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1. Introduction

As a generalization of the concept of distributigitices on one hand and the pseudo
complemented lattices on the other, O-distribukitBces are introduced by Varlet [5]. O-
distributive semi lattices arise as a natural galimation of O-distributive lattices.O-
ideals, annihilator ideals and-ideals are special ideals introduced and studie@-i
distributive lattices by many researchers (see 3142 Some properties of 0- ideals in O-
distributive nearlattice and annulets in a distiil® nearattice are studied by [6,7]
respectively. Analogously we have these speciallgdm distributive nearlattice with 0.
Several properties of semi prime ideals in neackdt and their characterizations are
studied by [8]. It is well known that homomorphismd their kernels play an important
role in abstract algebra. In this paper our aintoigliscuss about preservation of the
images and inverse images of these special idéalsdistributive nearlattice under an
epimorphism with a condition that its kernel consaihe smallest element only.

2. Preliminaries

Following are some basic concepts needed in seByeh nearlattice we mean a meet
semilattice together with the property that any glements possessing a common upper
bound have the supremum. This is called as uppend@roperty. A nearlattic8 is
called distributive if for alk,y,z€ S, xA(yvz)=(xAy)V (x A z), provided(y Vv

z) exists. A nearlattices with O is called O-distributive if for alk,y,z € S, with (x A
y)=0=(xAz)andyV z exists implyx A (y vV z) = 0. Of course, every distributive
nearlatticeS with O is O-distributive. A subsédtof a nearlatticeS is called a down set if

x €land fort € S with t < x implyt € I. An ideall in a nearlattices is a non-empty
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subset of5 such that it is down set and whenewer b exists fora, b € [ thenaVv b € I.
An ideal Iof a nearlattices is called is called semi prime ideal if for all, y,z € I, x A
yelandx Ay elimplyx A (yVz) €l providedy V z exists. A non-empty subsitof
S is called afilter it = a, a € F implyt € F and whenevet, b € F thena A b € F. Let
S be a nearlattice with 0. An element is called the pseudo-complement af if
ana*=0andif anx =0 for somex € S, then x < a*. For any non-empty subset
AofS, the setd* = {x € S/x Aa =0, for eacha € A} is called annihilator ofd. An
ideall in S is called dense ifif I* = {0}. An elementx € S is said to be dense if
(x]* = {x}* = {0}. Anideall of S is called anx-ideal if (x]** < I for eachx € I.
Throughout this paper S asSt will denote distributive nearlattices with 0 and
respectively. By a homomorphism (i.e. a nearlattiosmomorphism)we mean a mapping
f:S - 8" satisfying: ()f(aAb)=f(a)Af(b) for all a,beS (i) f(0)=0" and
(i) favb) = f(a)V f(b) wheneveraV b exists. The kernel of is the set{x €
S/f(x) = 0} and we denote it b¥er f.

Lemma2.l If f:S — S"is an epimorphism, then

(i) For any filterF (ideall) of S, f(F)(f(I)) is a filter (Ideal) ofs".

(ii) For any filterF’ (ideall”) of S', f~I(F")(f~1(I")) is a filter (ideal) of.

(iii) Ker fis anideal irs.

Proof. (i) Let F be a filter ofS. To provef(F) = {f(x):x € F} is a filter of S’. Let
p,q € f(F). Thenp = f(x), q = f(y) for somex,y € FandpAq=f(x)Af(y) =
f(xAy), wheree Ay €F asF is a filter of S. ThereforepAq € f(F). Let x' € S,
a' € f(F) such thatx’ = a'. Sincea’' € f(F) we havea' = f(b), for someb € F.
Asx' € §" andf is a surjection, we have = f(a) for somea € S. Thusx’ = a’ implies
f(a) = f(b). Thereforef(avb) = f(a) Vf(b) = f(a). Asb € F, we havea Vb € F.
Hencef (a) € f(F) i.ex’ € f(F) this proves (F) is a filter.

