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Abstract.  In this article, we  present  a  comprehensive  and  fully  detailed  study  of  the  

equations px + py = z2   and   px – py = z2  when p ≥ 2  is prime, and  x, y, z  are positive 

integers.  For each equation we establish the cases of infinitely many solutions and of no-

solutions.  Several solutions are also exhibited.  
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1. Introduction 

The field of Diophantine equations is ancient, vast, and no general method exists to 

decide whether a given Diophantine equation has any solutions, or how many solutions. 

 

       The famous general equation 

px + qy = z2 

has many forms.  The literature contains a very large number of articles on non-linear 

such individual equations involving particular primes and powers of all kinds.  Among 

them are for example [1, 2, 4, 6]. 

 

       In this paper, we consider the two equations  

px + py = z2 

px – py = z2 

in which  p ≥ 2  is prime, and  x, y, z  are positive integers.   

All other values introduced are also positive integers, unless otherwise specified. 

 

       In our discussion, we utilize Catalan's Conjecture. 

 

       In 1844, Catalan conjectured:  The only solution in integers  r > 0, s > 0, a > 1, b > 1  

of the equation  

ra – sb = 1 

is  r = b = 3  and  s = a = 2. 

       The conjecture was proven by Mihǎilescu  [5]  in  2002. 
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       In the first two sections, we consider  px + py = z2  when  p  is odd and respectively 

when  p = 2,  and in the latter two sections the equation px – py = z2  when  p  is odd, and 

respectively when  p = 2.  Each section is self-contained, as are the cases in each section 

all of which are considered separately. 

 

2.   All the solutions of  px + py = z2  when  p > 2  is prime 

 

In this  section,  we  consider  the  equation  px + py = z2  in which  p  is  an  odd  prime.  

Except  for  p = 3,  it  is  established  for  any  other  prime  that no solutions exist.  When   

p = 3,  it is shown in Theorem 2.1  that the equation has infinitely many solutions 

demonstrated via an identity.   

 

Theorem  2.1.    Suppose  p  is an odd prime, and  x, y, z  are positive integers. Let  t = 1, 

2, …, k, … . 

Then, only  for  p = 3  there exist solutions of  

                                                              px + py = z2                                                           (1) 

given by  

(p,  x,  y,  z)  =  (3, 2t + 1, 2t, 2 ⸱ 3t) 

valid for each and every value  t ≥ 1. 

       The equation has infinitely many solutions. 

 

Proof:   From  (1) we have that  z2  is even, and denote  z = 2T.  If  x = y,  then  (1)  yields  

2px = z2 = 4T2  which is impossible.  Therefore   x ≠ y and  x, y  are distinct.  Without loss 

of generality, we shall assume that  x > y. Let  n = 1, 2, …, k, … . We shall express the 

values  x, y  in terms  of  t, n.  It follows that four cases exist, namely:  

(a)    x > y,        x = 2t,                y = 2n + 1. 

(b)    x > y,        x = 2t,                y = 2n. 

(c)    x > y,        x = 2t + 1,          y = 2n. 

(d)    x > y,        x = 2t + 1,          y = 2n + 1. 

 

Suppose  (a):   x > y,  x = 2t,  y = 2n + 1. 

       Denote  2t = (2n + 1) + a.  If (1) has a solution, then 

p2t + p2n+1  =  p(2n+1)+a + p2n+1  =  p2n+1(pa + 1)  =  z2. 

The  value  p2n+1  is not a square, and  pa + 1  is not a multiple of  p. It therefore follows 

that   p2n+1(pa + 1)  ≠  z2.  Case  (a)  has no solutions. 

 

Suppose  (b):   x > y,  x = 2t,  y = 2n. 

       Denote  2t = (2n) + b  where  b  is even, and let  b = 2h.  If  (1)  has a solution, then 

p2t + p2n  =  p2n(pb + 1)  =  (pn)2(pb + 1)  =  z2. 

