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Abstract. In this paper, the concept of weakly semi-compatibility and sub-sequential 
continuity in fuzzy metric space has been applied to prove a common fixed point theorem 
for six self maps using implicit relation. Our result generalizes and extends the result of 
Ranadive and Chouhan [12]. 
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1. Introduction 
As the theory of fuzzy sets, given by Zadeh [20] appeared in 1965, it has been used in a 
variety of areas of mathematics. Zadeh [21] estimated that medical diagnosis would be 
the most liable application domain of Fuzzy set theory. Following Zadeh’s idea, 
Atanassov [1] introduced the concept of intuitionistic fuzzy set to permit grouping 
elements according to degrees of closeness and isolation. Fuzzy topology is another 
example of use of Zadeh’s theory. George and Veeramani [4] and Kramosil and Michalek 
[6] have introduced the concept of fuzzy metric spaces which can be regarded as a 
simplification of the statistical (probabilistic) metric space. Afterwards, Grabiec [5] 
defined the completeness of the fuzzy metric space. Following Grabiec’s work, Fang [3] 
further established some new fixed point theorems for contractive type mappings in G-
complete fuzzy metric spaces. Soon after, Mishra et. al. [7] also obtained numerous 
common fixed point theorems for asymptotically commuting maps in the same space, 
which generalize a number of fixed point theorems in metric, Menger, Sxn, Axn → p for 
some p in  X as n → ∞. 
 
2. Definition and preliminaries  
Definition 2.6. [15] Let A and S be mappings from fuzzy metric space (X,M,*) into 
itself. Then the mappings A and S are said to be semi-compatible if  

limn→∞ASxn = Sx,  
whenever {xn}is a sequence in X such that limn→∞Axn = limn→∞Sxn = x ∈ X.    
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It follows that if (A,S) is semi compatible and Ay = Sy, then ASy = SAy  by taking  
{x n} = y and x = Ay = Sy. 
 
Definition 2.7. [8]. A pair of maps A and B is called weakly compatible pair if they 
commute at their coincidence points i.e. Ax = Bx if and only if ABx = BAx. 
 
Definition 2.8. [12]. Let A and B be two self maps on a fuzzy metric space  
(X, M, *) then A is called B-absorbing if there exists a positive integer R  > 0 such that 
M(Bx, BAx, t) ≥ M(Bx, Ax, t/R) for all x ∈ X.  

Similarly B is called A-absorbing if there exists a positive integer R > 0 such that 
M(Ax, ABx, t) ≥ M(Ax, Bx, t/R) for all x ∈ X. 
 
Preposition 2.1. In a fuzzy metric space (X, M, *) limit of a sequence is unique. 
 
Preposition 2.2. [8] If (A,S) is a semi compatible pair of self maps of a fuzzy metric 
space (X, M, *)  and S is continuous, then (A,S) is compatible. 
 
Lemma 2.1. [7] Let (X, M, *) be a fuzzy metric space. Then for all x, y ∈ X,  
M(x, y, .) is a non-decreasing function. 
 
Lemma 2.2. [7] Let (X, M, *) be a fuzzy metric space. If there exists k ∈ (0, 1) such that 
for all x, y ∈ X,   M(x, y, kt) ≥ M(x, y, t) for all t > 0, then x = y. 
 
Lemma 2.3. [7]  Let {xn} be a sequence in a fuzzy metric space (X, M, *). If there exists 
a number  k ∈ (0, 1) such that M(xn+2, xn+1 , kt) ≥ M(xn+1, xn, t), for all   t > 0 and  
n ∈ N. Then {xn} is a Cauchy sequence in X. 
 
Preposition 2.3. [15] Let A and B be mappings from a fuzzy metric space (X, M, *) into 
itself. Assume that (A, B) is reciprocal continuous then (A, B) is semi-compatible if and 
only if (A, B)  is compatible. 
 
