Annals of Pure and Applied Mathematics

Vol.19, No.2, 2019, 141-146

ISSN: 2279-087X (P), 2279-0888(online)

Published on 10 April 2019 www.researchmathsci.org

DOI: http://dx.doi.org/10.22457/apam.612v19n2a2

Annulets in a 0-distributive Lattice

R. M. Hafizur Rahman

Department of Mathematics, Begum Rokeya University Rangpur, Bangladesh E-Mail: salim030659@yahoo.com

Received 28 February 2019; accepted 29 March 2019

Abstract. The set of all ideals of the form $(x]^*$, $x \in L$ are known as annulets of L. These have been studied extensively by Cornish in [4, 5] for distributive lattices. In this paper we have studied the topic only for o-distributive lattices.

Keywords: 0-distributive lattice, Quassi-Complemented lattice, Disjunctive lattice, Annulets, S-algebra, DM algebra.

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

Varlet [8] has given the definition of a 0-distributive lattice to generalize the notion of pseudo complemented lattices. According to [8], a lattice L with 0 is called a 0-distributive lattice if for all $a,b,c\in L$ with $a\wedge b=0=a\wedge c$ imply $a\wedge (b\vee c)=0$. In other words, a lattice L with 0 is 0-distributive if and only if for each $a\in L$, the set of elements disjoint to a is an ideal of L. Of course, every distributive lattice with 0 is 0-distributive. Also every pseudo complemented lattice is 0-distributive. In fact, in a pseudo complemented lattice L, the set of all elements disjoint to $a\in L$, is a principal ideal (a^*]. Many authors including Balasubramani and Venkatanarasimhan [2], Jayaram [6] and Pawer and Thakare [7] studied the 0-distributive and 0-modular properties in different context and has included several characterizations to study a large class of non-distributive lattices with 0. Moreover, [9,10] studied on 0-distributive property for near lattices. Annulets in distributive lattices have been first studied by Cornish in [4, 5]. Then [1] extended the concept for Near lattices. In this paper our intension is study the annulets for a distributive lattice.

We know that if L is a 0-distributive lattice, then I(L) is pseudo complemented. The set of all ideals of the form $(x]^*$; $x \in L$ are called the annulets of L.

For an ideal J of a lattice L we define $J^* = \{x \in L : x \land j = 0 \text{ for all } j \in J\}$. This is of course an ideal of L if L is 0-distributive and it is called the annihilator ideal. In fact when L is 0-distributive J^* is the pseudo complement of J in I(L). Any ideal I is called an annihilator ideal if $I = I^{**}$. We denote the set of annihilator ideal of L by

R. M. Hafizur Rahman

A(L). This can be made into a Boolean Algebra with smallest element (0], largest element L, set theoretical intersection as the infimum and the map $J \to J^*$ as complementation. The supremum of J and K in A(L) is given by $J \lor K = (J^* \cap K^*)^*$. This is no more than De-morgan's law.

Call an ideal of the form $(x]^*, x \in L$, an annulet. Each annulet is an annihilator ideal and hence for two annulets $(x]^*$ and $(y]^*$, their supremum in A(L) is $(x]^* \underline{\vee} (y]^* = ((x]^{**} \cap (y]^{**})^* = ((x \wedge y]^{**})^* = (x \wedge y]^*$. Also their infimum in A(L) is $(x]^* \cap (y]^* = (x \vee y]^*$. The set of annulets is denoted by $A_0(L)$.

For a distributive lattice L, we know that I(L) is pseudo complemented. So throughout the paper we always consider L as a 0-distributive lattice.

2. Annulets in a lattice

In this paper we have given several characterizations of Annulets for a 0-distributive lattice. We start the paper with following proposition:

Proposition 2.1. Let L be a 0-distributive lattice. Then $(A_0(L); \cap, \underline{\vee})$ is a lattice and a sublattice of the Boolean Algebra $(A(L); \cap, \underline{\vee}, *, (0], L)$ of Annihilator ideals of L. $A_0(L)$ has a smallest element if and only if L possesses an element $d \in L$ such that $(d)^* = (0]$.