The factor  pb + 1 must equal a square.  Denote pb + 1 = Q2  or  Q2 – pb = 1.  Hence,   

Q2 – pb  =  Q2 – p2h  =  Q2 – (ph)2  =  (Q – ph)(Q + ph)  =  1 

which is impossible. Thus,  pb + 1 ≠ Q2  and  (pn)2(pb + 1) ≠ z2.  Case (b) has no solutions. 

 

Suppose  (c):   x > y,  x = 2t + 1,  y = 2n. 

       Denote  2t + 1 = (2n) + c  where  c ≥ 1  is odd.  If (1) has a solution, then 

p2t+1 + p2n  =  p2n(pc + 1)  =  (pn)2(pc+ 1)  =  z2. 
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The factor  pc + 1  must be a square, say pc + 1 = G2. Then  pc = G2 – 1 = (G – 1)(G + 1).  

Denote 

G – 1 = pA,       G + 1 = pB,        A < B,      A + B = c. 

Then  (G + 1) – (G – 1) = 2 = pA(pB-A – 1), whose only solution when  p  is odd  is  A= 0,  

p = 3,  B = 1.  Hence  c = 1.  It then follows that  n = t,  and  x, y  are two consecutive 

integers.  Thus, the identity 

32t+1 + 32t  =  32t(3 + 1)  =  (3t)2 ⸱ 22  =  (2 ⸱ 3t)2  =  z2 

is valid for each and every value  t ≥ 1.  The equation  px + py = z2  has infinitely many 

solutions of the form  

(p,  x,  y,  z)  = (3,  2t + 1,  2t,  2 ⸱ 3t), 

and each value  t  represents a unique solution. 

       This concludes case  (c). 

 

Suppose  (d):   x > y,  x = 2t + 1,  y = 2n + 1. 

       Denote  2t + 1 = (2n + 1) + d.  If (1)  has a solution, then 

p2t+1 + p2n+1 =  p(2n+1)+d + p2n+1 =  p2n+1(pd+ 1)  =  z2. 

Since  p2n+1  is  not  a  square,   and  pd + 1  is  not  a  multiple  of   p,  it  follows  that  

p2n+1(pd + 1)  ≠  z2.   Case  (d)  has no solutions. 

 

       The proof of  Theorem  2.1  is complete.                                                  □ 

 

Remark  2.1.   In  [1], the equation  3x + qy = z2 was considered.  For the particular case  

q  =  3   with  consecutive  integers  x, y,  it  was  shown:  For  all  even  x  and  y  =  x – 1,   

3x + 3y = z2  has no solutions, whereas for all odd  x  and  y = x – 1,  3x + 3y = z2  has 

infinitely many solutions. 

       In this article (Theorem  2.1 – (c)),  it is shown that  px + py = z2 has a solution only 

when  p = 3. The  solution   (p,  x,  y,  z)  =  (3,  2t + 1,  2t,  2 ⸱ 3t)   is  valid  for  all values  

t  ≥ 1,  and  x, y  are consecutive integers.  The equation has infinitely many solutions. 

 

3.   All the solutions of   px + py = z2  when  p = 2 

 

       Elementary Number Theory is a branch of Number Theory which uses elementary 

methods to solve equations having integral solutions and also other problems.  As an 

example, we have Euclid (3rd century B.C.)  with his first proof that the set of prime 

numbers is infinite.  This proof is considered today as one of the simplest and most 

elementary proofs, but also as one of the classical most beautiful and elegant proofs ever.  

The simplicity which characterizes our discussion in Section  2  is also pursued in the 

same manner in the sections ahead.  

 

        In Theorem  3.1  we determine all the solutions of the equation  2x + 2y = z2.  We 

begin with a simple useful lemma. 

 

Lemma  3.1.   The equation  2M + 1 =  N2  has the unique solution  M = 3  and   N = 3. 
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Proof:   If  2M  + 1 = N2  has a solution in positive integers, then  2M = N2 – 1 =  (N – 1)(N 

+ 1).  Denote  N – 1 = 2u  and  N + 1 = 2v  where  u + v = M.  Then 

(N + 1) – (N – 1)  =  2v – 2u  = 2. 

