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1. Introduction  
We consider the following singularly perturbed problem 

( ) 0( , ) ( ) ( ), (0, ) , [0, ], 0 1,L y t y A t y h t y y t Tα
ε ε ε ε α≡ − = = ∈ < <  (1) 

where 1( , ) { , , }ny t y yε ≡ −…  unknown vector-function, 1( ) { , , }nh t h h≡ −…  known vector-

function, ( )A t n n− × −  matrix-function, 0 0 0
1{ , , }ny y y= −… known constant vector, 

0ε > − small parameter. It is required to construct a regularized asymptotic solution 
[1,2,3,4,5] of the problem (1) at for 0.ε → +  

Problem (1) is a Cauchy problem for an ordinary differential equation of fractional 
order. According to the definition of a fractional order derivative [6,7], i.е. 

( ) (1 )( ) ( ), 0 1,y t t y tα α α− ′= < <  where ( )y t′ −  derivative of the first order from the 

function ( )y t  by the variable ,t  we write the problem (1) in the following form: 

(1 ) 0( , ) ( ) ( ), (0, ) , [0, ],
dy

L y t t A t y h t y y t T
dt

α
ε ε ε ε−≡ − = = ∈   (2) 

We will consider the problem (2) under the following assumptions: 
1) matrix-function )(tA  and vector-function ( )h t  belong to the space 

[0, ],C T∞  that is elements of the matrix-function )(tA  and components of the vector 

( )h t  have derivatives of any order on the segment [0, ]T . 

2) for any [0, ]t T∈  the spectrum { ( )}, 1, ,j t j nσ λ =  of the operator )(tA  

satisfies the conditions: 
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) ( ) ( ), , ( ) 0, 1, ;i j ja t t i j t j nλ λ λ≠ ≠ ≠ =  

) ( ) 0, 1, , [0, ].jb Re t j n t Tλ ≤ = ∀ ∈  

2. Regularization of the problem 
We introduce regularizing variables [2]: 

( 1)

0

1
( ) ( , ), 1, ,

t

j j js s ds t j nατ λ ϕ ε
ε

−= ≡ =∫  

and instead of the problem (2), we will consider «extended» problem 
(1 ) 0

1

( , , ) ( ) ( ) ( ) (0,0, ) .,    
n

j
j j

y y
t t t A t h t

t
L y y y yα

ε τ ε λ ε
τ

ε −

=

∂ ∂
∂ ∂

≡ + − = =∑
ɶ ɶ

ɶ ɶ ɶ  (3) 

Relations of the problem (3) with the problem (2) is that if ( , , )y t τ εɶ  is a solution of the 
problem (3), then contraction of the solution  

( , ( , ), ) ( , )jy t t y tϕ ε ε ε≡ɶ  

when ( , ), 1,j j t j nτ ϕ ε= =  will be exact solution of the problem (2). 

Defining a solution of the system (3) in the form of series: 

0

( , , ) ( , ),k
k

k

y t y tτ ε ε τ
∞

=
=∑ɶ  ( , ) ([0, ], )n

ky t C T Cτ ∞∈ ,  (4) 

we obtain the following iteration problems: 

00
0 0 0

1

( , ) ( ) ( ) ( ) 0,0 ;,       ( )  
n

j
j j

y
Ly t A t y h t y yt τ λ τ=

∂
∂

≡  −  = =∑    0( )ε  

(1 ) 0
1 1( , ) 0,0 0;  ,       ( ) y

Ly t yt
t

ατ − ∂=− =∂    1( )ε  

(1 ) 1( , ) , (0,0) 0, 1.k
k k

y
Ly t t y k

t
ατ − −∂= − = ≥

∂
    ( )kε  

3. Solvability of iteration problems 
Solution of each of the iteration problems ( )kε  will be defined in the space U  of 
functions of the form: 

0
1

( , ) : ( ) ( ) , ( ) ([0, ], ) .j

n
n

j j
j

U y t u y y t y t e y t C T Cτ ∞

=

  = = + ∈ 
  

∑   (5) 

Each of the iteration problems ( )kε  has the following form: 

0
0

1

( , ) ( ) ( ) ( , ) ,   
n

j
j j

y
Ly t A t y h tt ε λ τ

τ=

∂
∂

≡  −  =∑    (6) 

where ( , )h t Uτ ∈ −  corresponding right hand side. 
The following proposition takes place. 

