Annals of Pure and Applied Mathematics Vol. 19, No.1, 2019, 1-5 ISSN: 2279-087X (P), 2279-0888(online) Published on 10 January 2019 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.594v19n1a1

Annals of **Pure and Applied Mathematics**

On Solutions of the Diophantine Equations $p^4 + q^4 = z^2$ and $p^4 - q^4 = z^2$ when *p* and *q* are Primes

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: <u>anb17@netvision.net.il</u>

Received 2 January 2019; accepted 9 January 2019

Abstract. In this article, we consider the equations $p^4 + q^4 = z^2$ and $p^4 - q^4 = z^2$ when p, q are primes and z is a positive integer. We establish that $p^4 + q^4 = z^2$ has no solutions for all primes $2 \le p < q$. For $p^4 - q^4 = z^2$ when $2 \le q < p$, it is shown: (i) For q = 2 the equation has no solutions. (ii) The equation $z^2 = p^4 - q^4 = (p^2 - q^2)(p^2 + q^2)$ is impossible when each factor is equal to a square. (iii) When each factor is not a square, conditions which must be satisfied simultaneously are determined for p^2 and q^2 . For all primes p < 2100, these conditions are not fulfilled simultaneously. It is conjectured for all primes p > 2100 and q > 2 that the equation has no solutions.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The famous general equation

$$p^x + q^y = z^2$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving primes and powers of all kinds. Among them are [2, 3, 4] and others.

In this paper, we consider the two equations

$$p^4 + q^4 = z^2,$$

 $p^4 - q^4 = z^2$

where p, q are primes, and z is a positive integer. All other values denote positive integers too.

Nechemia Burshtein

In the two self-contained Sections 2 and 3, the two equations are respectively investigated for solutions. In Section 2, we show for all primes $2 \le p < q$ that $p^4 + q^4 = z^2$ has no solutions. In Section 3, we consider $p^4 - q^4 = z^2$, and prove that when q = 2 and when 2 < q < p < 2100 the equation has no solutions. In our proof we use "Pythagorean triples".

2. Solutions of the equation $p^4 + q^4 = z^2$

For all primes p, q, it is shown in the following theorem that $p^4 + q^4 = z^2$ has no solutions. Without loss of generality, we shall assume that p < q.

Theorem 2.1. Suppose that $2 \le p < q$ are primes. Then the equation $p^4 + q^4 = z^2$ has no solutions.

Proof: First we consider the case p = 2, and then the case p > 2.

Suppose p = 2. We have

$$16 + q^4 = z^2, \qquad z \text{ is odd.}$$
(1)
From (1) it follows that $z^2 - q^4 = 16$ or

 $(z - q^2)(z + q^2) = 2^4.$ (2)

The five divisors of 2^4 are 1, 2^1 , 2^2 , 2^3 , 2^4 . Thus from (2) we obtain

 $z-q^2 = 1$ and $z+q^2 = 2^4$, $z-q^2 = 2^1$ and $z+q^2 = 2^3$, where the last three possibilities are a priori eliminated.

The case $z - q^2 = 1$ and $z + q^2 = 16$ is a priori impossible, since the difference of two odd integers z and q^2 is never equal to 1. Hence, this case does not exist.

If $z-q^2=2$ and $z+q^2=8$, then $z=q^2+2$ or $2q^2+2=8$ and $q^2=3$ is impossible.

Thus, $p \neq 2$ and $16 + q^4 = z^2$ has no solutions.

Suppose
$$p > 2$$
. The equation $p^4 + q^4 = z^2$ yields
 $p^4 = z^2 - q^4 = (z - q^2)(z + q^2).$ (3)
The five divisors of p^4 are 1, p^1 , p^2 , p^3 , p^4 . Hence, from (3) we have

 $z-q^2 = 1$ and $z+q^2 = p^4$, $z-q^2 = p^1$ and $z+q^2 = p^3$, where the last three possibilities are a priori eliminated.

