius of the arbitrary 

small sized volume sphere of fluid.  Although, the nomenclature for the Laplacian operator in [7] 
is not being followed exactly. Additionally, we will not describe the arguments of the epsilon 
limit; the reader can see it in [7]. 
9See section 3 of [7] for detailed arguments not being reproduced here in this article.  Note, gZ
��
�, ���) − P�)g�,�Z = gZ 
��
�, ���) − P�) = g 
�.
�, ���) − P.)g 
�Y
�, ���) −PY)g 
�Z
�, ���) − PZ) = gZ
:
�, :=) − Ù) is the style used the academic literature such as 

reference [7]. Note, g�,�Z = 
%OU%O�)Z 
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7 �Y�P�Y�
−1

4}T∑ 
��
�, ���) − P�� )Y = ∆OHI −1
4}T∑ 
��
�, ���) − P�� )Y = gZ
��
�, ���) − P�) 

Thus, the original volume integral is given by the equation below, 

7 ��	�� y ��P� Ç
P�) −1
4}T∑ 
��
�, ���) − P�� )YW
B)

�Pν
= − È Ç
P�)gZ
��
�, ���) − P�) �ÉνÊÚ
B) + y Ç
P�)gZ
��
�, ���) − P�)

WÚ
B) } �Pν  

The surface integral does not contribute since the coordinate center of the fluid parcel, 	�
�)  ∉ÉÎ
�), thus gZ
��
�, ���) − P�) = 0 because P�® ÉÎ
�). 
Thus, 

− È Ç
P�)gZ
��
�, ���) − P�) �ÉνÊÚ
B) = 0  
Results in, 

��� 7 ��	�� ÜÝ
ÝÞ y ��P� Ç
P�) −1

4}T∑ 
��
�, ���) − P�� )YW
B)
�Pν ßà

àá

= ��� [ y Ç
P�)gZ
��
�, ���) − P�)WÚ
B) } �Pν ] = 1ν ��� Ç���
�, ���)�
= 1ν ��� 
Ç
��
�, ���))) = 1ν ��� 
2
��
�, ���)) + 3���
�, ���)�4� ) = 0 

Since 2���
�, ���)� and 3���
�, ���)� are not explicit functions of time, �.Therefore, we have 

shown ∑ %%��� %%B ∭ N %%O� 52 + 0/�6Q Ì A.
RST∑ 
�U
B,���)AOUU )VÍW
�) 1OC = 0 as expected, and thus, 

c 
@
�AB)CD − 1) 7 ��	��
��� [ y ��P� s2
P�) + 3
P�)4� u −1

4}T∑ 
��
�, ���) − P�� )YW
B)
�Pν �� ]  �

F
= 0 

Thus, the divergence of the fluid velocity is zero so the fluid is incompressible, satisfying (Eq. 

10), ∑ %d�
�,��
B,���))%��� = 0 and (Eq. 1) ∑ %!�
�,��
B,���))%��� = 0. 

 
Part 2: Proof the Duhamel solution satisfies the null Navier-Stokes momentum equations (Eq.11) 
The incompressible null Navier-Stokes momentum equations is given by (Eq. 11) and repeated 
below. 
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�>��� + 7 >( �>��	(( − +∆>� = p ��� − +Δq >���, ��
�, ���)�
= − p �2�	� + 14�

�3�	�q + 
�2��	� + 14�
�3��	�) 

where 

>� = − c 
@
�AB)CD − 1) �K��� ��    �
F  

Appendix A demonstrates the nonlinear terms add up to zero, ∑ >( %d�%�)( = 0 for >� = − ? 
@
�AB)CD − 1) %E�%B �� �F .   