 
Theorem 1. Let ( , )h t Uτ ∈  and conditions 1) and 2а) hold. Then, for solvability of the 

equation (6) in space ,U  it is necessary and sufficient that the following conditions hold 
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( , ), ( ) 0, 1, , [0, ],jh t d t j n t Tτ< >≡ = ∀ ∈    (7) 

where ( )j td − eigenfunctions of the matrix of functions ( ),tA∗  corresponding to 

eigenvalues ( ), 1, .j t j nλ =  

Proof: Defining a solution ( , )y t τ  of the system (6) as an element (5) of the space ,U  

we get the following systems for the coefficients ( ),jy t  0,1,2,j =  of the sum (5): 

( ) ( ) ( ) ( ), 1, ,k k kyt I A t t h t k nλ  − = =     (8) 

0 0 .( ) ( ) ( ), ( (1,1))yA t t h t I diag− = ≡     (9) 

The system (9), due to ( ) 0,detA t ≠  has a unique solution  1
0 0( ) ( ) ( ).y t A t h t−= −  

The system (8) is solvable in [0, ]C T∞  if and only if the condition 

( ), ( ) 0, 1,2, [0, ],k kh t d t k t T< >≡ = ∀ ∈ holds, that coincides with the condition (7). 

Theorem 1 is proved. 
 
Remark 1. If the conditions (7) hold, system (6) has a solution that can be represented as 

1
0

1
1

( ( ), ( ))
( , ) ( ) ( ) ( ) ( ) ( )

( ) ( )
,k

n n
k s

k k s
k s k k s

s

h t d t
y t t c t c t e A t h t

t t
ττ α

λ λ
−

= ≠
=

 
 +
 −
  

= −∑ ∑   (10) 

where [0, ], 1,( )k C T k ntα ∞∈ = − arbitrary scalar functions. 

The following theorem establishes conditions under which the solution (10) of 
system (6) is uniquely defined in the class U . 
 
Theorem 2. Let 1), 2а) hold and ( , )h t Uτ ∈  of the system (6) satisfy conditions (7). 
Then the system (6) with additional conditions: 

0(0,0) ,y y=       (11) 

(1 ) ( , )
( ) 0, 1, , [0, ],, j

y t
t t j n t T

t
dα τ− >≡ = ∀ ∈

∂
∂<−    (12) 

where 0 ny C∈ − known constants, is uniquely solvable in the space .U  

Proof: Since conditions of Theorem 1 hold, the system (6) has a solution in the space U  

in the form (10), where functions , 1, ,( )k k ntα =  have not yet been found. To calculate 

them, we will use additional conditions (11) and (12). 
We subject (10) to the initial condition (11), we get the system: 

1 0
0

1 , 1

( (0), (0))
(0) (0) (0) (0) (0) .

(0) (0)

n n
k s

k k s
k s k s k s

h d
c c A h yα

λ λ
−

= ≠ =

 
+ = − 

−∑ ∑  

Multiplying scalarly both sides of this equality by (0)kd  and taking into account 

biorthogonality of the systems { ( )}kc t  and { ( )} ,kd t  we uniquely find initial values 
0(0)k kα α=  for the functions ( ), 1, .k t k nα =  
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We subject now the function (10) to the condition (12). First calculate 
( , )

:
y t

t

τ∂
∂

 

1
0

1 , 1

( , ) ( ) ( , )( ) ( , )
( ) ) .(k

n n
k s k s k s k s k s

k k k k s s
k s k s k s k s

h d h d h d
c c c c e A hτλ λ λ λα α

λ λ λ λ
−

= ≠ =

  ′ ′− − − ′ ′ ′ ′+ + + ⋅  − −   
−∑ ∑  

Conditions (12) lead to the equations: 

( )(1 ) 1
0

,
1

( , )
( , ) ( , ) ) , 0, 1, .(

n
k s

k k k k k k k
s k k s
s

h d
t c d c d A h d k nα α α

λ λ
− −

≠
=

 
 ′ ′ ′ ′− + + − ⋅ = =
 −
  

∑  

which together with the initial conditions 0(0) ,k kα α=  found earlier, allow us to uniquely 

find the functions ( ), 1, .k t k nα =  Theorem 2 is proved. 

 
Example 1. Using the algorithm developed above, construct the main term of the 
asymptotic solution of the Cauchy problem: 

( 2/3)

(2 / 3
1

2

( )0 1

( )1 0

y h ty

h tzz
ε
     

= +       −     
, 

0

0

(0, ) ,

(0, ) ,

y y

z z

ε
ε

=
=

  (13) 

where [0, ], 1, 0t T T ε∈ < > − small parameter. Eigen values of the matrix  ( )A t  of this 

system are numbers 1 2( ) , ( ) .t i t iλ λ≡ − ≡ +  The corresponding eigenvectors ( )jc t  and 

eigenvectors ( )jd t  of the conjugate operator ( )A t∗  have the form: 

1 2 1 2, , , .
1 1 1 1

i i i i
c c d d

− −       
= = = =       − −       

 

Introduce regularizing variables:  

3 32 2
1 1 2 2

3 3
( , ), ( , ).