If
$$z - q^2 = 1$$
 and $z + q^2 = p^4$, then $z = q^2 + 1$ and $2q^2 + 1 = p^4$. Hence,
 $2q^2 = p^4 - 1 = p^4 - 1^4 = (p - 1)(p^3 + p^2 + p^1 + 1).$ (4)

The right side of (4) is clearly a multiple of at least 4, whereas $2q^2$ is a multiple of exactly 2. This contradiction implies that the first possibility is impossible.

On Solutions of the Diophantine Equations $p^4 + q^4 = z^2$ and $p^4 - q^4 = z^2$ when p and q are Primes

If $z - q^2 = p$ and $z + q^2 = p^3$, then $z = q^2 + p$ and $2q^2 + p = p^3$. Since gcd (p, q) = 1, it follows that $2q^2 + p = p^3$ does not exist, and this possibility is also impossible. Hence, when p > 2, $p^4 + q^4 = z^2$ has no solutions as asserted.

This concludes the proof of **Theorem 2.1**.

3. Solutions of the equation $p^4 - q^4 = z^2$

In this section we establish: First, for q = 2 the equation has no solutions. Secondly, for all primes q > 2 and p < 2100, the equation also has no solutions.

(6)

Theorem 3.1. Suppose that $2 \le q < p$ are primes. Then the equation $p^4 - q^4 = z^2$ has no solutions

- (i) when 2 = q,
- (ii) when 2 < q < p < 2100.

Proof: (i) When q = 2, we have

$$p^4 - 16 = z^2, \qquad z \text{ is odd.}$$
From (5) it follows that $p^4 - z^2 = 16$ or
$$(5)$$

 $(p^2 - z)(p^2 + z) = 2^4$. The five divisors of 2^4 are 1, 2^1 , 2^2 , 2^3 , 2^4 . Thus from (6) we have

 $p^2 - z = 1$ and $p^2 + z = 2^4$, $p^2 - z = 2^1$ and $p^2 + z = 2^3$,

where the last three possibilities are a priori eliminated.

The case $p^2 - z = 1$ and $p^2 + z = 16$ is a priori impossible, since the difference of two odd integers p^2 and z is never equal to 1. The first possibility does not exist.

If $p^2 - z = 2$ and $p^2 + z = 8$, then $p^2 = z + 2$ or 2z + 2 = 8 and z = 3. But, when z = 3 then $p^2 = 5$ which is impossible. Hence, the second possibility does not exist.

Thus $q \neq 2$, and $p^4 - 16 = z^2$ has no solutions. Case (i) is complete.

When
$$q < p$$
, then $p^4 - q^4 = z^2$ yields
 $p^4 - q^4 = (p^2 - q^2)(p^2 + q^2) = z^2.$ (7)

Let R > 1 be an integer which is not a square. Equation (7) has two possibilities, namely

(a) $p^2 - q^2 = A^2$ and $p^2 + q^2 = B^2$, (b) $p^2 - q^2 = C^2 \cdot R$ and $p^2 + q^2 = D^2 \cdot R$.

(a) Suppose that $p^2 - q^2 = A^2$ and $p^2 + q^2 = B^2$.

The values A^2 , B^2 are even, hence A, B are even. Denote $A^2 = 4N$ and $B^2 = 4M$. Thus, the sum of the two equalities in our supposition yields

$$2p^2 = A^2 + B^2 = 4N + 4M = 4(N + M)$$

Nechemia Burshtein

which is impossible since p is an odd prime.

Case (a) does not exist.

(b) Suppose that $p^2 - q^2 = C^2 R$ and $p^2 + q^2 = D^2 R$. The sum of the equalities in our supposition yields $2p^2 = R(C^2 + D^2).$

From (8) it follows that $R \mid 2p^2$, and since gcd(R, p) = 1, therefore R = 2. Hence $p^2 - q^2 = 2C^2$ and $p^2 + q^2 = 2D^2$,

from which

 $p^2 = C^2 + D^2$ and $q^2 = D^2 - C^2$.