Therefore, the equation can be represented as (including the null time dependent nonlinear terms) 
 p ��� − +Δq >���, ��
�, ���)� = − p �2�	� + 14�

�3�	�q + 
�2��	� + 14�
�3��	�) 

Plugging in >� = − ? 
@
�AB)CD − 1) %E�%B ��    �F  


 ��� − +∆) c 
@
�AB)CD − 1) �K��� ���
F =  − c @
�AB)CDνΔ �K��� �� + c 
@
�AB)CDνΔ − νΔ) �K��� �� = −νΔ c �K��� ���

F
�

F
�

F  

By the Leibniz Rule [10] the material derivative becomes a partial time derivative inside the time 
integral as explained in Part 0 (Eq. 14).   Although, not noticeable here, the solution nulls out the 
nonlinear operator terms since the material derivative becomes a partial time derivative as a result 
of the Leibniz Rule (see Eq. 14 in Part 0 and Appendix A). 
 
Thus, the equation finally simplifies to 

p ��� − +Δq >���, ��
�, ���)� = −νΔ c �K��� ���
F = − p �2�	� + 14�

�3�	�q + 
�2��	� + 14�
�3��	�) 

Need to prove−νΔ ? %E�%B ���F = − %%�� 52 + 0/�6 + %%�� 52� + 0�/�6, via by Lemma 1. 

 
Lemma 1. If Δ is the Laplacian operator of the spatial coordinates, 	�, then we conjecture −νΔ ? %E�%B ���F = − %%�� 52 + 0/�6 + %%�� 52� + 0�/�6. 

Proof: 

GivenK���, ��
�, ���)� = .CD N %%�� 52 + 0/�6Q found in Part 0 above. 

−νΔ c �K��� ���
F = −νΔ c ��� [ 1νΔ z ��	� p2 + 34�q{]�

F
�� 

Integrating both time integrals, where ��
0, ���) = ��� −νΔ 5K���, ��
�, ���)� + â����
�, ���)� − 
K�
0, ���) + â�
0, ���)6
= [−νΔ 1νΔ z ��	� p2 + 34�q{ −â����
�, ���)�]|ã�F�  
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Thus, K���, ��
�, ���)� = N .CD %%�� 52 + 0/�6QB�� , and K�
0, ���) = N .CD %%�� 52 + 0/�6QB�F since 

the arbitrary terms â�, cancel out, because they are on both sides of the equal sign. Thus,  

−νΔ
K���, ��
�, ���)� − K�
0, ���)) = −νΔ z 1νΔ ��	� p2 + 34�q{B�F
�

 

Thus, −νΔ
K���, ��
�, ���)� − K�
0, ���))
= −νΔ y ä ��P� s2
P�) + 3
P�)4� uå

ÓÔ
Õ −1

4}T∑ 
��
�, ���) − P�� )YÖ×
Ø �PνW
�)

+ νΔ y z ��P� p2
P�) + 3
P�)4� q{
ÓÔ
Õ −1

4}T∑ 
��� − P�� )YÖ×
Ø �PνW
F)  

Since Δ = Δ�HI, moving the Laplacian inside the volume integral, −νΔ�HIK���, ��
�, ���)� + νΔ�HIK�
0, ���)
= − y z ��P� p2
P�) + 3
P�)4� q{ νΔ�HI4} ÓÔ

Õ −1
T∑ 
��
�, ���) − P�� )YÖ×

Ø �PνW
�)
+ y z ��P� p2
P�) + 3
P�)4� q{ νΔ�HI4} ÓÔ

Õ −1
T∑ 
��� − P�� )YÖ×

Ø �PνW
F)
 

It is well known [7] that 
DæHHHIRS Ì A.

