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1. Introduction

Consider a homogeneous Cauchy-Euler equation ef orcbf the form
n-1

y

n-1

d"y
n
a,x"—

dx

where a,, a,,...,a, are real numbers with, # 0. Details for methods to find solutions of

the equation (1.1) was explained in [2, 3, 4, 9%r&bver, Sabuwala and Leon [7] studied
the particular solution for the most genearah order Euler differential equation when the
non-homogeneity is a polynomial. They found a faianwhich can be used to compute
the unknown coefficients in the form of the par&usolution. It is well known that the
general solution of (1.1) can be found from therabteristic equation

iajlj(m—i+1)+ao=0 (1.2)
=L =

+ an_lxn—l

+...+a1x%+a0y:0. (1.1)

of the linear ordinary differential equation witbrstant coefficients
n i d
a ——i+1|+ =0,
(,Z [ (dt j a"]y

wheret =In x. In general, the general solution of any homoges&tauchy-Euler

n j
equations depends on zeros of the polynorﬁ:aaiij ” (m=-i+1+a,.

j=1 1=

The aim of this paper is to give the family of @huchy-Euler equations (1.1)
such that
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Kk
y=>x" (czj_lsin(,é’j Inx) +¢,; cos(B; In x))

j=1
is the general solution of (1.1) d,) wherea; and ,Gj are real and imaginary parts
of distinctz; with ,6’j #0 forall j=1,...k.

2. Preliminary
In this section, we shall give the related basittoms that can be found in [1, 5, 8].

Let nUN, a,,a,,...,a, R with a, # 0. An ordinary differential equation of the
form
n n-1
a s Yra. 2
X dy
is said to be ahomogeneous linear ordinary differential equation with constant
coefficients. By a transformatiog = €™, wheremis a suitable number, the equation
(2.1) is transformed into the polynomial equation
am'+a_m™+..+am+a,=0,
which is said to be theharacteristic equation of (2.1).

d
+ota ey =0 (2.1)

A linear ordinary differential equation form

n n-1
y

nd'y
X
& dx" dy"™*

is called ehomogeneous Cauchy-Euler equation.

n-1
+8,,X

+---+a1x%+aoy=0 (2.2)

Theorem 2.1. [5] Let k be a positive integem =2k and a,,q,,....0,,8,, 55,
B 8. 8,,....8,, be real numbers witla, # 0. Then the distinct complex numbers
zZ=a+Bi, =0t L), B =B 2, =2, Ly =T, Ly T L are

n i

distinct 2k zeroes of the polynomi{lz 3 rj (% =i +1j + aOJy =0 if and only if

j=1

Kk
y:Zx"j (czj_lsin(ﬂj InX) +c,; cosB; In x)) (2.3)

j=1
is the general solution of homogeneous Cauchy-Egeation (2.2) on an open interval
(0,), wherec,,c,,...,C,, are arbitrary constants.
Definition 2.1. [6] For eachj,k [ON with j <k we define

N, :={12,...k},
P.={aa-a:a,a,.,a 0N, anda <a,<---<a},
N, = > p Ngo:=1 and Ny =1,

pDPj K
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and for every integerg,k with k> j we defineN, ; :==0.

Lemma2.1. [6] Let nLIN with n=2, mUCanda,,...,a, IR with a, # 0. Then

n J

n-1 o )
Ya EI (M=i+D+a, =a,m"+> M7 (=D'N, 4 + . (2.4)

j=1 =1 i=0

The following theorem is a direct consequencel@ofem 2.1 and Lemma 2.1.

Theorem 2.2. Let k be a positive integetn =2k and a,,q,,....a,, 5, Bys--- B>
a,,8,,...,8, be real numbers witha, #0. Then the distinct complex numbers

z=a,+pBji, z,=a, +182i""'zk =ay +:Bki' 4y :Z’ Zss :Z’---’ Zy :Z are

n-1 L _
distinct 2k zeroes of the polynomiad,m" +> M" > (=)' N, i | 4@, +a, if
j=1 i=0
and only if (2.3) is the general solution of homogeus Cauchy-Euler equation (2.2) on
an open interval0,«), wherec,,C,,...,C,, are arbitrary constants.

3. Main theorems

In this section, before proceeding to our main ltesthe following terminologies and
concepts are required.