Definition 2.9. Self mappings A and S of a fuzzy metric space (X, M, *) are said to be 
weakly semi-compatible  if   

limn→∞ASxn = Sx   or   limn→∞SAxn = Ax,  
whenever {xn}is a sequence in X such that limn→∞Axn = limn→∞Sxn = x ∈ X.     
Clearly, semi-compatible maps are weakly semi-compatible maps but converse is not 
true. 
 
Definition 2.10. Self mappings A and S of a fuzzy metric space  (X, M, *) are  said to be 
sub-sequentially continuous  if and only if there exists a sequence {xn} in X such that   
      .

n
lim

→∞ .
Axn = 

n
lim

→∞
Sxn = z, z ∈ X  and  satisfy  

n
lim

→∞
ASxn = Az and  

n
lim

→∞
SAxn = Sz. 
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Clearly,  if A and S are continuous or reciprocally continuous then they are obviously 
sub-sequentially continuous. However, the converse is not true in general. 

Example 2.3.  Let X = R, endowed with metric d and Md(x,y, t) =
 

t
M(x, y, t)

t d(x, y)
=

+ .  

for all x, y∈ X , t > 0.   Define the self maps A, S as 
2, x 3

Ax
x, x 3

<
=  ≥

     and   2x 4, x 3
Sx

3, x 3

− ≤
=  >

 . 

Consider a sequence n

1
{x } 3

n
= +   then    

Axn =  1
3

n
 + 
 

→3 and   SAxn = S 1
3

n
 + 
 

= 3 ≠ S(3) = 2 as n→∞. 

Thus A and S are not reciprocally continuous but, if we consider a sequence   

{x n} =  
1

3
n

 − 
 

, then Axn = 2, Sxn =  2,  ASxn = 2 = A(2), SAxn = 0 = S(2) as n→∞. 

Therefore , A and S are sub-sequentially continuous. 
 
Definition 2.11. [12] A class of implicit relation 
Let Φ be the set of all real continuous functions F : (R+)5 → R non-decreasing in first 
argument satisfying the following conditions : 
(i)  For u, v ≥ 0,  F(u, v, v, u, 1) ≥ 0 implies that u ≥ v. 
(ii)  F(u, 1, 1, u, 1) ≥ 0 or F(u, 1, u, 1, u) ≥ 0,  or  F(u, u, 1, 1, u) ≥ 0 implies that u ≥ 1. 
 
Example 2.4.  Define F(t1, t2, t3, t4, t5) = 16t1 - 12t2 - 8t3 + 4t4 + t5 - 1. Then F ∈ Φ. 
(i)   F(u, v, v, u, 1) = 20(u - v) ≥ 0 ⇒ u ≥  v. 
(ii)   F(u, 1, 1, u, 1) =  20(u - 1) ≥ 0 ⇒ u ≥ 1 or 

F(u, 1, u, 1, u) = 9(u - 1) ≥  0 ⇒ u ≥ 1 
or  F(u, u, 1, 1, u) = 5(u - 1) ≥ 0 ⇒ u ≥ 1. 

 
3.  Main results 
Theorem 3.1. Let A, B, S, T, P and Q be self mappings of a complete fuzzy metric space 
(X, M, *) with t-norm defined by a * b = min{a, b}, satisfying : 
(3.1) P(X) ⊆  ST(X),    Q(X)  ⊆  AB(X);  
(3.2) Q is ST-absorbing; 
(3.3) for some F∈ Φ there exists q ∈ (0,1) such that for all x, y ∈ X and  t > 0 

F{M(Px, Qy, qt), M(ABx, STy, t), M(Px, ABx, t), M(Qy, STy, qt),  
M(Px, STy, t)} ≥ 0. 

(3.4) AB = BA, ST = TS, PB = BP, QT = TQ. 
 If the pair of maps  (P, AB) is sub-sequential continuous and weakly semi-
compatible then P, Q, S, T, A and B have a unique common fixed point in X. 
Proof.   Let x0 ∈X be any arbitrary point.  From (3.1), there exist x1, x2 ∈ X such that 

                         Px0 = STx1 and Qx1 = ABx2. 
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Inductively, we can construct sequences {xn} and {yn} in X such that 
Px2n-2 = STx2n-1 = y2n-1   and 
Qx2n-1 = ABx2n = y2n   for  n = 1, 2, 3, … . 