T∑ 
�U
�,��U)AOUU )VÍ = gZ
��
�, ���) − P�), where ��
�, ���) is the 

Lagrangian coordinate center of the fluid parcel volume (See Part 1, near Eq. 13).   −νΔ�HIK���, ��
�, ���)� + νΔ�HIK�
0, ���)
= − y z ��P� p2
P�) + 3
P�)4� q{ gZ
��
�, ���) − P�)�P

WÚ
�)
+ y z ��P� p2
P�) + 3
P�)4� q{ gZ
��� − P�)�PWÚ
F)  

 
Thus, 

− y z ��P� p2
P�) + 3
P�)4� q{ gZ
��
�, ���) − P�)�PWÚ
�) = − ��	� s2
��
�, ���)) + 3
��
�, ���))4� u 
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and 

y z ��P� p2
P�) + 3
P�)4� q{ gZ
��� − P�)�PWÚ
F) = ��	� p2
���) + 3
���)4� q = ��	� p2� + 3�4�q 

 
Thus, Lemma 1 has been proven to be a correct conjecture, thus 

−νΔ c �K��� ���
F = −νΔ�HIK���, ��
�, ���)� + νΔ�HIK�
0, ���)

= − ��	� s2���
�, ���)� + 3���
�, ���)�4� u + ��	� p2� + 3�4�q 

The null Navier-Stokes momentum equations are satisfied (Eq. 11) above. 

p ��� − +Δq >���, ��
�, ���)� = −νΔ c �K��� ���
F =

= − ��	� s2���
�, ���)� + 3���
�, ���)�4� u + ��	� p2� + 3�4�q 

Thus far, we have thus shown the divergence of the flow field is incompressible (Eq. 1), 
%d�%�� =0, the null Navier-Stokes momentum equations (Eq. 11) have been satisfied although by nulling 

out the nonlinear time dependent terms (see Appendix A). Thus the field velocity which solves 
the null Navier-Stokes equations is given by >���, ��
�, ���)� = ����, ��
�, ���)� − ��� =− ? 
@
�AB)CD − 1) %E��B,��
B,���)�%B ���F and these equations are approximately valid for finite 

times, t, �r ç0, wVZx6.    The vector function K���, ��
�, ���)�  is not uniquely identified since K���, ��
�, ���)�are given within any arbitrary vector function, X���, ��
�, ���)�, which it’s 

partial time derivative satisfies the Laplace equation, Δ %%B X� = 0. K���, ��
�, ���)�
= y z ��P� p2
P�) + 3
P�)4� q{ −1

4}T∑ 
��
�, ���) − P�� )Y
�PνW
B)+ X���, ��
�, ���)� 

Therefore, the solution is not unique, unless we can make the assumption to set all components of X� to zero, to obtain after moving the constant kinematic viscosity outside the volume integral, >���, ��
�, ���)� 

= − c 
@
�AB)CD − 1)ν ��� [ y z ��P� p2
P�) + 3
P�)4� q{ −1
4}T∑ 
��
�, ���) − P�� )Y �PW
B) ]��   �

F  

Setting time to zero yields  >��0, ��
0, ���)� 
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= − c 
@
FAB)CD − 1)ν ��� ÜÝ
ÝÞ y z ��P� p2 + 34�q{ −1

4}T∑ 
��
�, ���) − P�� )Y �P
W
B) ßà

àá �� = 0 F
F  

Therefore, the initial condition is satisfied trivially.  
QED. 
An added benefit of the incompressible null Navier-Stokes solution is to obtain the solution to the 
incompressible null Euler fluid momentum equation by setting the kinematic viscosity to zero as 
shown in the proof of Theorem 2. 
 
Theorem 2.Duhamel’s solution for the incompressible Euler equation 
If the null incompressible Navier-Stokes Duhamel solution where the kinematic viscosity, ν, is set 
to zero via a limit,  >���, ��
�, ���)� 

= − c 
@
�AB)CD − 1)ν ��� [ y z ��P� p2
P�) + 3
P�)4� q{ −1
4}T∑ 
��
�, ���) − P�� )Y �PW
B) ]��   �

F  

Then the solution is given as >� !"#���, ��
�, ���)� = �� !"#���, ��
�, ���)� − ���then a solution10 
of the incompressible null Euler equations for all times, � ≥ 0, is obtained, as >� !"#���, ��
�, ���)� 

= − c
ÜÝ
ÝÞ
� − �)Δ�HI ��� y ��P� p2
P�) + 3
P�)4� q −1

4}T∑ 
��
�, ���) − P�� )Y �P
W
B) ßà

àá ���
F  

where �P = �P.�PY�PZ are the sides of the differential cube volume. 
 