The  difference  of  two  distinct  powers  of  2  is  even,  and  2  is  the  smallest  possible  

such difference.   It  is  easily  seen  that  this  occurs  only  when  v = 2   and   u = 1.  

Thus,  2u = 21  = N – 1  or   N = 3,  which satisfies  2v = 22 = N + 1,  and implies that  2M + 

1 = 32  or  M  = 3.  The solution  (M, N)  =  (3, 3)  is unique as asserted.                       □ 

 

Remark  3.1.   Certainly for N2 – 2M = 1,  we could have used Catalan's Conjecture to 

obtain the unique solution  M = N = 3.  Nevertheless, a very simple proof provided the 

same result.   

 

Theorem  3.1.   Suppose  p = 2,  and  x, y, z  are positive integers.  Then the solutions of 

the equation 

                                                              2x + 2y = z2                                                           (2) 

are as follows. 

If   x, y   are equal: 

(a)  No solutions when  x, y  are even. 

(b)  Infinitely many solutions when  x, y  are odd. 

If   x, y   are distinct: 

(c)   No solutions when  x  is even and  y  is odd.   

(d)  No solutions when  x, y  are even. 

(e)   Infinitely many solutions when  x  is odd and  y  is even. 

(f)   No solutions when  x, y  are odd. 

 

Proof: Let  t  = 1, 2, …, k, … . 

 

The  case   x = y. 

       The values   x, y   are expressed in terms of  t. 

 

(a)   Suppose  x, y  are even,  and denote  x = y = 2t.  If (2) has a solution, then 

2x + 2y = 22t + 22t =  2 ⸱ 22t  =  2(2t)2  =  z2. 

The factor (2t)2 is a square, but 2 is not.  Therefore  2(2t)2 ≠ z2.  Case  (a) has no solutions.   

 

(b)   Suppose  x, y  are odd,  and denote  x = y = 2t + 1.  If (2) has a solution, then 

2x + 2y  =  22t+1 + 22t+1  =  2 ⸱22t+1  =  22⸱ 22t  =  (2t+1)2  =  z2. 

The identity  

22t+1 + 22t+1  =  (2t+1)2 

is valid for each and every value  t ≥ 1.  In this case, the equation  2x + 2y = z2  has 

infinitely many solutions of the form 

          (2,  x,  y,  z)  =  (2,  2t + 1,  2t + 1,  2t+1), 

where each value  t  determines a unique solution.  

       This concludes  (b),  and the case  x = y. 

 

The  case   x ≠ y. 
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       Let  n  = 1, 2, …, k, … .  Since  x, y  are distinct, then without loss of generality, we 

shall assume that  x > y.  Hereafter, the values  x, y  shall be expressed  in terms of  t, n.   

 

(c)   x > y,   x = 2t,    y = 2n + 1. 

       Denote  2t = (2n + 1) + a.  If  (2)  has a solution, then 

                                  22t + 22n+1  =  2(2n+1)+a + 22n+1  =  22n+1(2a + 1)  =  z2.                        (3) 

The value  22n+1  is not a square.  Since2a + 1 is odd, it follows in  (3) that 22n+1(2a + 1)  ≠ 

z2.  Case  (c)  has no solutions. 

 

(d)   x > y,   x = 2t,    y = 2n. 

       Denote  2t = (2n) + b  where  b  is even.  If  (2)  has a solution, then 

                                     22t + 22n  =  22n(2b + 1)  =  (2n)2(2b + 1)  =  z2.                              (4) 

The  factor  (2n)2  is  a  square.  By  Lemma  3.1,  the  factor  2b +1  is a square only when   

b = 3  which is in contradiction that a priori  b  is even.  In  (4),  it  then follows  that  

(2n)2(2b + 1) ≠ z2.  Case  (d)  has no solutions. 

 

(e)   x > y,   x = 2t + 1,    y = 2n. 