Proof: We have already shown that $A_0(L)$ is a sublattice of A(L). If there is an element $d \in L$ such that $(d)^* = (0]$. Then clearly (0) is the smallest element in $A_0(L)$.

Conversely, if there is an element $d \in L$ such that $(d]^*$ is the smallest element then for any $x \in L$, $(x]^* = (x]^* \underline{\vee} (d)^* = (x \wedge d)^*$. Thus $x \wedge d = 0$ implies $(x]^* = (0]^* = L$, so that x = 0 and hence $(d)^* = (0]$.

In a P-algebra $(L; \land, \lor, *, 0, 1)$ for all $a, b \in L$, $(a \lor b)^* = a^* \land b^*$ always holds, but the other De-Morgan identity $(a \land b)^* = a^* \lor b^*$ may not hold in general. Chandrani in [3] has called a P-algebra as a DM-algebra if $(a \land b)^* = a^* \lor b^*$ for all $a, b \in L$. A lattice L with 0 is called a generalized DM-algebra if for each $x, y \in L$, $(x]^* \lor (y]^* = (x \land y]^*$.

Proposition 2.2. A lattice L with 0 is generalized DM -lattice if and only if $A_0(L)$ is a sublattice of the lattice of I(L).

Proof: $A_0(L)$ is a sublattice of I(L) if and only if for any $x, y \in L$, $(x]^* \lor (y]^* = (z]^*$ for some $z \in L$. Since $(x]^* \lor (y]^* = (z]^*$ implies $(z]^{**} = (x]^{**} \cap (y]^{**} = (x \land y)^{**}$, so

Annulets in a 0-distributive Lattice

that $(z]^* = (x \wedge y]^* = (x]^* \underline{\vee} (y]^*$ in $A_0(L)$, we see that $A_0(L)$ is a sublattice of I(L) if and only if $(x]^* \vee (y]^* = (x \wedge y]^*$ for each $x, y \in L$. By the definition of DM-algebra, this is equivalent to L, being a DM-algebra.

A lattice L with 0 is called Disjunctive if for any $a,b \in L$, a < b implies $a \wedge c = 0$ and c < b for some $0 \neq c$. However, it is easy to see that a lattice L with 0 is disjunctive if and only if $(a)^* = (b)^*$ implies a = b for any $a,b \in L$. We thus have the following corollary:

Corollary 2.3. A disjunctive lattice L with generalized De-Morgan property is dual isomorphic to its lattice of annulets. Hence L has a largest element if and only if there is an element $d \in L$ such that $(d)^* = (0]$.

A lattice L with 0 is called a quasi-complemented lattice if for each $x \in L$, there exists $y \in L$ such that $x \wedge y = 0$ and $((x] \vee (y])^* = (x]^* \cap (y]^* = (0]$.

A 0-distributive lattice L is called quasi-complemented if for each $x \in L$, there exists $x' \in L$ such that $x \wedge x' = 0$ and $((x] \vee (x'])^* = (0]$.

A lattice L with 0 is called sectionally quasi-complemented if each interval [0, x], $x \in L$ is quasi-complemented.

Theorem 2.4. A 0-distributive lattice L is quasi-complemented if and only if for each $x \in L$, there exists $y \in L$ such that $(x]^{**} = (y]^*$.

Proof: Let L be a quasi-complemented. Suppose $x \in L$, there exists $y \in L$ such that $x \wedge y = 0$ and $(x)^* \cap (y)^* = (0]$. This implies $(y)^* \subseteq (x)^{**}$.

Again, $x \land y = 0$ implies $(x] \cap (y] = (0]$, so $(x] \subseteq (y]^*$. Therefore, $(x]^{**} \subseteq (y]^{***} = (y]^*$ and hence $(x]^{**} = (y]^*$.