(i) Let F'be a filter ofS’. To provef~(F’) is a filter ofS. Leta,b € f~!(F'). Then
f(a), f(b) € F' andF' being a filter we hav¢(a) A f(b) € F'i.ef(aAb) € F'. Hence
aAb€ fI(F). LetxeSand t € f/(F’) such thatx >t. Therf(x) > f(t). As
t € f7I(F"), we havef(t) € F'. As F' is a filter we getf(x) € F' i.e.x € f~I(F").
Thusf~I(F") is an up- set. Therefofe! (F') is a filter.

(i) Letx,y € Kerf. Then f(x) =f(y)=0". Now f(xVvy)=f(x)Vf(y)=0"Vv
0’ =0'. Thereforex Vy € Kerf.Leta € Kerf andx < a(x € S). Thenf(a) =0’ and
aVx =a. Thereforef(aVv x) = f(a) i.e. f(a) V f(x) = f(a) which impliesf(x) <
f(a) = 0'. Thereforef(x) = 0'provingr € Ker f. HenceKerf is a down set. This
proves thaKerf is an ideal.

3. Epimorphisms and O-ideals
We begin with the following definitions

Definition 3.1. For any filterF of a nearlatticeS with 0, define0(F) ={x €S/ xAf =
0, for somef € F}

Definition 3.2. An ideal I in a nearlatticeS is called a O-ideal if = 0(F) for some
filter F of S.
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Theorem 3.3. Letf: S — S’ be an epimorphisnkKer f = {0}, then we have

(i) £(0(F)) = o(f(F)) for any filterF of S.

(i) O(F) =0(G) if and only if 0(f(F)) =0(f(G)) for any filtersF andG of S.
(i) £77(0CF")) = O(f ! (F") for any filterF'of S'.

Proof: (i) LetFbe a filter ofS. x € f(O(F)) =>x = f(t) for some € 0(F).
Thereforet Ak =0for somek € F = f(tAk) = f(0) =0"= f(t) A f(k) = 0'where
f(k) € f(F). Thereforg(t) € 0(f(F)) i.e. x € 0(f(F)). Thusf(0(F)) < o(f(F)).
Now let f(x) = x" € 0(f(F)). Thenx' Ay’ =0’ for somey’ € f(F). y' € f(F) =
y' = f(y) wherey € F. Thereforex" Ay’ =0" becomef(x) A f(y) =0" i.e. f(x A
y) =0" which givesx Ay € Kerf = {0} and consequentlg Ay =0 wherey € F
leading tox € O(F). Thereforex’ = f(x) € f(0(F)). Thus 0(f(F)) < f(0(F)).
Combining both the inclusions we dgHtf (F)) = f(0(F)).

(ii) First suppos®(F) = 0(G) whereF andG are filters ofS. Thenf (0(F)) = £(0()).
by property (i) we geb(f(F)) = 0(f(G)). Conversly suppos®(f(F)) = 0(f(G)) for
the filtersF andG of S. To prove0(F) = 0(G). Letx € 0(F) > x Ay =0 somey €
F=fO)Af(y)=0" wheref(y) € f(F) = f(x) € 0(f(F)) by hypothesis we get
f) e 0(F(G) = fx)At' =0 for somet’ € f(G). Let t'=f(w), weG.
Thereforef (x) A f(w) =0" = f(xAw) =0"= xAweKerf={0}= xAw=

0 wherew € G = x € 0(G). Thus0(F) <€ 0(G). On the same lines we can prove
0(G) € 0(F). Thus0(G) = 0(F).

(iii) To prove f~1(0(F")) = 0(f "1(F") for any filterF’ of S’. Leta € f~1(0(F")). Then
f(a) € 0(F") gives f(a) A f(b) = 0" for somef(b) € F'. Thusf(aAb) =0" which
impliesaAb € Ker f = {0}. ThereforeaAb =0. As f(b) €EF', b € f~I(F'). Thus
aAb =0 whereb € fI(Fyieldsa € 0(f~'(F")). Thusf~*(0(F")) = O(f~*(F").
Proceeding in the reverse manner we haw(f 1(F) < f~(0(F")).
Thus~2(0(F")) = 0(f ~1(F").

