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1. Introduction 
Consider a homogeneous Cauchy-Euler equation of order n  of the form 
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where naaa ,...,, 10  are real numbers with .0≠na  Details for methods to find solutions of 

the equation (1.1) was explained in [2, 3, 4, 9]. Moreover, Sabuwala and Leon [7] studied 
the particular solution for the most general n-th order Euler differential equation when the 
non-homogeneity is a polynomial. They found a formula which can be used to compute 
the unknown coefficients in the form of the particular solution. It is well known that the 
general solution of (1.1) can be found from the characteristic equation  
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of the linear ordinary differential equation with constant coefficients    
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where .ln xt =  In general, the general solution of any homogeneous Cauchy-Euler 

equations depends on zeros of the polynomial ∑ ∏
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 The aim of this paper is to give the family of all Cauchy-Euler equations (1.1) 
such that  
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is the general solution of (1.1) on ),0( ∞  where jα  and jβ are real and imaginary parts 

of distinct jz  with 0≠jβ  for all kj ,...,1= . 

 
2. Preliminary 
In this section, we shall give the related basic notions that can be found in [1, 5, 8]. 
 Let ∈n ℕ, ∈naaa ,...,, 10 ℝ with .0≠na  An ordinary differential equation of the 

form  
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is said to be a homogeneous linear ordinary differential equation with constant 

coefficients. By a transformation ,mxey =  where m is a suitable number, the equation 
(2.1) is transformed into the polynomial equation 
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which is said to be the characteristic equation of (2.1).  

 A linear ordinary differential equation form  
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is called a homogeneous Cauchy-Euler equation.  

Theorem 2.1. [5] Let k  be a positive integer, kn 2=  and ,...,,,,...,, 2121 ββααα k  

kk aaa 210 ,...,,,β  be real numbers with .0≠na Then the distinct complex numbers 

,111 iz βα +=  ,,...,222 iziz kkk βαβα +=+= ,11 zzk =+  ,...,22 zzk =+ kk zz =2  are 

distinct k2  zeroes of the polynomial 01
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is the general solution of homogeneous Cauchy-Euler equation (2.2) on an open interval 
),,0( ∞  where kccc 221 ,...,,  are arbitrary constants. 

Definition 2.1. [6] For each ∈kj, ℕ with kj ≤  we define 

{ }kNk ,...,2,1:= , 

kjjkj NaaaaaaP ∈= ,...,,:{: 2121, ⋯  and },21 jaaa <<< ⋯  
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and for every integers kj,  with jk >  we define .0:, =jkN    

Lemma 2.1. [6] Let ∈n ℕ with ,2≥n  ∈m ℂ and ∈naa ,...,1 ℝ with .0≠na  Then   
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 The following theorem is a direct consequence of Theorem 2.1 and Lemma 2.1. 

 
Theorem 2.2. Let k  be a positive integer, kn 2=  and ,,...,,,,...,, 2121 kk βββααα  

kaaa 210 ,...,,  be real numbers with .0≠na Then the distinct complex numbers 

,111 iz βα +=  ,,...,222 iziz kkk βαβα +=+= ,11 zzk =+  ,...,22 zzk =+ kk zz =2  are 

distinct k2  zeroes of the polynomial ∑∑
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and only if (2.3) is the general solution of homogeneous Cauchy-Euler equation (2.2) on 
an open interval ),,0( ∞  where kccc 221 ,...,,  are arbitrary constants. 

 
3. Main theorems 
In this section, before proceeding to our main results, the following terminologies and 
concepts are required. 
 
Definition 3.1. Let n  be a positive integer and nzzz ,...,, 21  be distinct complex numbers. 

Then for every integer kj,  with nkj ≤≤≤1  we define  

},...,,{ 21 kk zzzC = , 

:},...,,{{ 21, jkj aaaS = kj Caaa ∈,...,, 21  and jaaa ,...,, 21  are distinct},  

j
Saa

kj aaaC
kjj
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21, ,  ,1,00,0 == jCC  

and 0, =jkC  for all .nkj ≤<  

 Form above definition, it is important to note that  

kkk zzzC ⋯21, =  and 1,1, ++= kkkk CC  

for every positive integer .k  Furthermore, we have the following applicable lemma. 