Proof of Theorem 2.Duhamel’s solution for the null incompressible Euler equation 
By taking the limit as the kinematic viscosity goes to zero, ν → 0, in the Duhamel’s solution, >���, ��
�, ���)� 

= − c {§�½��C→F 
@
�AB)CD − 1)ν } ��� [ y ��P� p2
P�)W
B)
�

F
+ 3
P�)4� q −1

4}T∑ 
��
�, ���) − P�� )Y �P]��    
By L’Hospital’s rule [10], differentiating with respect to ν on the numerator and denominator 
yields, 

§�½��C→F 
@
�AB)CD − 1)ν = 
� − �)Δ�HI 
                                                        
10 Obviously the solution is not unique, therefore the additional arbitrary vector functions X� !"#���, ��
�, ���)� terms are neglected or set to zero. 
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Plug in the results of the limit, obtains the desired solution >� !"#���, ��
�, ���)� 

= − c
ÜÝ
ÝÞ
� − �)Δ�HI ��� y ��P� p2
P�) + 3
P�)4� q −1

4}T∑ 
��
�, ���) − P�� )Y �P
W
B) ßà

àá ���
F  

Part 1. Divergence of Euler Flow Field∑ %%�� >� !"#��  

= − c
ÜÝ
ÝÞ
� − �)Δ�HI ��� 7 ��	�� y ��P� p2
P�) + 3
P�)4� q −1

4}T∑ 
��
�, ���) − P�� )Y �P
W
B) ßà

àá ���
F

= 0  
By Theorem 1 Part 1-Proof of (Eq. 1): Divergence of the flow field is incompressible, we proved 

��� 7 ��	�� ÜÝ
ÝÞ 14} y ��P� s2
P�) + 3
P�)4� u −1

4}T∑ 
��
�, ���) − P�� )YW
B) �P
ßà
àá = 0. 

Therefore ∑ %%�� >� !"#�� = 0. 
 
Part 2. The Duhamel’s solution to Null Incompressible Euler Momentum Equation  
Since the solution is given as>� !"#���, 	�
�)� = �� !"#���, 	�
�)� − ��� >� !"#���, ��
�, ���)� 

= − c
ÜÝ
ÝÞ
� − �)Δ�HI ��� y ��P� p2
P�) + 3
P�)4� q −1

4}T∑ 
��
�, ���) − P�� )Y �PW
B) ßà
àá ���

F  

 
The null Euler momentum equation is obtained by setting kinematic viscosity to zero, ν = 0, in 
(Eq. 11) �>� !"#���, ��
�, ���)��� = − ��	� s2���
�, ���)� + 3���
�, ���)�4� u + ��	� p2� + 3�4�q 

Plug in the solution into above equation, �>� !"#���, ��
�, ���)���  

= − ��� c
ÜÝ
ÝÞ
� − �)Δ�HI ��� y ��P� p2
P�) + 3
P�)4� q 14} −1

T∑ 
��
�, ���) − P�� )Y �PW
B) ßà
àá ���

F  

By the Leibniz Rule [10] the material derivative becomes a partial time derivative inside the time 

integral. Since 
%
�AB)%� = 1 
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�>� !"#���, ��
�, ���)��� = − c
ÜÝ
ÝÞ ��� y ��P� p2
P�) + 3
P�)4� q Δ�HI4} −1

T∑ 
��
�, ���) − P�� )Y �P
W
B) ßà

àá ���
F  

From Theorem 1 part 2, 
DæHHHIRS A.