Theorem 3.4. Letf:S - S’ be an epimorphism.liKer f = {0}, then (i) IfK is a 0- deal
of Sthenf(K) is a O-ideal of".

(ii) If K'is a O-ideal of’, thenf~1(K") is O-ideal ofs.

Proof. (i) Let K be a 0- deal of, thenK = 0(F) for some filterF in S. Hence by
Theorem 3.3(i)f(K) = f(0(F)) = 0(f (F). Asf(F) is a filter inS’ (see Lemma 2.1),
f(K)is a 0- ideal of.

(i) Let K" be a 0- ideal of'. ThenK’ = 0(F"), for some filterF'in S’. Hence by theorem
3.3

(i) f7Y(K") = f7HO(F")) = 0(f"1(F"). As f~I(F") is a filter in S (see Lemma 2.1),
f~I(K") is a O-ideal of.

4. Epimor phisms and annihilator ideals
We begin with the following definitions.
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Definition 4.1. For any non-empty subsdtofS, define A* ={x € S/xAa =0, for
eacha € A}. A is called Annihilator of4.

Remarks: (i) If A = {a}, the{a}" = (a]".

(ii) A directed above nearlattice with 0 is O-distitive if and only ifA* is an ideal inS,
for any non- empty subsdtof S.

Definition 4.2. An ideall in S is called an annihilator ideal if = A* for some nonempty
subset A of S or equivalently,= I**

Theorem 4.3. Let f:S —» S’ be an epimorphism. If Ker f = {0}, then we have (i)
f(A") = (f(A))*, for any nonempty subsdt of S. (i) f~1(B*) = (f~1(B))* for any
nonempty subseB of S’. (iii) A*=B* if and only if (f(4))* = (f(B))* for any
nonempty subsedsandB of S.
Proof. (i) Let Abe any nonempty subset $f Letf(x) € f(A4"). Thenx € A* = x A
a=0for eachaeA= f(xAa)=0" for each aeAd=f(x)Af(a)=0" for
eaclf(a) € f(4) = f(x) € (f(4)) .Hence f(4") € (f(4)). Conversely suppose
x' = f(x) € (f(4)) where x € S. Then f(x) A f(a) = 0' for eachf(a) € f(4). But
then f(x Aa) = 0" impliesx Aa € Ker f = {0} for eacla € A. Thereforex Aa =10
for eacha € A. Thus x € A* which givesx’' = f(x) € f(4"). This shows that
(f(4) € f(4"). Combining both the inclusions we gef(4*) = (f(4))*
(i) Let B be any nonempty subset 8f. Let x € f~/(B*). Thenf(x) € B* = f(x)A
f(b) =0’ for eachf(b) € B= f(x Ab) = 0'for eachb € f/(B)=>xAb€ker f =
{0} for eachb € f7/(B) = xAb =0for eachb € f~/(B) > x € (f!(B))*. Hence
f~H(B*) € (f1(B))*. Conversely suppose € (f~/(B))* thenx Ab = 0 for eachb €
f'(B) > f(xAb)=0"for eachb € f7/(B)= f(x)Af(b)=0" for eachf(b) €
B = f(x)€ B*= x € f~I(B*). Hence(f~!(B))* € f~!(B*). Combining both the
inclusions we gef ~1(B*) = (f "1(B))*.
(iii) Let A andB be any two subsets of S. Théh= B* = f(A") = f(B") = (f(A)* =
(f(B))" (by (). Let (f(A)"=(f(B))* Nowx € A*= xAa=0 for eacm e 4 =
f(xna)=0" for eachae A= f(x)Af(a)=0" for eachf(a) € f(A) = f(x) €
(F() = fx) € (F(B)) = f@)Af(b) =0 for eachf(b) € f(B) = f(x AD) =
0'for eachh € B = xAb € Ker f ={0}for eachb € B = xAb = 0for eachh €
B = x € B*. This shows thad* < B*. Similarly we can show th#&" < A*. From
both the inclusions we gdt = B*.