Lemma 3.1.  For every positive n . If nzzz ,...,, 21  are distinct complex numbers and  

},...,,{ 21 ss zzzC =  for all positive integer s  with ns ≤ , then  for every positive integer 

ji,  with ,nji ≤≤   

    .,1,11, jijijji CCzC =+ −−−         (3.1) 
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Proof: We shall proof by mathematical induction on n . For 2=n , let ji,  be positive 

integers such that ji, with 2≤≤ ji  and 21,zz are complex numbers and }.,{ 212 zzC =   

Then we have 3 cases: ,1== ji  1=i  and 2=j , and .2== ji  It follow that  

,1,1111,1110,1 CzCzC ==+ −−  2,12112,1121,1 CzzCzC =+=+ −−  and =+ −− 12,1221,2 CzC     

,2,221 Czz =⋅  this implies the lemma is true for 2=n . 

 Next, we let k  be arbitrary positive integer with 2≥k . Suppose that this lemma 
is true for ,kn =  that is for every distinct complex numbers kzzz ,...,, 21  and ,{ 1zCs =  

},...,2 szz  for all positive integers with ,ns ≤  for every positive integers ji, with 

kji ≤≤ , .,1,11, jijijji CCzC =+ −−−  Let 121 ,...,, +kzzz  be distinct complex numbers and 

},...,,{ 21 ss zzzC =   for all positive integer s  with .1+≤ ks  Let ji,  be positive integers 

with 1+≤≤ kji . We shall proof that 

.,1,11, jijijji CCzC =+ −−−  

Since kzzz ,...,, 21  are complex numbers, from the inductive hypothesis, we obtain 

.,1,11, jijijji CCzC =+ −−−  

for every positive integers ji,  with ,kji ≤≤  and so we only prove that  

.,1,11, jijijji CCzC =+ −−−  

for all .1+≤ ki  Let i  be a positive integer with 1+≤ ki  and let 

  1, +kiR :},,...,,{{ 1121 +−= ki zaaa ki Caaa ∈−121 ,...,,  and 1121 ,,...,, +− ki zaaa are distinct}.  

We claim that =∩ +1,, kiki RS  ∅ and .1,1,, ++ =∪ kikiki SRS  For =∩ +1,, kiki RS  ∅, 

suppose that ≠∩ +1,, kiki RS  ∅. Let .},...,,{ 1,,21 +∩∈ kikii RSaaa  Then ∈},...,,{ 21 iaaa  

kiS ,  and ,},...,,{ 1,21 +∈ kii Raaa  and thus ki Caaa ∈,...,, 21  and iaaa ,...,, 21  are distinct 

and there exists iNj ∈  such that .1+= kj za  Since ks Ca ∈  for every iNs ∈ , we obtain 

1+≠ ks za  which is impossible. Hence =∩ +1,, kiki RS  ∅. 

 Next, we shall prove that .1,1,, ++ =∪ kikiki SRS  Let kii Saaa ,21 },...,,{ ∈ .1, +∪ kiR   

Then kii Saaa ,21 },...,,{ ∈  or .},...,,{ 1,21 +∈ kii Raaa  

 Case 1. Suppose that .},...,,{ ,21 kii Saaa ∈  Then ki Caaa ∈,...,, 21  and iaaa ,...,, 21    

are distinct. Since 1+⊆ kk CC , .,...,, 121 +∈ ki Caaa It follows that .},...,,{ 1,21 +∈ kii Saaa   

 Case 2. Suppose that .},...,,{ 1,21 +∈ kii Raaa Then ,...,,,...,, 1121 +− jj aaaa ki Ca ∈  

are distinct element in kC  and there exists iNj ∈  such that 1+= kj za  and thus iaa ,...,1  

.1+∈ kC Hence .},...,,{ 1,21 +∈ kii Saaa  

 From both cases, we obtain .1,1,, ++ ⊆∪ kikiki SRS  
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 Now we let .},...,,{ 1,21 +∈ kii Saaa  Then 121 ,...,, +∈ ki Caaa  and iaaa ,...,, 21  are 

distinct. 