Conversely, let $x \in L$ implies $(x]^{**} = (y]^*$ for some $y \in L$. Then $x \in (x]^{**} = (y]^*$ implies $x \wedge y = 0$. Also $(x]^{**} = (y]^*$ implies $(x]^* \cap (y]^* = (x]^* \cap (x]^{**} = (0]$, and so L is quasi complemented.

Theorem 2.5. Let L be a 0-distributive lattice. Then L is quasi-complemented if and only if it is sectionally quasi-complemented and possesses an element d such that $(d)^* = (0]$.

Proof: Suppose L is quasi-complemented. Then there exists an element d such that $0 \wedge d = 0$ and $(d)^* = ((0) \vee (d))^* = (0)$. We now show that an arbitrary interval [0, x] is quasi-complemented. Let $y \in [0, x]$. Then there exists $y' \in L$ such that $y \wedge y' = 0$ and $((y) \vee (y'))^* = (0)$. Put $z = x \wedge y'$. Then $z \wedge y = (x \wedge y') \wedge y = x \wedge (y \wedge y') = 0$ and $z \in [0, x]$. If $w \in [0, x]$ and $(w) \wedge ((y) \vee (z)) = (0)$,

R. M. Hafizur Rahman

then $(w \wedge y] = (0] = (w \wedge z] = (w \wedge x \wedge y'] = (w \wedge y']$. Thus $(w] \wedge ((y] \vee (y']) = (0]$ as L is 0-distributive and so I(L) is 0-distributive. Hence w = 0, and so [0, x] is quasi-complemented.

Conversely, suppose L is sectionally quasi-complemented and there exists an element $d \in L$ with $(d)^* = (0]$. Let $x \in L$ and consider the interval [0,d]. Then $x \wedge d \in [0,d]$.

Since L is sectionally quasi-complemented, so there exists an element $x' \in [0,d]$ with $x \wedge d \wedge x' = 0$ and $\{y \in [0,d] | y \wedge ((x \wedge d) \vee x' = 0\} = (0]$. Now let $z \in ((x] \vee (x'])^*$. Then $x \wedge r = 0$ for all $r \in (x] \vee (x']$.

Since $(x \wedge d) \vee x' \in (x] \vee (x']$, so $z \wedge ((x \wedge d) \vee x') = 0$. Thus

$$z \wedge d \wedge ((x \wedge d) \vee x') = 0$$
 and $z \wedge d \in [0, d]$;

so $z \wedge d = 0$. This implies $z \in (d]^* = (0]$. Hence z = 0 and $x \wedge d \wedge x' = 0$ implies $x \wedge x' = 0$. Therefore L is quasi-complemented.

Theorem 2.6. A 0-distributive lattice is quasi-complemented if and only if $A_0(L)$ is a Boolean subalgebra of A(L).

Proof: Suppose L is quasi-complemented. Then by Theorem 2.5, L has an element d such that $(d)^* = (0]$. Then by proposition 2.1, $A_0(L)$ has a smallest element and so it is a sublattice of A(L). Moreover, for each $x \in L$ there exists $x' \in L$ such that $x \wedge x' = 0$ and $(x)^* \cap (x')^* = (0)$. Then $(x)^* \underline{\vee} (x')^* = (x \wedge x')^* = (0)^* = L$. Therefore $A_0(L)$ is a Boolean subalgebra of A(L).

Conversely, if $A_0(L)$ is a Boolean subalgebra of A(L), then for any $x \in L$ there exists $y \in L$ such that $(x]^* \cap (y]^* = (0]$ and $(x]^* \vee (y]^* = L$. But $(x)^* \vee (y)^* = (x \wedge y)^*$ and $(x)^* \vee (y)^* = (x \wedge y)^*$.

Let us introduce the following lemma, whose proof is trivial.