       Denote  2t + 1 = (2n) + c  where  c  is odd.  If  (2)  has a solution, then 

                                        22t+1 + 22n  =  22n(2c + 1)  =  (2n)2(2c + 1)  =  z2.                         (5) 

The  factor  (2n)2  is a square.  By  Lemma  3.1,  the  factor  2c + 1  is  a  square only when   

c = 3.  Therefore in  (5)  with  c = 3  we obtain 

z2  =  (2n)2⸱ 32  =  (3 ⸱ 2n)2. 

The identity  

22n+3 + 22n  =  (3 ⸱ 2n)2 

is valid for each and every value  n ≥ 1.  Therefore in this case, the equation  2x + 2y = z2  

has infinitely many solutions of the form   

     (2,  x,  y,  z)  =  (2,  2n + 3,  2n,  3 ⸱ 2n), 

where each value  n  represents a unique solution. 

       This completes  case  (e). 

 

(f)   x > y,   x = 2t + 1,    y = 2n +1. 

       Denote  2t + 1 =  (2n+1) + d.  If  (2)  has a solution, then 

22t+1 + 22n+1  =  2(2n+1)+d + 22n+1 =  22n+1(2d + 1)  =  z2.                      (6) 

The value 22n+1 is not a square.  Since  2d + 1  is odd, it  follows in  (6)  that  22n+1(2d + 1)  

≠ z2.  Case  (f)  has no solutions. 

 

       The proof of  Theorem  3.1  is complete.                                                       □ 

 

Remark  3.2.   An interesting consequence follows from the established solutions of the 

equation  px + py = z2.  When  p = 3  and  x > y,  then  z = 2 ⸱ 3t  where  t ≥ 1.  Whereas 

when  p = 2  and  x > y,  then  z = 3 ⸱ 2n  where  n ≥ 1. Therefore, each of these solutions 

is exactly a multiple of  62. 
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4.   All the solutions of  p x –  py = z2  when  p > 2  is prime 

 

       For  px – py = z2  in which  p  is an odd prime, we determine first the form of  p,  and 

then all the solutions of the equation.  Some solutions are also exhibited. 

 

Theorem  4.1.   Suppose  p  is an odd prime, and   x,  y,  z  are positive integers.  Let   t =  

1, 2, …, k, … ,  and  v = 1, 2, …, k, … .  Let  v ≥ 1 be a fixed value for which  p = 4v2 + 

1.  Then for each such prime  p,  the equation 

                                                                     px – py  =  z2                                                  (7) 

has a solution of the form 

         (p,  x,  y,  z)  =  (4v2 + 1,  2t + 1,  2t,  2v⸱(4v2 + 1)t) 

valid for all values  t ≥ 1. 

       The equation has infinitely many solutions. 

 

Proof:   Let  n  = 1, 2, … , k, … .  The values  x,  y  are  expressed  in  terms  of  t,  n.  

Four cases then exist, namely:  

(a)    x = 2t,           y = 2n + 1. 

(b)    x = 2t,           y = 2n. 

(c)    x = 2t + 1,     y = 2n. 

(d)    x = 2t + 1,     y = 2n + 1. 

In each of  (a) – (d),  a priori  x > y.   

 

Suppose  (a):   x = 2t,  y = 2n + 1. 

       Denote  2t = (2n + 1) + a.  If  (7)  has a solution, we obtain 

p2t – p2n+1  =  p(2n+1)+a – p2n+1  =  p2n+1(pa–1)  =  z2. 

The  value  p2n+1 is not a square.  Since  pa – 1 is not  a multiple of  p,  it therefore follows 

that  p2n+1(pa – 1)  ≠  z2.  Case  (a)  has no solutions. 

 

Suppose  (b):   x = 2t,  y = 2n. 

       Denote  2t = (2n) + b  where  b  is even, and let  b = 2s. If  (7)  has a solution, we 

have  

p2t – p2n  =  p2n(pb–1)  =  (pn)2(pb–1)  =  z2. 