Since $q^2 = D^2 - C^2 = (D - C)(D + C)$ and *q* is prime, it follows that D - C = 1 and *D* + $C = q^2$ implying that $q^2 = 2C + 1$. The value $q^2 - 1 = (q - 1)(q + 1) = 2C$ yields for all primes *q* that C = 4T. We have $p^2 - q^2 = 2C^2$ or $p^2 = 2C^2 + q^2 = 2C^2 + (2C + 1) = C^2 + (C + 1)^2$. Thus,

$$q^2 = C + (C+1), \qquad p^2 = C^2 + (C+1)^2, \qquad C = 4T.$$
 (9)

The equalities in (9) must be satisfied simultaneously with primes p, q.

Suppose (ii) 2 < q < p < 2100.

In (9), the equality $C^2 + (C + 1)^2 = p^2$ suggests the use of "Pythagorean triples" (abbreviated triples) denoted (a, b, c) if $a^2 + b^2 = c^2$. All the triples of the form $C^2 + (C + 1)^2 = p^2$ where p < 2100 have been examined in [5]. There is exactly one triple of this form which satisfies only two of the three conditions in (9). The triple is demonstrated in Table 1. Hence, for all primes 2 < q < p < 2100 the three conditions in (9) are not met simultaneously, and $p^4 - q^4 = z^2$ has no solutions.

This completes part (ii), and **Theorem 3.1**.

(8)

For the convenience of the reader, values C, q^2 , p^2 are presented in the following Table 1.

Table 1. Values of C, q^2 and p^2

Т	C = 4T	C + 1 = 4T + 1	$C + (C + 1) = q^2$	$C^2 + (C+1)^2 = p^2$
1	<i>C</i> = 4	<i>C</i> + 1 = 5	$4 + 5 = 3^2 = q^2$	$4^2 + 5^2 = 41 \neq p^2$
3	<i>C</i> = 12	<i>C</i> + 1 = 13	$12 + 13 = 5^2 = q^2$	$12^2 + 13^2 = 313 \neq p^2$
6	<i>C</i> = 24	C + 1 = 25	$24 + 25 = 7^2 = q^2$	$24^2 + 25^2 = 1201 \neq p^2$
15	<i>C</i> = 60	C + 1 = 61	$60 + 61 = 11^2 = q^2$	$60^2 + 61^2 = 7321 \neq p^2$
21	<i>C</i> = 84	<i>C</i> + 1 = 85	$84 + 85 = 13^2 = q^2$	$84^2 + 85^2 = 14281 \neq p^2$
5	<i>C</i> = 20	C + 1 = 21	$20 + 21 = 41 \neq q^2$	$20^2 + 21^2 = 29^2 = p^2$

On Solutions of the Diophantine Equations $p^4 + q^4 = z^2$ and $p^4 - q^4 = z^2$ when p and q are Primes

Remark 3.1. It is needless to say, that a priori it seems impossible that the three conditions in (9) may be satisfied simultaneously.

The validity of this statement was verified for all primes p < 2100.

We can now sum up the results for both equations as follows:

Conjecture 1. For all primes p > 2100 and q > 2, the equation $p^4 - q^4 = z^2$ has no solutions.

If **Conjecture 1** is indeed true, then both equations $p^4 + q^4 = z^2$ and $p^4 - q^4 = z^2$ have no solutions.

REFERENCES

- 1. N. Burshtein, On solutions to the diophantine equation $x^4 y^2 = z^2$, Annals of Pure and Applied Mathematics, 18 (1) (2018) 79 81.
- 2. N. Burshtein, On solutions of the diophantine equations $p^3 + q^3 = z^2$ and $p^3 q^3 = z^2$ when *p*, *q* are primes, *Annals of Pure and Applied Mathematics*, 18 (1) (2018) 51-57.
- 3. N. Burshtein, All the solutions of the diophantine equation $p^4 + q^2 = z^2$, Annals of *Pure and Applied Mathematics*, 14 (3) (2017) 457 –459.
- 4. B. Poonen, Some diophantine equations of the form $x^n + y^n = z^m$, Acta Arith., 86 (1998) 193-205.
- 5. Integer Lists: "Pythagorean triples up to 2100" TSM Resources.