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Abstract.   In this article, we  consider  the  equation  A2 – B2 = Z4   with  positive integers    

A,  B,  Z.   We establish:  (i)  For  all  primes  A,  B,  the  equation  has  a  unique  solution.   

(ii)  When   B = 4N + 3 (N > 0)  is prime, the equation has no solutions.  (iii)  For  B = 4N 

+ 1  prime,  the  necessary  and  sufficient  conditions  for  a  solution  are  determined.   

(iv)  For the composite   B = 4N + 3 (N = 3a),  the  necessary and sufficient conditions for 

a solution are provided.  Several solutions are also exhibited. 
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1.   Introduction 

The field of Diophantine equations is ancient, vast, and no general method exists to decide 

whether a given Diophantine equation has any solutions, or how many solutions. 

 

       The famous general equation 

px + qy = z2 

has many forms.  The literature contains a very large number of articles on non-linear such 

individual equations involving particular primes and powers of all kinds.  Among them are 

for example [1, 2, 5]. 

 

       In this paper, we consider the equation  A2 – B2 = Z4  when  A, B, Z  are positive integers.  

All other values introduced are also positive integers.  We investigate the equation when  

A, B  are both primes, and also when at least one of  A, B  is composite. 

 

2.   Solutions of  A2 – B2  = Z4   when  A, B  are primes 

When A, B   are  odd  primes, the  unique  solution  of   the equation   A2 – B2 = Z4  is  

determined  in Theorem 2.1. 

 

Theorem  2.1.   Suppose that  p, q  are odd primes where  A = p  and  B = q.  Then the 

equation 

                                   p2 – q2 = Z4                                                       (1) 

has a unique solution. 
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Proof:   The equation  p2 – q2 = Z4 implies  q2 = p2 – Z4 = (p – Z2)(p + Z2).  Three possibilities 

then exist, namely:  p – Z2 = 1, q, q2,  where the last two of which are a priori impossible.  

Thus,  p – Z2 = 1  or   p = Z2 + 1, and  p + Z2 = q2  or  p = q2 – Z2. Hence   p = (q – Z)(q + 

Z)   where  q – Z = 1   or   q = Z + 1,  and  p = q + Z   or   p = 2Z + 1.  Since  p = Z2 + 1 = 

2Z + 1,  it follows that  Z2 + 1 – (2Z + 1) = 0  or  Z(Z– 2) = 0  and  Z = 2.  Therefore   

p = 2Z + 1 = 5,  and   q = Z + 1 = 3. 

 

       Hence, with odd  primes  p, q,  p2 – q2 = Z4   has the unique solution  

 

Solution  1.                                   (p,  q,  Z)  =  (5,  3,  2). 

 

       The  proof  of  Theorem  2.1  is complete.                                               □ 

 

Remark  2.1.   As a consequence  of  Theorem  2.1  we have:  The case  p = 2  and  q  an 

odd prime is a priori impossible in  (1).  When   q = 2,  it follows from  Theorem  2.1  that 

p – Z2 = 1  and  p + Z2 = 4  or  2p = 5  which is impossible.  Hence in  (1) none of  the 

primes  p, q  is equal to  2.  

 

3.   Solutions of  A2 – B2 = Z4  when at least one of  A, B  is composite 

 

       In Section  2,  it has been shown that when  A, B  are both primes, then A2 – B2 = Z4 

has the unique solution  (A, B, Z) = (5, 3, 2).  Therefore, more solutions of the equation 

may be obtained only when exactly one of A, B  is prime,  or when both A, B  are odd 

composites.  In Theorem  3.1  we consider the case when  B = 4N + 3  (N > 0)  is prime.  It 

is shown that the equation has no solutions.  In  Theorem  3.2,  when  B = 4N + 1  is prime, 

it is shown that the equation turns into an identity having solutions provided two conditions 

hold simultaneously.  Finally, in Theorem  3.3  when  B  is composite,  the equation is an 

identity, and has solutions provided two conditions are satisfied simultaneously.  For each 

of Theorems 3.2  and  3.3,  two solutions are demonstrated.  

 

Theorem  3.1.  If  B = 4N + 3  is prime where  N > 0,  then  A2 – B2 = Z4 has no solutions. 

 

Proof:    We  shall  assume   that there  exists  a  prime  B = 4N + 3  (N > 0),  for  which   

A2 – B2 = Z4  has a solution and reach a contradiction. 