Definition 3.1. Let n be a positive integer and, Z,,...,Z, be distinct complex numbers.
Then for every integef, k with 1< j <k < n we define
C ={2.2,...2},
S« ={{a,a,,...a;} 1 a,8,...,.8 0C, anda,a,,...,q; are distinc},
Cix= zaiaz"‘aj’ Coo=6Co; =1,
{ay....a;}0S;
andC, ; =0 forall j<ks<n.
Form above definition, it is important to notettha
Ck =227 andC =C iy

for every positive integek. Furthermore, we have the following applicable lesmm
Lemma 3.1. For every positiven. If Z,z7,,...,Z, are distinct complex numbers and
C.={z,z,,...,z} for all positive integers with S<n, then for every positive integer
I,] withi<j<n,

Ci1tzC . =C (3.1)

it
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Proof: We shall proof by mathematical induction non Forn=2, leti, j be positive
integers such thdt j with i < j <2 and z,z,are complex numbers ar@, ={z,z}.
Then we have 3 cases= j =1, i =1 and j =2, andi = j = 2. It follow that
CotzCy1=2=Cy, Cyu+2C,,,=2+2=C, and C,;+2C, ,,=
z [z, =C,,, this implies the lemma is true for=2.

Next, we letk be arbitrary positive integer witk = 2. Suppose that this lemma
is true forn =Kk, that is for every distinct complex numbezs z,,...,z, andC, ={z,

z,...,.Zz} for all positive integes with s<n, for every positive integers, j with
i<j<k,C,,+zC_;,=C,. Let 7,7,...,Z,, be distinct complex numbers and
C.={z,z,...,z} for all positive integers with s<k+1. Let i, j be positive integers
with i £ J <k +1. We shall proof that

CatzC;.=C,.

Since 7, Z,,...,Z, are complex numbers, from the inductive hypothestsobtain
CatzC;.=C,.

for every positive integer j with i < j <k, and so we only prove that
CiatzGCy.=GC.

foralli <k+1 Leti be a positive integer with< k +1 and let

R ={a,a,....8.,2.}:a,8,...8_,0C anda,a,,...a_,,%,,are distinc}.
We claim that§, nR,,= ¢ and §, UR,,,=3,,. For §, nR,,= 9,
suppose thalS, N R ., # @. Let{a,a,,...,a} 0§, n R ;. Then{a,a,,....a}0

S« and{a,a,,...a}IR ,,;, and thusa,a,,....a UC, and &,a,,...,3 are distinct
and there existy LJN; such that@, = z,,. Sincea,[JC, for everyslIN;, we obtain

a, # Z,, Which is impossible. Henc& , N R ,,; = 0.

Next, we shall prove they, OR ., =S ;. Let{a,a,,...a} S, OR ;.
Then{a,,a,,...a} 0§, or{a,a,,...a} R ...

Case 1. Suppose that,a,,....a} S . Thena,a,,....a OC  anda, a,,...,8
are distinct. Sinc&€, 0C,,,, a,,a,,...,.a OC,,,. It follows that{a,,a,,....a} 0§ ;.

Case 2. Suppose t{a@,a,,....a} R .. Thena,a,,...,a, 4,8,,..-, & UC,
are distinct element i€, and there existg JN; such tha@a; = z,,, and thusa,,...,3

OC,,.-Hence{a,,a,,...a} 0S ...
From both cases, we obta#h, R ,,, 0§ ,;.
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Now we let{a,a,,...,.a} 0§ ,;. Thena,,a,,....a OC,,, anda,,a,,...,.a are

distinct.
Case 1. Suppose that there exists N; such thata;, = z,,. Sincea,,a,,...,&
are distinct complex numbers. Théa, a,,....a} R ., and so{a,,a,,...,a} 0§, [

R e
Case 2. Suppose that # z,, for all jOON;. Since for every UN;, a OC,,,,

we obtainag, 0C,,,. Hence{a,,a,,...,2} 0§, andthuga,,a,,....a} US,0OR ;.
From both cases, we obtaify,,, 1S, OR ;. It follows that S, [

R i1 = Sk Hence

Cxt2.,C 1 =C*+7. 23132"‘31—1

{ay,az,.-.A4}0S 1«

= 2adeat DA% 3w

{ay,8;,...4}0S « {ag.ap...84}0S 1«

Let z.,S 4 ={{a. a8, 4} H{an a8 4} 0§ 4, ). Then
D aa,--at Daa, a7,

Cvt+tz.,,C =
{ay,85,...24}0S {a1.8, A1, 21021 S

= adeat DA a4

{a1,85,..4}0S {a1.80,. 84,8021 S 4k

Since{a,,a,,...8 5, &} Uz, S 4
= there existsj [JN; such that@; =z, and

A, 8,81, 84,8, 8 UG
= {ai’aZ""’aj—l’Zk+1’aj+l""’ai—1’ai}DRk+l
= {a,a,,..8 1,8} 0R .,

we obtainz, ;S _,, = R,,. Therefore

Cu*2Ciuy= Daa-—a+ Y aa-a.

