Annals of Pure and Applied Mathematics Vol. 18, No. 2, 2018, 181-184 ISSN: 2279-087X (P), 2279-0888(online) Published on 20 November 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v18n6

The Diophantine Equation $x^4 + y^2 = z^4$ is Insolvable in Positive Integers when at Least One of x, y is Prime

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: <u>anb17@netvision.net.il</u>

Received 9 November 2018; accepted 19 November 2018

Abstract. In this paper, we consider solutions in positive integers x, y, z of the title equation. It is established that the equation has no solutions in the following two cases: (i) When $x \ge 2$ and $y \ge 2$ are two distinct primes. (ii) When either one of x, y is prime, and the other one is composite. We presume that when x and y are composites, the equation has no solutions.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The literature contains a very large number of articles on non-linear such individual equations involving primes and powers of all kinds. Among them are for example [1, 3, 4]. The title equation stems from the equation $p^x + q^y = z^2$.

Whereas in most articles, the values x, y are investigated for the solutions of the equation, in this paper these values are fixed positive integers. In the equation

$$x^4 + y^2 = z^4 \tag{1}$$

we consider the case when $x \ge 2$ and $y \ge 2$ are two distinct primes, and also the case when one of x, y is prime, and the other is composite. This is respectively done in the following Sections 2 and 3.

2. The equation $x^4 + y^2 = z^4$ when x and y are primes

In this section, we investigate the solutions of $x^4 + y^2 = z^4$ when x, y are two distinct primes. The result is contained in the following Theorem 2.1.

Nechemia Burshtein

Theorem 2.1. Suppose that $x \ge 2$, $y \ge 2$ are two distinct primes. Then the equation $x^4 + y^2 = z^4$ has no solutions.

Proof: All the possibilities of the equation are as follows:

- (a) x = 2 and y is an odd prime.
- (b) y = 2 and x is an odd prime.
- (c) x, y are odd primes.

(a) Suppose that x = 2 and y is an odd prime. Equation (1) yields

$$16 + y^2 = z^4$$
, z is odd. (2)

From (2) we have

 $y^2 = z^4 - 16 = (z^2 - 4)(z^2 + 4) = (z - 2)(z + 2)(z^2 + 4).$ (3) Since y is prime, the three divisors of y^2 namely 1, y, y^2 can never satisfy the three

Since y is prime, the three divisors of y^2 namely 1, y, y^2 can never satisfy the three factors in (3). Hence, (a) does not exist, and $16 + y^2 = z^4$ has no solutions.

(b) Suppose that y = 2 and x is an odd prime. Equation (1) implies

 $x^4 + 4 = z^4, \qquad z \text{ is odd.}$

Hence

$$4 = z^{4} - x^{4} = (z - x)(z^{3} + z^{2}x + zx^{2} + x^{3}).$$
(4)

For all odd primes x, and since z is odd, both factors on the right of equation (4) are even. Equation (4) is then clearly impossible, and $x^4 + 4 = z^4$ has no solutions.

(c) Suppose that x, y are odd primes.

Equation (1) yields

$$x^4 = z^4 - y^2 = (z^2 - y)(z^2 + y),$$
 z is even. (5)

Equation (5) has only two possibilities (three other possibilities are a priori eliminated), namely:

(i) $z^2 - y = 1$, $z^2 + y = x^4$. (ii) $z^2 - y = x$, $z^2 + y = x^3$.

If (i) exists, then $z^2 = y + 1$ and $2y + 1 = x^4$. Each prime x is either of the form 4N + 1 or of the form 4N + 3. In any case, x^4 is of the form 4M + 1, implying that the equality 2y + 1 = 4M + 1 or y = 2M is impossible since y is an odd prime. Thus, (i) does not exist.

If (ii) exists, then $z^2 = y + x$ implies that

 $z^{2} + y = (y + x) + y = 2y + x = x^{3}$ or $2y = x(x^{2} - 1)$

which is impossible since x, y are odd primes and $x \nmid y$. Hence, (ii) does not exist, and case (c) is complete.

The equation $x^4 + y^2 = z^4$ has no solutions.

This concludes the proof of **Theorem 2.1**.

The Diophantine Equation $x^4 + y^2 = z^4$ is Insolvable in Positive Integers when at Least One of x, y is Prime

3. The equation $x^4 + y^2 = z^4$ when either x or y is prime

In this section, we consider all the possibilities of $x^4 + y^2 = z^4$ when x is prime and y is composite or vice versa. This is done in the following Theorem 3.1.

Theorem 3.1. Suppose that x, y are positive integers. If one of x, y is prime and the other is composite, then $x^4 + y^2 = z^4$ has no solutions.

Proof: All the possibilities of the equation are as follows:

Case 1.	x is an odd prime,	y is composite.
Case 2.	x = 2,	y is composite.
Case 3.	x is composite,	y = 2.
Case 4.	x is composite,	y is an odd prime.
Each of the	four cases is self-conta	ained, and considered separately.