 

       The equation  A2 – B2 = Z4  yields 

       A2 – Z4  =  (A – Z2)(A + Z2)  =  B2  =  (4N + 3)2.                      (2) 

Since  B  is prime, it follows that  A – Z2 = 1,  B,  B2,  where from  (2)  the last two 

possibilities are a priori impossible.  Hence,                                         

         A – Z2 = 1    and     A + Z2  =  B2.                                  (3) 

From  (3)  we obtain that  2Z2 =  B2 – 1   or   2Z2  =  (4N + 3)2 – 1,  and after 

simplifications 

                       Z2  =  8N2 + 12N + 4  =  4(2N2 + 3N + 1)  =  4(N + 1)(2N + 1).                (4) 
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Since gcd(N + 1, 2N + 1) = 1  and  Z  is an integer,  it follows  from  (4)  that  N + 1  and  

2N + 1  are  two squares.  Denote  N + 1 = G2  and   2N + 1 = K2. Thus   Z2 = 4G2K2 =  

(2GK)2. 

       We now have 

                        B =  4N + 3  =  4(N + 1) – 1 =  4G2 – 1  =  (2G – 1)(2G  + 1).                 (5) 

Since  B  is prime, it follows from  (5)  that  2G  – 1 = 1  and   2G  + 1 =  B.  But,  2G  – 1 

= 1  implies that  G  = 1 which yields  N = 0  contrary to our supposition that  N > 0. 

 

       Our assumption that for some prime   B = 4N + 3  (N > 0),  the equation A2 – B2 = Z4 

has a solution is therefore false,  and the assertion follows. 

 

       This concludes the proof of Theorem 3.1.                                           □ 

 

Remark  3.1.   In Theorem  3.1,  we have obtained that  G  = 1  implies  N = 0  and also  

B = 3.  In  (3),  the value  B = 3  yields the values  A = 5  and  Z = 2  which were already  

demonstrated as  Solution  1  in Section  2.    

 

Corollary  3.1.   For any prime  B = 4N + 3  (N > 0),  it has been shown in Theorem  3.1  

that  A2 – B2 = Z4  has no solutions.  Therefore,  if the equation has a solution when  B  is 

prime,  then  B = 4N + 1.   

 

Theorem  3.2.   Suppose that  B = 4N + 1  is prime.  If  N  satisfies simultaneously the 

conditions  

(i)       N = L2,  

(ii)      2N + 1 = M2, 

then    A2 – B2 = Z4  has the solution 

                                                  (A, B, Z)  =  (4L2M2 + 1,  4L2 + 1,  2LM),                       (6)              

where  L, M  are integers.  

 

Proof:   The equation  A2 – B2 = Z4  yields 

                                    A2 – Z4 = (A – Z2)(A + Z2)  =  B2 = (4N + 1)2.                                (7) 

Since  B   is  prime,  it follows that  A – Z2 = 1,  B,  B2,  where from  (7),  the last two 

possibilities are a priori impossible.  Thus,  

                                    A – Z2 = 1      and       A + Z2 = B2.                                                 (8) 

From  (8)  we obtain that  2Z2  =  B2 – 1 =  (4N + 1)2 – 1,  and after simplifications 

                                       Z2 = 8N2 + 4N = 4N(2N + 1).                                                      (9) 

Since   gcd (N, 2N + 1) = 1  and   Z  is  an  integer,  it  then  follows from  (9)  that  N  and   

2N + 1  are two squares.   Denote   N = L2   and   2N + 1 = M2.   Then  Z2  =  4L2M2  =  

(2LM)2,  and   Z = 2LM   is  an integer.  From  (8)  we  have  A = Z2 + 1,  and  therefore   

A  =  4L2M2 + 1. 

 

       We  have  shown  that  when  B = 4N + 1  is  prime,  and   N   satisfies conditions   (i)   

and   (ii)  simultaneously,  then  A2 – B2 = Z4  has solution  (6).  The equalities  N = L2  

and  2N + 1 = M2  in this case are necessary and sufficient conditions for a solution. 

 

       The proof of Theorem  3.2  is complete.                                                       □ 
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       The  following  two  solutions of  A2 – B2 = Z4  in which   B = 4N + 1  is prime,  and  

A  is composite, are the smallest possible ones in accordance with  (6). 

 

Solution  2.                                1452 – 172  =  124. 