T∑ 
�U
B,��U)AOUU )V = gZ
��
�, ���) − P�). Recall the explanation of 

this fact in Part 1& 2 and see reference [7]. �>� !"#���, ��
�, ���)��� = − c è ��� y ��P� p2 + 34�q gZ
��
�, ���) − P�)�PWÚ
B) é ���
F  

Integration the partial derivative, and recall the arbitrary integration functions cancel out,  �>� !"#���, ��
�, ���)���  

= −[ y ��P� p2 + 34�q gZ
��
�, ���) − P�)�P − y ��P� p2 + 34�q gZ
��� − P�)�P
WÚ
F)WÚ
�) ] 

Using the well known properties of Dirac delta function [7], �>� !"#���, ��
�, ���)��� = − ��	� s2���
�, ���)� + 3���
�, ���)�4� u + ��	� p2� + 3�4�q 

Thus, the null Euler Equation is satisfied.  The solution of the null Euler equation has the validity 

for all time t in ç0, §�½��C→F wVZx6  �. @.   � ∈ [0, ∞).  

QED. 
 
4. Does the convolution kernel, @
�AB)x∆ − 1, makes the function Wk null? 
It’s complicated, although the short answer is no for t > 0.   The Taylor series of the operator 
kernel is given by 

@
�AB)x∆ − 1 = 7 1Γ
� + 1) 
� − �)�ν�Δ��
��F − 1
= 7 1Γ
� + 1) 
� − �)�ν�Δ� =�

��. 

� − �).ν.Δ. + 
� − �)YνYΔY2 + ⋯
+ 1Γ
� + 1) 
� − �)�ν�Δ� + ⋯ ) 

Therefore, >���, ��
�, ���)� = ����, ��
�, ���)� −  ��� = − ? 
@
�AB)x∆�F − 1) %E��B,��
B,���)�%B �� 

Since K���, ��
�, ���)� 

= y z ��P� p2
P�) + 3
P�)4� q{ −1
4}T∑ 
��
�, ���) − P�� )Y

�PνW
B)   + X���, ��
�, ���)� 

Plugging in the Taylor series into the integral 
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>���, ��
�, ���)�
= − c

� − �).ν.Δ. + 
� − �)YνYΔY2 + ⋯ + 1Γ
� + 1) 
� − �)�ν�Δ��

F+ ⋯ ) �K���, ��
�, ���)��� �� 

Note that the X���, ��
�, ���)� will cancel out so it will not be included.   >���, ��
�, ���)�
= − c

� − �).ν.Δ. �K���, ��
�, ���)��� + 
� − �)YνYΔY2 �K���, ��
�, ���)���

�
F+ ⋯ + 1Γ
� + 1) 
� − �)�ν�Δ� �K���, ��
�, ���)��� + ⋯ ) �� 

Interchanging the Laplacian operator with the partial time derivative on a term-by-term basis to 

obtain >���, ��
�, ���)� = − ? 

� − �).ν. %D�E��B,��
B,���)�%B + 
�AB)VCVY %D�D�E��B,��
B,���)�%B +�F⋯ + .ë
��.) 
� − �)�ν� %D�¥�D�E��B,��
B,���)�%B + ⋯ ) �� 

 
Taking the Laplacian inside the volume integral (recall Theorem 1 Part 1 & 2), then the ith terms 
reads (see [7]) 

1Γ
� + 1) 
� − �)�ν� ∂∂τ Δ�A. y z ��P� p2
P�) + 3
P�)4� q{ νΔ�HI4} ÓÔ
Õ −1

T∑ 
��
�, ���) − P�� )YÖ×
Ø �PνW
B)

= 1Γ
� + 1) 
� − �)�ν� ∂∂τ Δ�A. y z ��P� p2
P�) + 3
P�)4� q{ gZ
��
�, ���)
WÚ
�)