In the following theorem we prove that theages and inverse images of annihilator
ideals in a distributive nearlattice with O under epimorphism withker f = {0} are
annihilator ideals.

Theorem 4.4. Let f: S — S’ be an epimorphism. IKer f = {0}, then

(i) For any annihilator idedlof S, f(I) is an annihilator ideal .

(i) For any annihilator ideal’of S’, is an annihilator ideal &, f~/(I") is an annihilator
ideal ofS.
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Proof. (i) Let I be any annihilator ideal of, thenf(I) is an ideal ofS’ (see Lemma
2.1(i)). Furtherl =I"= f() =fI™) = f) = {f(H}* (By theorem 4.3(i)). This
shows thajf (I) is an annihilator ideal of'.

(ii) Let I’ be any annihilator ideal of’, thenf~/(I') is an ideal ir§ (See lemma 2.1(ii)).
Further I' = I'"* = fI(I") = f1I"™) = £ = {f~*U)}* (By theorem 4.3(i)).
This shows thatf ~/(I") is an annihilator ideal .

5. Epimor phisms and «-ideals
We begin with the following definitions.

Definition 5.1. An ideall in S is anx-ideal if {a}** < I for eacha € I.

Remark 5.2. Every annihilator ideal i§ is arx-ideal.
Now we prove that the images and inverse imagesidEals in a distributive nearlattice
with 0 under an epimorphism wilter f = {0} are againx-ideals.

Theorem 5.3. Letf: S — S’ be an epimorphism. IKer f = {0}, then we have

(i) If I is ancc-ideal inS, f(I) is anx-ideal inS'.

(i) If I'is anx-ideal inS’, thenf~!(I') is anc-ideal inS.

Proof. (i) Let I be anx-ideal inS, thenf(I) is an ideal ir§’ (see lemma 2.1(i)). Let
x € f(I). Thenx = f(a) for somea € I. As ] is an«-ideal in S, {a}™ < I. Hence
fa}y") cf)={f(@D™ c fU) (by theorem 4.3()} {x}** < I. Hencef (I) is an
oc-ideal inS’.

(i) Let I be an ideal ir§’ thenf~I(I") is an ideal ir§ (See lemma 2.1(i)). Let,y € S
such that{x}* = {y}* andx € f~'(I") but then{x}* = {y}* = {f()}" = {f(»)}" (By
Theorem 4.3 (iii)). Asf(x) € I' and I’ is an «-ideal inS’, we getf(y) € I' which
meangy € f~I(I'). Hencg /(1) is anx-ideal inS.(By [5], Proposition 2.5 (i) and (i)

Theorem 5.4. Let f: S — S’ be an epimorphism. Then for amideall’ in S, f~/(I") is an
«-ideal in S providedf ~!({x'}*) is ancx-ideal in S for anyx’ in S’.

Proof: Letl’ be anx-ideal inS’. f~/(I")is an ideal of (See Lemma 2.1(ii)). Let,y € S

such tha{x}* = {y}* andx € f~/(I'). Letf(t) € {f(x)}* for somet € S. Hencef (x) €

{FOY = x € fFY{f®)*D. By assumption(f ~1{f(t)*})is an x-ideal in S. Thus
{x}"={y}" andx € f1({f(©)"}) implyy € f*({f(©)"}) (By [5], Proposition 2.5 (i)
and (ii)). Thusf(t) A f(y) = 0" = f(t) € {f(y)}".This shows thaf{f (x)}* € {f(»)}".

Similarly we can show thdtf (y)}* < {f(x)}*.Hence{f ()} = {f(»)}". As f(x) € I

and I'is an«-ideal in S'.f (y) € I' (By [5], Proposition 2.5 (i) and (ii)). Thug €

F~H(I"). And the result follows (By [5], Proposition 2% énd (ii))
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