{a.az,...2 10 « {a1.8,.. 2 }0R

SinceS, nR,,=0and§, 0R ,,; =S ,.,, we obtain
C+2,C = 2313231 = Zaiaz"'ai =C i

{ag,az,.- A0S  OR {ay.ap,...2}0S kg

HenceC,, +7,,Ci 1, = C -
By mathematical induction, this Lemma is truedbmpositive integem. O

Lemma3.2. Let n be a positive integer. I£,z,,...,Z, are distinct complex numbers and

C,={z.z,....z,}, then
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|‘](m z)= Z( )'C,m+(-)"C,, (3.2)

Proof: We prove by mathematical mductlon. HorF 1, let z, be a complex number.
Then sinceC,, =1 andC,, =z,

1 0 ) )
|_| (m=-z)=m-2z = (_1)0C0’1m1—0 + (_1)1011 = Z:(_l)I G ,1m1_I + (_1)1Cl,l
1=1 i=0
n_l . .
=Y (-D'C,,m"" +(-)"C,,
i=0
This implies that (3.2) is true fan = 1.
Next, we letk be a positive integer. Suppose thaz,ifz,,...,z, are distinct

complex numbers an@, ={z,z,,.. Zk} then
[](m-2)= Z( 1)/C, M + (-1 C, .

1=1
Let z,2,,...,Z, Z,, be distinct complex numbers af,, ={z,2,,...,Z.,,}. Since

k+1

|:|(m z)=(m- Zk+1)|_J(m Z),

by the inductive hypothe5|s we obtaln

”(m z)= Z( 7' Clkmkl+( D~ Cexs

and thus
k+1

I_l (m=-z)=(m- Zk+1)(2(_1)i C,,m + (_1)ka,kj

1=1

k-1 . k1 , .
= Z(_l)l C . m< - Z(_l)l Ci,kmk_l 4, t (_1)kck,km_ (_1)k Z,,Cy

i=0

=+ 3 -1y C m Z( D'Cm' 2y

i=1
+ (_1) (Zk+1Ck-Lk + Ck,k )m+ (_1)k+lck+1,k+l'

By Lemma 3.1, we obtaiz,,,C,_,, +C,, =C, ,,, and therefore

o

k+1 k-1 ) o k=2 ) )
rll (m_ Z) =m“t+ Z(_l)l Ci,kmm_I _Z:(_:l-)I Ci,kmk_I Ziy
i= i=1 i=0

+ (_1) “ Ck,k+1rn + (_1) IU-le+1,k+1'

Let j =i—1 Theni=j+1 and thus
k+1

k-2 . .
[Jm-2)= M+ 3 ()G T - S ()G Mz,
I i=0

j=0
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+ (_1) “ Ck,k+1rn + (_1) k-'.le+l,k+1

S i L5 i+ i
=m T+ (-)MC,,mT + Y (-D)"Z,,C m"

i=0 i=0

+ (_1)k Ck,k+1m+ (_1)k+lck+l,k+1

k-2 ) )
= mk+1 + Z(_l)lﬂq +;|,k+1mk_I + (_1)kck,k+lm+ (_1)k+1ck+1k+1
i=0
by Lemma 3.1. Letj =i +1. Theni = j—1 and so
k+1

rj(m Z|) = k+1+z( 1)JCJ k+1mk+l_] +(- 1) Ckk+1m+( 1)k+le+1k+l

= mk+1 + Z (—1)i Cj Yk+1mk+l_i + (_1)kck,k+1m + (_1) IH-lck+1,k+l

i=1

I
AMX_

I
)

(_1)i Ci,k+1mk+1_i + (_1) k+le+],k+1

The following corollary is a direct consequencé.efmma 3.2.

Corollary 3.1. Let n be a positive integer. If,, Z,,...,Z, are distinct complex numbers

andC, ={z,z,,...,.2,}, thenz,z,...,z, are zeroes of the polynomial
n_l . .
> (-D'C, m +(-D"C,,

i=1

(3.3)

Lemma3.3. Let n be a positive integer. If, Z,,...,Z, are distinct complex numbers

andC, ={z,z,,...,2,}, then

. n-j .
8,=(-)"C,,, a,=landa =(-1)"'C,,+> (DN, ,a.,
i-1

for every | =12,...,n—1if and only if

a,n" +Zm"'z( N,y 80 = 3 (-1) € +(=1)"C, |

i=0

Proof: Suppose that (3.4) is true for gli= 12,....n—1. Then for any j =12,...,n

n-J X .
aj +Z(_1)l Ni,i+j—1ai+j = (_1)n_JCi,n'
i=1
that is for everys=12,...,n—-1,
as + Z(_l)I Ni,i+s—la'i+s = (_1)n_sCi,n'
i=1
Let S =n-j. Then j =n-s. and thus for evenj =12,....n—1,