Lemma 2.7. Let I = [0, x], 0 < x be an interval in a 0-distributive lattice. For $a \in I$, $(a)^+ = \{ y \in I \mid y \land a = 0 \}$ is the annihilator of (a) with respect to I. Then

- (i) If $a,b \in I$ and $(a)^+ \subseteq (b)^+$ then $(a)^* \subseteq (b)^*$
- (ii) If $w \in L$, $(w)^* \cap I = (w \wedge x)^+$.

The above lemma is useful to prove the generalization of the proposition 2.5 in [5] by Cornish. Let I = [0, x], 0 < x be an interval in a distributive lattice with 0. For $a \in I$, $(a)^+ = \{y \in I \mid y \land a = 0\}$ is the annihilator of (a) with respect to I. Then

- (i) If $a, b \in I$ and $(a)^+ \subseteq (b)^+$ then $(a)^* \subseteq (b)^*$
- (ii) If $w \in L$, $(w)^* \cap I = (w \wedge x)^+$.

Annulets in a 0-distributive Lattice

Theorem 2.8. For a 0-distributive lattice L, $A_0(L)$ is relatively complemented if and only if L is sectionally quasi-complemented.

Proof: Suppose $A_0(L)$ is relatively complemented. Consider the interval I = [0, x] and let $a \in I$; then $(x]^* \subseteq (a]^* \subseteq (0]^* = L$. Since $[(x]^*, L]$ is complemented in $A_0(L)$, there exists $w \in L$ such that $(a]^* \cap (w]^* = (x]^*$ and $(a]^* \subseteq (w)^* = L$. Then $(a)^* \subseteq (w)^* = (a \wedge w)^*$ gives $a \wedge w = 0$. Then $a \wedge w \wedge x = 0$ and $w \wedge x \in I$. Moreover, intersecting $(a)^* \cap (w)^* = (x)^*$ with (x) and using the Lemma 2.7, we have $(a)^* \cap (w \wedge x)^* = (0)$.

This shows that *I* is quasi-complemented.

Conversely, suppose L is sectionally quasi-complemented. Since $A_0(L)$ is 0distributive, it suffices to prove that the interval $[(a)^*, L]$ is complemented for each $a \in L$. Let $(b)^* \in [(a)^*, L]$. Then $(a)^* \subseteq (b)^* \subseteq L$, so $(b)^* = (a)^* \vee (b)^* = (a \wedge b)^*$. Now consider the interval I = [0, a] in L. Then $a \land b \in I$. Since I is quasi $w \in I$ such $w \wedge a \wedge b = 0$ complemented, there exists that and $(w \lor (a \land b)]^+ = (a]^+.$ $(w)^+ \cap (a \wedge b)^+ = (0) = (a)^+.$ This implies Then $(a)^* = (w \lor (a \land b))^* = (w)^* \cap (a \land b)^* = (w)^* \cap (b)^*$. also $w \land a \land b = 0$ we have $w \wedge b = 0$, hence $(w)^* \vee (b)^* = L$. Therefore, $A_0(L)$ is relatively complemented.

By Chandrani in [3], a P-algebra $(L; \land, \lor, *, 0, 1)$ is called a S-algebra if for each $a \in L$, $a^* \lor a^{**} = 1$. Thus, a 0-distributive lattice L is called a generalized S-lattice if for each $x \in L$, $x^* \lor x^{**} = L$. By [2], every DM-algebra is an S-algebra but the converse need not be true.

We conclude the paper with the following result:

Proposition 2.9. The lattice of annulets of a lattice L with 0 is relatively complemented if and only if L is quasi-complemented.