Since   (pn)2    is  a  square,    pb–1  must   also  equal a  square,  say  pb – 1 = Q2,  or   

pb – Q2 = 1.  Hence,  

pb – Q2   = p2s  – Q2  =  (ps)2 – Q2  =  (ps – Q)(ps + Q)  =  1 

which is impossible.  Hence  pb– 1 ≠  Q2  and   (pn)2(pb – 1)  ≠  z2.  Case  (b)  has no 

solutions. 

 

Suppose  (c):   x = 2t + 1,  y = 2n. 

       Denote  2t + 1 =  (2n) + c  where  c  is odd.  If  (7)  has a solution, then 

p2t+1 – p2n  =  p2n(pc – 1)  =  (pn)2(pc – 1)  =  z2. 

The factor  pc – 1must equal a square,  say  pc – 1 = G2.  For all odd  c > 1,  the equation 

pc – 1 = G2   or   pc – G2 = 1,  in which  p > 0,  G > 0,  c > 1,  2 > 1  satisfy the conditions 

of  Catalan's Conjecture.  However, the unique solution  (3, 2, 2, 3)  of  Catalan's 

Conjecture  is  not a solution of  pc –  G2 = 1.  Therefore,  pc – 1 ≠ G2  when  c > 1  is odd.   
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       When   c = 1,  it  follows  that  t = n  and  p1 – 1 =  G2  where  G  is even.  Each  

prime  p  is of the form  either  4N + 3  or  4N + 1.  If   p = 4N + 3,  then  p – 1 =  4N + 2  

= 2(2N + 1)  ≠  G2.   Therefore,   p  =  4N + 1   and   N  =  v2   yield    p  =  4v2 + 1,  where   

G2 = 4v2 = (2v)2.  Moreover,  x, y  are two consecutive integers.  The value  z  is 

determined accordingly, and   z =  2v⸱(4v2 + 1)t. 

 

       Finally,  for   any  fixed   prime   p = 4v2 + 1 (v ≥ 1),  with   all  values  t  ≥ 1  in  x =  

2t + 1,   y  = 2t,  one obtains infinitely many solutions of  (7).  Furthermore, the equation   

px – py = z2  then has infinitely many solutions for each and every prime  p = 4v2 + 1  as 

follows   

     (p,  x,  y,  z)  =  (4v2 + 1,  2t + 1,  2t,  2v⸱(4v2 + 1)t). 

There  are  infinitely  many  primes  p = 4N + 1,  as  there  are  also infinitely many 

primes of the form   p  =  4v2 + 1.  Case  (c)  is complete.   

 

       For the convenience of the reader we exhibit some solutions of case  (c). The first 

four primes of the form  p = 4v2 + 1  are   p = 5, 17, 37, 101,  and   some solutions  are: 

 

Solution 1.          53       –    52      =   102. 

 

Solution 2.          55      –     54      =   502. 

 

Solution 3.          57      –     56      =   2502. 

 

Solution 4.          173     –    172     =   682. 

 

Solution 5.          175      –    174     =   11562. 

 

Solution 6.          373    –    372     =   2222. 

 

Solution 7.          1013   –   1012     =   10102. 

 

Suppose  (d):   x = 2t + 1,   y = 2n + 1. 

       Denote  2t + 1 = (2n + 1) + d.  If  (7)  has a solution, then 

p2t+1 – p2n+1  =  p(2n+1)+d – p2n+1  =  p2n+1(pd – 1)  =  z2. 

The value  p2n+1 is not a square.  Since  pd – 1 is not a multiple of  p, it  therefore  follows  

that   p2n+1(pd – 1)  ≠  z2.   Case  (d)  has no solutions. 

 

       This concludes the proof of  Theorem  4.1.                                                  □ 

 

5.   All the solutions of  px – py = z2  when  p = 2   

 

       In  this section,  we  determine  all   the solutions  of  the  equation  px – py = z2  when   

p = 2.  This is done in the following theorem. 
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Theorem  5.1.   Suppose  p = 2,  and  x,  y,  z   are positive integers.  Then the solutions 

of  the  equation  

                                                                2 x  –  2y  =  z2                                                     (8) 

are as follows.   