85
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i . i
A j "’Z(_l)I Ni - j-1@nsicj = (=D'Cin-
i=1

Since Ny -4 =1,

(D" Nay 480, * 2D N, s, =(-D'C,,
and thus _ -
DB Ny =G
for every | = 1,2,...,n—1.I_MuItipIying both sides of this equation by"~! , we obtain
m"} Zj:(—l)i N; i@ = (-1)'C ,m™.

i=0
Adding thisn—1 equations, we have

n-1 o ) n-1 ) B
Zmn_’z(‘l)' N; iz jr@nsicj = Z(_l)lci,nmn l
j=1 i=0 j=1
That is
nlo i ) n-1 ) .
anmn +zmn JZ(_:L)I Ni,n+i—j—1an+i—j +a0 - Z(_l)lci,nmn i +(_1)nCn,n
j=1 i=0 i=0
Conversely, assume that the equation (3.5) is tBiece 1, m, mz,...,mn are
linearly independent, by undetermined coefficiemts,obtain
a,=1 a,=(-1)"C,,
and for everyj =12,...,n—-1,
i

Z( 1)I N|n+| J—l n+i—j Z( 1)JC

i=0
that is

i ) )
a,_; "'Z(_l)I N pricjo1@osicj = (_1)]Cj,n’
=1

Let s=n—j. Then for everys=12,....n—-1,

as + Z(_l)l Ni,i+s—lai+s = (_1)n_SCn—s n
i=1
and thus for everyy =12,....n—-1,

. o .
a, =(-D"™'C,;,+ Z(_l)l 1Ni,i+j—la1'+j'
i=1
The proof is complete. O
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Corollary 3.2. Let k be a positive integer antl,, @, ,....a,, By, By v B8, 84,18y

be real numbers witl, #0. If z,z,,...,z,, are distinct complex numbers afj, =
{2,2,...2y} such thatz =a, + B, z=a,*+pB),..z =a,+fi, Z,,=1,
Zio =z2 Z, —zk Then

. Zaj
8 =(-1)*Cpuar 8y =1and a; = (_l)Zk_]CZK—j,Zk + Z‘,(_:l-)I lNi,i+j—1a1+j (3.6)
i=1

for every j =12,...,n—1 if and only if Z1 Z,,...,Z, are the zeroes of polynomial
2k-1

azkm2k +Zm2k JZ( 1) NI 2Kk+i— j—la2k+l j aO (3-7)

=0
Proof: By Lemma 3.3 withn = 2k, the formulas (3.6) is true for every=12,...2k -1

if and onIy if
2k-1

akaZk + ZrnZk JZ( 1) NI 2k+i— ]—la2k+| i +a0 Z( 1) 2km2k ! +( 1)2kC2k K"

By Corollary 3.1 W|thn 2k , we obtain
2k-1

|‘|(m 2)= (1 Cam™ + ()7 Cop

and thus (3.6) is true for every= 1,2 .,n=1if and only if

(m Z|)_am +Zmn JZ( 1) N|n+| jlan+| j aO

1= j= i=0

Thus (3.6) holds for every =12,...,n-1, if and only if 2, Z,,...,z, are zeroes of the
polynomial (3.7). O

The following main theorem is a direct consequenteCorollary 3.2 and
Theorem 2.2 withn = 2k.

Theorem 3.1. Letk be a positive integer an@,, @, ,....a,, By, By v i 89, 84,18y

be real numbers witha, #0. If Z,Zz,,...,z, are distinct complex numbers and
={z2,2,,...2,} such that z =a,+Bji, z,=a,+p,...5 =a,+ [,

Z, = Z1 Z,, = Z2 aZy = Z Then (3.6) is true for every=12,...2k -1 if and

only if

k
y:ZX”j (czj_lsin(ﬁj InX) +c,; cos@, In x)) (3.8)
j=1
is the general solution of homogeneous Cauchy-Egaation
2ky 2k 4 d2k ly d
ay X vy +a,_,X V= +- +a1x&+a0y 0 (3.9)
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on an open interval0,«), wherec,,C,,...,C,, are arbitrary constants.

The application of Theorem 3.1 is to establistaacby-Euler equation of order
n together with its general solution df), ), of the form (3.8).

4. Conclusion

We give every Cauchy-Euler differential equatioonfrits general solution that depends
only on a given finite numbers of distinct complaxnbers. In the future, we will devote
our attention to the family of all Cauchy-Eulerfdiential equations that have general
solutions depending only on a complex number.
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