− P�)�P = 1Γ
� + 1) 
� − �)�ν� ∂∂τ ��	� Δ�A. îs2
��
�, ���)) + 3
��
�, ���))4� uï 

The first term, i=1, so Δ�A. = 1 1Γ
2) 
� − �).ν. ��	� s ∂∂τ 2
��
�, ���)) + ∂∂τ 3
��
�, ���))4� u = 0 

There is no explicit time dependence for pressure and external potentials.  But the later terms are 
nonzero.  By taking the divergence operator on the Navier-Stokes momentum equations (Eq. 2), ��� 
7 ����	�� ) + 7 ��(�	�

����	( + 7 �( ��	((�,( 
7 ����	�� )
= +Δ 7 ����	�� − Δ s2���
�, ���)� + 3���
�, ���)�4� u 

Since, the fluid is incompressible (Eq. 1) 7 ����	�� = 0 

Thus, relabeling the dummy sum index k to n, 



Javier Rivera 

170 

 

Δ s2���
�, ���)� + 3���
�, ���)�4� u = − 7 ��(�	�
����	(�,(  

For i> 2, the ith term reads 
 1Γ
� + 1) 
� − �)�ν� ∂∂τ ��	� Δ�AYΔ. s2
��
�, ���)) + 3
��
�, ���))4� u

= −1Γ
� + 1) 
� − �)�ν� ∂∂τ ��	� Δ�AY 7 ��(�	�
����	(�,( ≠ 0 

 
Plugging it into the solution, 

>���, ��
�, ���)� = c 7 1Γ
� + 1) 
� − �)�ν� ∂∂τ ��	� Δ�AY 7 ��(�	�
����	(�,( �� ≠�

��Y
�

F
0 

Moving the partials inside the finite, n & j sums, notice we change the component index from i to 
n in the left and right part of the equation, to avoid confusion, 

>���, ��
�, ���)� = c 7 1Γ
� + 1) 
� − �)�ν�Δ�AY 7 �Y���	� { ��(�	�
����	( }�,( ���

��Y
�

F ≠ 0 for t >  0. 
Results in a nonlinear integral equation. >���, ��
�, ���)� = ����, ��
�, ���)� −  ���

= cñ@
�AB)x∆ − 
1 + 
� − �)+∆)ò 1∆Y 7 �Y���	� ä ��(�	�
����	( å�,( ���

F
≠ 0 for t >  0. 

 
5.0 The meaning of the exponential Laplacian operator 
The exponential Laplacian operator, @�D, operating on some function is equivalent to the solution 
of the heat equation with the initial condition being the function, according to Professor Terrence 
Tao in reference [3] in page 39 reads  

“In either ℝZ or ℝZ/§ℤZ, we let @�D for t > 0 be the usual semigroup associated to the 
heat equation �� = Δ�.  On ℝZ this takes the explicit form 

@�D�
�) = 1
4}�)Z/Y c @A|�Aõ|V/R��
ö)�ö
ℝ�  

for � ∈ §�0
ℝZ) for some 1 ≤ 3 ≤ ∞.” 
Remark: A argument which may hold true, is as follows: 
Let �
�, �) = @�D�
�) then �� − Δ� = @�DΔ�
�) − Δ@�D�
�) = @�DΔ�
�) − @�DΔ�
�) = 0 and �
0, �) = @FD�
�) = �
�), so indeed @�D�
�) behaves as if it’s the unique solution of the Heat 
equation, since it solves it.  We will not pursue this connection any further. 
 