(a)     No solutions when  x  is even and  y  is odd. 

(b)     No solutions when  x, y  are even. 

(c)      Infinitely many solutions when  x  is odd and  y  is even. 

(d)     No solutions when  x, y  are odd. 

 

Proof:   In  each of  (a) – (d),  a priori  x > y.   Let   t = 1, 2, … , k, …,  and   n = 1, 2, … ,  

k, … .   We shall express the values   x,  y  in terms of  t,  n. 

 

Suppose  (a):   x = 2t,  y = 2n + 1. 

       Denote  2t = (2n + 1) + a.   If  (8)  has a solution, then   

        22t – 22n+1  =  2(2n+1)+a – 22n+1  =  22n+1(2a – 1)  =  z2. 

The value 22n+1  is not equal to a square. The factor 2a – 1 is odd. Hence,  22n+1(2a – 1) ≠ 

z2.  Case  (a)  has no solutions. 

 

Suppose  (b):   x = 2t,   y = 2n. 

       Denote  2t = (2n) + b  where  b  is even,  and let  b = 2r.  If (8)  has a solution, then 

22t – 22n  =  22n(2b – 1)  =   (2n)2(2b – 1) =  z2.   

Since   (2n)2   is  a  square,    2b – 1  must  also  equal a  square.    Let   2b – 1 =  L2    or   

2b – L2 = 1.  Hence, 

2b – L2 =  22r – L2  =   (2r)2 – L2  =  (2r – L)(2r + L)  =  1 

which is impossible.  Therefore,  2b – 1 ≠ L2  and  (2n)2(2b – 1) ≠ z2.  Case  (b)  has no 

solutions. 

 

Suppose  (c):   x  = 2t + 1,   y = 2n. 

        Denote  2t + 1 = (2n) + c  where  c  is odd.  If  (8)  has a solution, then   

                                          22t+1 –  22n =  22n(2c – 1)  =  (2n)2(2c – 1)  =  z2                         (9) 

implying that  2c – 1  equals a square, say  2c – 1 = K2  and  K  is odd.  Suppose that  c > 1  

is odd. The equation  2c – 1 = K2  yields  2c – K2 = 1,  and the values  2 > 0,  K > 0,  c > 1,  

2 > 1  satisfy the conditions of  Catalan's Conjecture.  But, the unique solution  (3, 2, 2, 3)  

of  Catalan's Conjecture   is  not a  solution of  2c – K2 = 1.  Therefore,  2c – 1 ≠  K2  when   

c > 1  is odd. 

 

       Hence,  if  (9)  has  any  solutions,  then  c = 1.  When   c = 1,  then  in  (9)  2c – 1 = 1  

(K = 1),  and  z  =  2n.  Moreover,  t  =  n,  and  x, y  are consecutive integers. 

       The equation  2x –  2y = z2  has infinitely many solutions  

             (2,  x,  y,  z)  =  (2,  2n + 1,  2n,  2n) 

valid for each and  every  value   n ≥ 1.  Case  (c)  is complete.  

 

Suppose  (d):   x = 2t + 1,   y = 2n + 1. 

       Denote  2t  + 1= (2n + 1) + d.  If  (8)  has a solution, then   

22t+1 – 22n+1  =  2(2n+1)+d – 22n+1  =  22n+1(2d – 1)  =  z2. 
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The value  22n+1  is  not  a  square,  and  2d – 1  is  odd.  It  then  follows  that  22n+1(2d – 1) 

≠  z2.   Case  (d)  has no solutions. 

 

       This completes the proof of  Theorem  5.1.                                               □ 

 

Final Remark.   An interesting fact is revealed from the solutions established in  

Theorems  2.1 – 5.1.  The value  x  is  odd in all the solutions, whereas the value  y  is odd 

in Theorem 3.1 – (b),  but even in all other solutions. 
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