 

Solution  3.                                1664652 – 5772  =  4084. 

 

       We now investigate the odd value   B,   a  composite of the form   4N + 3.  In  order  

to  show that  A2 – B2 = Z4  has  solutions,  it  suffices  to  consider  the  simplest  form  of  

composites  4N + 3  when   N = 3a.  This is done in Theorem  3.3. 

 

Theorem  3.3.   When  N = 3a  (a > 0), the value  4N + 3  is composite.  If the two 

conditions 

(i)      N + 1  =  3a + 1  =  Q2,  

(ii)    2N + 1 =  6a + 1  =  R2 

are satisfied  simultaneously,  then  A2 – B2 = Z4  has the solution 

                 (A, B, Z) = (4(3a + 1)(6a + 1) + 1,   3(4a + 1),   √4(3𝑎 + 1)(6𝑎 + 1) ),    (10) 

where  √(3𝑎 + 1)(6𝑎 + 1)  is an integer. 

 

Proof:   We have  

                                      B  =  4N + 3  = 4⸱3a +3 =  3(4a + 1).                                        (11) 

The equation  A2 – B2 = Z4  and  (11)  yield 

                              A2 – Z4 = (A – Z2)(A + Z2)  =  B2  =  (4N + 3)2.                                  (12) 

To prove our assertion, it will suffice to consider from  (12)  the only case 

                                              A – Z2 = 1  and   A + Z2 = B2.                                             (13) 

From  (13)  and  (12)  we  obtain  2Z2 = B2 – 1 = (4N + 3)2 – 1,  and   after simplifications 

                 Z2  =  8N2 + 12N + 4  =  4(2N2 + 3N + 1)  =  4(N + 1)(2N + 1).                    (14) 

Since gcd (N + 1, 2N + 1) = 1,  and   Z   is  an  integer,  it  follows  from  (14)  that  N + 1 

and  2N + 1  are two squares.  Denote  N + 1 = Q2  and  2N + 1 = R2.  Then   Z2  =  4Q2R2 

 = (2QR)2,  and  Z = 2QR  is an integer.  From  (13)  we have  A = Z2 + 1,  and  A = 4Q2R2 

+ 1 = 4(N + 1)(2N + 1) + 1. 

       Since  N = 3a,  the integers 

 

A  =  4(N + 1)(2N + 1) + 1 =  4(3a + 1)(6a + 1) + 1, 

 

                               B  =  4N + 3  =  4⸱3a + 3  =  3(4a + 1), 

 

Z  =  √4(𝑁 + 1)(2𝑁 + 1) = √4(3𝑎 + 1)(6𝑎 + 1) 

 

as in  (10)  form  a solution of the equation  A2 – B2 = Z4. 

 

       This concludes the proof of  Theorem  3.3.                                               □ 

 

       Two solutions of  A2 – B2 = Z4  with composites  A,  and B = 4N + 3 = 3(4a + 1)  in 

accordance with  (10)  are as follows: 
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Solution  4.                            49012 – 992  =  704. 

 

Solution  5.                            56548852 – 33632  =  23784. 

 

4.   Conclusion    

We  sum up the results achieved in this paper.  When  A, B   are  primes, the equation has 

only  solution1  (Theorem 2.1).   When   B   is   prime  of  the form   4N + 3 (N > 0),   the 

equation has no solutions  (Theorem 3.1).  When  B = 4N + 1 is  prime, the necessary and  

sufficient conditions for  a  solution  of  the  equation  are obtained  (Theorem  3.2),   and 

accordingly  Solutions 2 and 3  where  A  is composite are demonstrated.  When  B = 4N 

+ 3 (N = 3a)  is composite,  the necessary  and  sufficient  conditions  for  a  solution  are 

achieved  (Theorem  3.3).  In   accordance,  Solutions  4 and  5  where  A  is a composite 

are exhibited.   

       The following question may now be raised.        

 

Question  1.   With  A  prime and  B  composite, does A2 – B2 = Z4  have a solution ?  

 

       The numbers  A, B, Z  are quite large.  This may be seen for instance in  Solution 5  

where we have: 

56548852 – 33632  =  23784   or   31977724363225 – 11309769 = 31977713053456 

consisting  of  14  digits.  Therefore,  in  order  to  find  more  solutions,  and  also  prove  

or  disprove  Question  1,  can be done only with the aid of a computer. 
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