6. Conclusion 
In Section 2, the null Navier-Stokes equations was developed from the incompressible Navier-
Stokes equations by subtracting the incompressible Navier-Stokes equations evaluated at the 
initial time, 0, from itself at some future time, t.   
Section 3 consists of finding the solutions to the null Navier-Stokes equations via Laplace 
transform.  Although we checked the Duhamel’s solution indeed satisfies the null Navier-Stokes 
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equations with the understanding the time dependent nonlinear terms are nulled out (see 
Appendix A).  Section 3 contains two theorems and a lemma, which proves the Duhamel’s 
solutions do indeed, solves both Navier-Stokes equations and Euler equations with the 
understanding the time dependent nonlinear terms are nulled out for incompressible fluids.   We 
have shown the Duhamel’s function satisfies the divergence equation for incompressible fluids 
(Eq. 10) and null incompressible Navier-Stokes momentum equations (Eq. 11) for finite times, 

t, �r ç0, wVZx6.  Also the Duhamel’s solution nulls out the nonlinear terms of the null Navier-Stokes 

(see Appendix A) and is given by the following formula, 

>���, ��
�, ���)�  =  ����, ��
�, ���)� − ��� = − c 
@
�AB)CDæHHHI − 1) �K���, ��
�, ���)��� ��    �
F  

where��
�, ���)is the Lagrangian coordinate center of fluid parcel of volume, J
�). 
K���, ��
�, ���)� = y z ��P� p2 + 34�q{ −1

4}T∑ 
��
�, ���) − P�� )Y
�PνW
B) + X���, ��
�, ���)� 

The vector function K���, ��
�, ���)�  is not uniquely identified, since K���, ��
�, ���)� are 
given within any arbitrary vector function, X���, ��
�, ���)�, which it’s partial time derivative 
satisfying the Laplace equation. Therefore, the solution is not unique, unless we can make the 
assumption to set all components of X���, ��
�, ���)� to zero.   Theorem 1 and Lemma 1 shows 
the methodology to prove Duhamel’s solution satisfies both the null divergence equation for 
incompressible fluids and the incompressible null Navier-Stokes momentum equations. Theorem 
2 shows how to obtain the incompressible Euler solution by taking the limit of the kinematic 
viscosity to zero on the Duhamel’s solution.  The Euler solution is given by >� !"#���, ��
�, ���)� = �� !"#���, ��
�, ���)�  −  ���

= − c
ÜÝ
ÝÞ
� − �)Δ�HI ��� y ��P� p2 + 34�q −1

4}T∑ 
��
�, ���) − P�� )Y �P
W
B) ßà

àá ���
F  

The Euler solution is valid for all times, � ≥ 0,where the additional arbitrary vector functions 
terms, X� !"#���, ��
�, ���)�, are neglected or set to zero. 
Due to null initial conditions the field derivative operator in Navier-Stokes momentum equation 
becomes linearized and the remaining linear operator is as Professor Terrence Tao states “the 
usual semigroup associated to the heat equation �� = Δ�” [3].  Therefore, the methods of linear 
partial differential equations such as Laplace transforms worked even though the field derivative 

is a nonlinear operator in terms of the field velocities, i.e. 
11� ����, ��
�, ���)� ≠ 11� ��� +11� >���, ��
�, ���)�, which is why ����, ��
�, ���)� = ��� + >���, ��
�, ���)� does not solve the 

full Navier-Stokes momentum equations.   

Sections 4 showed the kernel operator does not zero out the vector function 
%E��B,��
B,���)�%B . 

Section 5described the meaning of the kernel operating on vector function 
%E��B,��
B,���)�%B  

according to Professor Terence Tao. 

Acknowledgements. The author would like to thank the anonymous reviewers and chief editor of 
APAM for their time and effort spent in reviewing this article. 
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7. Appendix A: Solution has null nonlinear terms, ∑ øù úø;úûùù = ü 

Let >���, ��
�, ���)� = ����, ��
�, ���)� − ��� = − ? 
@
�AB)x∆�F − 1) %E��B,��
B,���)�%B �� where K���, ��
�, ���)� = .x∆ 5 %-%�� + ./�
%0%��6 = ∭ N %%O� 52
P�) + 0
O�)/� 6Q A.

RST∑ 
�U
B,��U)AOUU )V
1OCW
B) . 