Case 1. Suppose x is an odd prime, and y is composite. From (1) we have

$$x^{4} = z^{4} - y^{2} = (z^{2} - y)(z^{2} + y).$$
(6)

Since x is prime, equation (6) has only two possibilities (three other possibilities are a priori eliminated), namely:

(i) $z^2 - y = 1$, $z^2 + y = x^4$. (ii) $z^2 - y = x$, $z^2 + y = x^3$.

Suppose (i), i.e., $z^2 - y = 1$ and $z^2 + y = x^4$. We shall assume that there exist values x, y, z satisfying both equations simultaneously, and reach a contradiction.

Our assumption implies that
$$y = z^2 - 1$$
 and $y = x^4 - z^2$. Hence, $z^2 - 1 = x^4 - z^2$ or
 $2z^2 - x^4 = 1$. (7)

For the smallest odd prime x = 3, min z = 7 and $2z^2 - x^4 = 2 \cdot 7^2 - 3^4 = 17$. It is easily verified for each and every prime x > 3 that $\min(2z^2 - x^4) > 17$. Thus, equation (7) never exists, and the contradiction derived implies that our assumption is false. Case (i) is complete.

Suppose (ii), i.e., $z^2 - y = x$ and $z^2 + y = x^3$. Adding both equations results in

$$2z^2 = x + x^3 = x(x^2 + 1).$$
(8)

Since x is an odd prime, it follows from (8) that $x \mid z$. Denote z = Ax where A is a positive integer, and $2z^2 = 2A^2x^2$. But, this implies that (8) is impossible since the left side of (8) is then a multiple of x^2 , whereas the right side of (8) is a multiple of x only.

Case (ii) does not exist, and Case 1 is complete.

The equation $x^4 + y^2 = z^4$ has no solutions.

Case 2. Suppose that x = 2, and y is composite.

From (1) we have

$$2^4 = z^4 - y^2 = (z^2 - y)(z^2 + y).$$
(9)

Nechemia Burshtein

Equation (9) has only two possibilities (three other possibilities are a priori eliminated). These are:

(i) $z^2 - y = 1$, $z^2 + y = 16$. (ii) $z^2 - y = 2$, $z^2 + y = 8$.

In (i) $z^2 = y + 1$, but $z^2 + y = 2y + 1 \neq 16$. Thus, (i) is impossible. For (ii), we have $z^2 = y + 2$ or $z^2 + y = 2y + 2 = 8$ and y = 3. But, y = 3 is not composite (y = 3 implies that z is not an integer). Hence, (ii) is impossible. This concludes **Case 2**.

The equation $2^4 + y^2 = z^4$ has no solutions.

Case 3. Suppose x is composite, and y = 2.

We have from (1)

$$2^{2} = z^{4} - x^{4} = (z - x)(z^{3} + z^{2}x + zx^{2} + x^{3}).$$
(10)

For all odd values x, and for all even values x, both factors on the right side of equation (10) are even. Equation (10) is then impossible. Thus **Case 3** does not exist.

The equation $x^4 + 2^2 = z^4$ has no solutions.

Case 4. Suppose x is composite, and y is an odd prime.

From (1) we have

$$y^{2} = z^{4} - x^{4} = (z^{2} - x^{2})(z^{2} + x^{2}) = (z - x)(z + x)(z^{2} + x^{2}).$$
(11)

Since y is prime, the three divisors of y^2 being 1, y, y^2 never satisfy the three factors on the right side of (11). Thus (11) is impossible, and **Case 4** does not exist.

The equation $x^4 + y^2 = z^4$ has no solutions.

The proof of **Theorem 3.1** is complete.

Final remark. We presume that when x and y are composites, then the equation $x^4 + y^2 = z^4$ has no solutions.

REFERENCES

- 1. N. Burshtein, A note on the diophantine equation $p^3 + q^2 = z^4$ when p is prime, Annals of Pure and Applied Mathematics, 14 (3) (2017) 509 – 511.
- 2. N. Burshtein, All the solutions of the diophantine equation $p^4 + q^2 = z^2$ when p is prime, *Annals of Pure and Applied Mathematics*, 14 (3) (2017) 457 459.
- 3. N. Burshtein, On solutions to the diophantine equation $p^x + q^y = z^4$, Annals of Pure and Applied Mathematics, 14 (1) (2017) 63 68.
- 4. S. Chotchaisthit, On the diophantine equation $4^x + p^y = z^2$ where *p* is a prime number, *Amer. J. Math. Sci.*, 1 (1) (2012) 191 193.
- 5. B. Sroysang, More on the diophantine equation $8^x + 19^y = z^2$, *Int. J. Pure Appl. Math.*, 81 (4) (2012) 601 604.
- 6. A. Suvarnamani, Solution of the diophantine equation $p^x + q^y = z^2$, Int. J. Pure Appl. *Math.*, 94 (4) (2014) 457 460.