2 2

i i
t t t tτ ϕ ε τ ϕ ε

ε ε
= − ≡ = ≡  

For extended functions { ( , , ), ( , , )}w y t z tτ ε τ ε≡ɶ ɶ ɶ  we obtain the following problem: 
2

03

1

( ), (0,0, ) ,j
j j

w w
t Aw h t w w

t
ε λ ε

τ=

∂ ∂+ − = =
∂ ∂∑
ɶ ɶ

ɶ ɶ  

where 0 0 0
1 2{ , }, ( ) { ( ), ( )}, { , }.w y z h t h t h t w y z= = =ɶ ɶ ɶ  

Defining a solution of this problem in the form of series  

0

( , , ) ( , )k
k

k

w t u w t uε ε
∞

=
=∑ɶ , 

we get the following iteration systems:  
2

00
0 0 0 0

1

( , ) ( ), (0,0) ;j
j j

w
L w t Aw h t w wτ λ

τ=

∂≡ − = =
∂∑    (14) 

3 2 0
0 1 1( , ) , (0,0) 0;

w
L w t t w

t
τ ∂

= − =
∂

    (15) 
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3 2 1
0 ( , ) , (0,0) 0, 1.k

k k

w
L w t t w k

t
τ −∂

= − = ≥
∂

   (16) 

We look for a solution of the equation (14) in the form of the functions: 
1 2(0) (0) (0)

0 1 2 0( , ) ( ) ( ) ( ).w t w t e w t e w tτ ττ = + +    (17) 
Putting (17) into the equation (14), and equating coefficients at the same exponentials and 
the free terms, we get: 

(0)
1 1[ ] ( ) 0,I A w tλ − =      (18) 

(0)
2 2[ ] ( ) 0,I A w tλ − =      (19) 

(0)
0 ( ) ( ).Aw t h t− =      (20) 

From the system (20) we find (0) 1
0 ( ) ( ).w t A h t−= −  In the equations (18) and (19) 

(0) (0)
1 2( ), ( )w t w t − arbitrary functions. 

Thus, we have defined solution (17) of the system (14) in the following way: 
1 2(0) (0) 1

0 1 1 2 2( , ) ( ) ( ) ( ),w t t c e t c e A h tτ ττ α α −= + −    (21) 

where (0) , 1,2( )k ktα = −arbitrary functions. 

We subject (21) to the initial condition 0
0(0,0) .w w=  

0
1(0) (0)

1 20
2

(0)0 1
(0) (0) ,

(0)1 1 1 0

hi iy

hz
α α

− −        = + −        − −       
 

or 
(0) (0) 0
1 2 2
(0) (0) 0
1 2 1

(0) (0) (0) ,

(0) (0) (0) ,

i i h y

h z

α α
α α

− + + =
 − − − =

 

then we get: 
0 0 0 0

(0) (0)1 2 1 2
1 2

(0) [ (0) ] (0) [ (0) ]
(0) , (0) .

2 2

z h i h y z h i h yα α− − − + + −= =   (22) 

To uniquely define arbitrary functions (0) , 1,2,( )k ktα =  that are present in the 

solution (21) of the problem (14), we proceed to the next iteration problem (15). 
First we calculate: 

1 2(0) (0) 10
1 1 2 2

( , )
( ) ( ) ( ).

w t
t c e t c e A h t

t
τ ττ α α −∂

= + −
∂

ɺɺ ɺ    (23) 

Solution of the equation (15) is sought as a function: 
1 2(1) (1) (1)

1 1 2 0( , ) ( ) ( ) ( ).w t w t e w t e w tτ ττ = + +     (24) 
Substituting (24) into the equation (15) (taking into account (23)), and equating 
coefficients at the same exponentials and the free terms, we have: 

3(1) 2 (0)
1 1 1[ ] ( ) ( ),I A w t t tλ α− = − ɺ  

3(1) 2 (0)
2 2 2[ ] ( ) ( ),I A w t t tλ α− = − ɺ  

3(1) 2 1
0 ( ) ( ).Aw t t A h t−− = − ɺ  
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For solvability of the first two systems it is necessary and sufficient that 
(0)( ) 0, 1,2.k t kα = =ɺ  Taking into account the initial conditions (22), we find the 

functions 
0 0

(0) (0) 1 2
1 1

(0) [ (0) ]
( ) (0) ,

2

z h i h y
tα α − − −= ≡

0 0
(0) (0) 1 2
2 2

(0) [ (0) ]
( ) (0) ,

2

z h i h y
tα α + + −= ≡  

unambiguously. 

Thus, we defined arbitrary functions (0)( ) 0, 1,2,k t kα = =  in the solution (21), 

and thereby, uniquely determined the function (17) of the iteration problem (14), i.e., 
built the main term of the asymptotics of solutions to the problem (13): 

3 230 0
0 1 2 2

0

( ) (0) ( (0) )
( ) 12

i
ty t iz h i h y

e
z t

ε ε

ε

−−    − − −= +     −    
 

3 230 0
11 2 2

2

( )0 1(0) ( (0) )
.

( )1 1 02

i
t h tiz h i h y

e
h t

ε
−      + + −+ −       −     
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