 Case 1. Suppose that there exists iNj ∈  such that .1+= kj za  Since iaaa ,...,, 21  

are distinct complex numbers. Then 1,21 },...,,{ +∈ kii Raaa  and so },...,,{ 21 iaaa  ∪∈ kiS ,  

.1, +kiR  

 Case 2. Suppose that 1+≠ kj za for all iNj ∈ . Since for every iNj ∈ , ,1+∈ ki Ca  

we obtain .1+∈ ki Ca  Hence kii Saaa ,21 },...,,{ ∈  and thus },...,,{ 21 iaaa  .1,, +∪∈ kiki RS  

 From both cases, we obtain .1,,1, ++ ∪⊆ kikiki RSS  It follows that ∪kiS ,   

.1,1, ++ = kiki SR  Hence 
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Hence .1,,11, +−+ =+ kikikki CCzC   

 By mathematical induction, this Lemma is true for all positive integer .n            □ 
 
Lemma 3.2. Let n  be a positive integer. If nzzz ,...,, 21  are distinct complex numbers and 

},,...,,{ 21 nn zzzC =  then   
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Proof: We prove by mathematical induction. For ,1=n  let 1z  be a complex number. 

Then since 11,0 =C  and ,11,1 zC =   

     1

1

1

)( zmzm
i

i −=−∏
=

1,1
101

1,0
0 )1()1( CmC −+−= −

1,1
1

0

0

1
1, )1()1( CmC

i

i
i

i −+−=∑
=

−   

  .)1()1( ,

1

0
, nn

n
n

i

in
ni

i CmC −+−=∑
−

=

−   

This implies that (3.2) is true for .1=n   

 Next, we let k  be a positive integer. Suppose that if kzzz ,...,, 21  are distinct 

complex numbers and },,...,,{ 21 kk zzzC =  then   
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 The following corollary is a direct consequence of Lemma 3.2.  
 
Corollary 3.1. Let n  be a positive integer. If nzzz ,...,, 21  are distinct complex numbers 

and },,...,,{ 21 nn zzzC =  then nzzz ,...,, 21  are zeroes of the polynomial 
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Lemma 3.3.  Let n  be a positive integer. If nzzz ,...,, 21  are distinct complex numbers 
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 Conversely, assume that the equation (3.5) is true. Since nmmm ,...,,,1 2  are 
linearly independent, by undetermined coefficients, we obtain 
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The proof is complete.                   □ 
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Corollary 3.2. Let k  be a positive integer and kkk aaa 2102121 ,...,,,,...,,,,...,, βββααα  

be real numbers with .0≠na  If kzzz 221 ,...,,  are distinct complex numbers and =kC2  
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Proof: By Lemma 3.3 with ,2kn =  the formulas (3.6) is true for every 12,...,2,1 −= kj  
if and only if 
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By Corollary 3.1 with kn 2= , we obtain 
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and thus (3.6) is true for every 1,...,2,1 −= nj  if and only if  
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Thus (3.6) holds for every 1,...,2,1 −= nj , if and only if nzzz ,...,, 21  are zeroes of the 

polynomial (3.7).                  □ 

 The following main theorem is a direct consequence of Corollary 3.2 and 
Theorem 2.2 with .2kn =  

Theorem 3.1.  Let k  be a positive integer and kkk aaa 2102121 ,...,,,,...,,,,...,, βββααα  

be real numbers with .02 ≠ka  If kzzz 221 ,...,,  are distinct complex numbers and 

},...,,{ 2212 kk zzzC =  such that ,111 iz βα +=  ,,...,222 iziz kkk βαβα +=+=  

,11 zzk =+  ,...,22 zzk =+ .2 kk zz =  Then (3.6) is true for every 12,...,2,1 −= kj  if and 

only if        
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is the general solution of homogeneous Cauchy-Euler equation  
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on an open interval ),,0( ∞  where kccc 221 ,...,,  are arbitrary constants. 

 The application of Theorem 3.1 is to establish a Cauchy-Euler equation of order 
n  together with its general solution on ),,0( ∞  of the form (3.8). 

4. Conclusion  
We give every Cauchy-Euler differential equation from its general solution that depends 
only on a given finite numbers of distinct complex numbers.  In the future, we will devote 
our attention to the family of all Cauchy-Euler differential equations that have general 
solutions depending only on a complex number. 
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