Proof: Suppose $A_0(L)$ is relatively complemented. We must show that I = [0, x] is a quasi-complemented lattice for each $0 < x \in L$. Let $a, b \in I$ and suppose $(a]^+ \subseteq (b]^+ \subseteq I = (0]^+$. From the lemma, $(a]^* \subseteq (b)^* \subseteq L$. The interval $[(a]^*, L]$ is complemented in $A_0(L)$ so that there is an element $w \in L$ such that $(b)^* \cap (w)^* = (a)^*$ and $(w)^* \vee (b)^* = L$. Then $(b)^* \vee (w)^* = (b \wedge w)^*$ gives $b \wedge w = 0$.

Then $b \wedge (w \wedge x) = 0$ so $(b]^+ \vee (w \wedge x]^* = (a]^*$ due to lemma 2.7. It follows that $A_0(L)$ is complemented and so by proposition 2.6, I is quasi-complemented.

Suppose L is sectionally quasi-complemented. To prove $A_0(L)$ is relatively complemented it suffices to prove that each interval $[(a]^*, L]$ is complemented as $A_0(L)$ is distributive (Proposition 2.1). Let $(b]^* \in [(a]^*, L] \subseteq A_0(L)$ and consider the interval

R. M. Hafizur Rahman

 $I = [0, a \lor b]$ in L. Then $(a]^+ = (a]^* \cap I \subseteq (b]^* \cap I = (b]^+ \subseteq I$ so there is an element $w \in I$ such that $(b]^+ \cap (w]^+ = (a]^+$ and $(w]^+ \veebar (b]^+ = I$ as I is quasi-complemented and so $A_0(L)$ is complemented by Proposition 2.7. Then $(w \lor b]^+ = (w]^+ \cap (b]^+ = (a]^+$.

3. Conclusion

Cornish [5] has studied Annulets and α – ideals in a distributive lattice. In order to study these for non distributive lattices we studied to apply these results in θ -distributive lattice. Recently, Ayub and Podder have introduced the concept of n-distributive lattices where n is a central element. Of course the set of all principal n-ideals of a lattice is again a lattice when n is a central element. Therefore, our specific suggestion is one can extend the results of this paper for $P_n(L)$.

REFERENCES

- 1. M.Ayub Ali, A.S.A.Noor and A.K.M.S.Islam, Annulets in a distributive nearlattice, *Annals of Pure and Applied Mathematics*, 3(1) (2012) 91-96.
- 2. P.Balasubramani and P.V.Venkatanarasimhan, Characterizations of the 0-distributive lattices, *Indian J. Pure Appl. Math.*, 32(3) (2001) 315-324.
- 3. Nag Chandrani, A study on P-algebras and its underlying lattices, Ph. D Thesis, *SUST*, 2016.
- 4. W.H.Cornish, Normal lattices, *J. Aust. Math. Soc.*, 14 (1972) 200-215.
- 5. W.H.Cornish, Annulets and α ideals in a distributive lattice, *J. Aust. Math. Soc.*, 15(1) (1975) 70-77.
- 6. C.Jayaram, Prime α ideals in a 0-distributive lattice, *Indian J. Pure Appl. Math.* 173 (1986) 331-337.
- 7. Y.S.Pawar and N.K.Thakare, 0-Distributive semilattices, *Canad. Math. Bull.* 21(4) (1978) 469-475.
- 8. J.C.Varlet, A generalization of the notion of pseudo-complementedness, *Bull. Soc. Sci. Liege*, 37(1968) 149-158.
- 9. M.Zaidur Rahman, M. Bazlar Rahman and A.S.A.Noor, On Semi prime ideals in Nearlattices, *Annals of Pure and Applied Mathematics*, 3(1) (2012) 1-9.
- 10. M.Zaidur Rahman, M. Bazlar Rahman and A.S.A.Noor, 0-distributive nearlattice, *Annals of Pure and Applied Mathematics*, 2(2) (2012) 177-184.
- 11. M.Zaidur Rahman, M. Bazlar Rahman and A.S.A.Noor, Some properties of 0-distributive nearlattice, *Annals of Pure and Applied Mathematics*, 2(2) (2012) 185-193.