By taking the material or field derivative [6] of the nonlinear terms, ��� 7 >(��, ��
�, ���)� �>�
�, ��
�, ���))�	(( = 7 ��� {>(��, ��
�, ���)�} �>�
�, ��
�, ���))�	((+ 7 >(��, ��
�, ���)� ��� �>�
�, ��
�, ���))�	((
= 7 ��� 
− c
@
�AB)x∆�

F − 1) �K(�� ��) ��	( 
( − c
@
�AB)x∆�
F − 1) �K��� ��)

+ 7 
− c
@
�AB)x∆�
F − 1) �K(�� ��) ��� 
− c
@
�AB)x∆�

F − 1) ��	(
�K��� ��)(  

Cancelling the negative signs, and simplifying, by Leibniz rule of differentiation [10] (see Part 0 
Eq. 14) inside the time integral the material derivative becomes the partial time derivative of t, 11� 
? 
@
�AB)x∆�F − 1) %%�)

%E�%B ��) = ? %%� {@
�AB)x∆ − 1}�F %%�)
%E�%B �� = ? @
�AB)x∆+∆ %%�)

%E�%B ���F , 

rearranging the order of partial differentiation and Laplacian operator, 

7 
c @
�AB)x∆ ��� +∆�
F K(��) ��	( 
c
@
�AB)x∆�

F − 1) �K��� ��)(
+ 7 
c
@
�AB)x∆�

F − 1) �K(�� ��) ��	( c @
�AB)x∆ ��� +∆K�
�

F ��( = 0 

since
%%B +∆K� = %%B 5 %-%�� + ./�

%0%��6 = 0and
%%B +∆K( = %%B p %-%�) + ./�

%0%�)q = 0 by proof of Theorem 

1 Part 1 in this article.   Therefore, ∑ >( %d�%�)(  is a constant along the stream line. Thus, assume the 

constant is ý = ∑ >( %d�%�)( ≠ 0 .   But, by setting time to zero, notice>(�0, ��
�, ���)� = 0 .  

Therefore, ý = 0, a contradiction has been obtained, so ∑ >( %d�%�)(  is zero along a streamline. 

Thus, ∑ >( %d�%�)( = 0.   

For t > 0, this does not imply 
%d�%�) = 0, thus 

�>��	( = ��	( 
− c
@
�AB)x∆�
F − 1) �K��� ��) = 
− c
@
�AB)x∆�

F − 1) ��� �K��	( ��) ≠ 0 

Since upon differentiating, 
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��	( K���, ��
�, ���)� = − y z ��P� p2
P�) + 3
P�)4� q{ 
�(
�, ���) − P()
4}
∑ 
��
�, ���) − P�� )Y)�V

�PνW
B)
≠ 0   

For t > 0, since >(  ≠ 0 (See Section 6) and 
%d�%�) ≠ 0, then this implies >( is in the null space of 

matrix 
%d�%�) . 

An alternate method to the demonstration above is shown below field derivative methods found 
in [6] and using the Leibniz rule [10].  
 \∑ >(��, ��
�, ���)� %d���,��
�,���)�%�)( bþ��#1 � ≡
s 11� − ç %%��þ��#1 �HI,!HHI − ç∑ %!�%� %%!�� �þ��#1 �u >���, ��
�, ���)� =  − 11� ? 〖
#〗
�¥�)��A.�
%E�)%B ���F +
� %%� ? 〖〖
#〗
�¥�)��A.�
%E�)%B ��bþ��#1 �HI,!HHI

�F + \∑ %!�%� %%!� ? 〖
#〗
�¥�)��A.�
%E�)%B ���F� bþ��#1 �〗 =
− ? @
�AB)CDνΔ %E�%B ���F + ? @
�AB)CDνΔ %E�%B ���F + 0 ≡ 0. 

 
 
This method does not depend on the streamline assumption, but on the definition of the field 
derivative, therefore this proof is stronger than the previous method. 
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