Step 1.   Putting x = x2n  and  y = x2n+1  for  t > 0 in (3.3), we get 
F{M (Px2n, Qx2n+1, qt), M (ABx2n, STx2n+1, t), M (Px2n, ABx2n, t),  
                                          M (Qx2n+1, STx2n+1, qt), M (Px2n, STx2n+1, t)} ≥ 0, 

i.e., F{M(y2n+1, y2n+2, qt), M(y2n, y2n+1, t), M(y2n+1, y2n, t), M(y2n+2, y2n+1, qt),                                      
                                                                                     M(y2n+1, y2n+1, t)} ≥ 0. 

Using lemmas 2.1 and 2.2, we have  
M (y2n+1, y2n+2, qt) ≥ M (y2n, y2n+1, t). 

Again substituting  x = x2n+2 and y = x2n+3 in (3.3), we get  
M(y2n+2, y2n+3, qt) ≥ M (y2n+1, y2n+2, t). 

Hence by lemma 2.3, {yn} is a Cauchy sequence in X. Since X is complete, therefore,  
{y n} →z in X and also its subsequences converges to the same point i.e. z ∈ X, 
i.e.  {Qx2n+1} →z    and {STx2n+1} →z                                         
(1) 

     {Px2n}→z                {ABx2n} →z                                             (2) 
Step 2. (P, AB) is weakly semi-compatible, then there exists a sequence  {xn} in X such 
that  

n
lim

→∞
Pxn =  

n
lim

→∞
ABxn =  z,  z ∈ X     and  satisfy   

n
lim

→∞
P(AB)xn =  ABz    or    

n
lim

→∞
AB(P)xn =  Pz. 

Also, (P, AB) is sub-sequentially continuous mapping, and so 

n
lim

→∞
P(AB)xn = Pz and  

n
lim

→∞
AB(P)xn = ABz.     

Therefore ,   Pz = ABz.                                                                                    (3) 
Step 3.  Putting  x = Px2n and y = x2n+1 in condition (3.3), we have 

F{M (PPx2n, Qx2n+1, qt), M (ABPx2n, STx2n+1, t), M (PPx2n, ABx2n, t),  
                                         M (Qx2n+1, STx2n+1, qt), M (PPx2n, STx2n+1, t)} ≥ 0 

Taking  n→∞ and using (1), (2), (3),  we get 
F{M (Pz, z, qt), M (Pz, z, t), M (Pz, Pz, t), M (z, z, qt), M (Pz, z, t)} ≥ 0 
       F{M(Pz, z, qt), M (Pz, z, t)} ≥ 0 
i.e.     M(Pz, z, qt) ≥ M (Pz, z, t)                            

Therefore by using lemma 2.2, we have 
z = Pz = ABz 

Step 4.   Putting x = Bz and y = x2n+1 in condition (3.3), we get, 
          F{M (PBz, Qx2n+1, qt), M (ABBz, STx2n+1, t), M (PBz, ABBz, t),  
                                          M (Qx2n+1, STx2n+1, qt), M (PBz, STx2n+1, t)} ≥ 0  

As  BP = PB,  AB = BA,  so we have 
P(Bz) = B(Pz) = Bz    and    (AB)(Bz) = (BA)(Bz) = B(ABz) = Bz. 

Taking  n→∞ and using (1),  we get 
F{M (Bz, z, qt), M (Bz, z, t), M(Bz, Bz, t), M(z, z, qt), M(Bz, z, t)} ≥ 0 
       F{M (Bz, z, qt), M (Bz, z, t)} ≥ 0 

i.e.,      M(Bz, z, qt) ≥ M (Bz, z, t).                            
Therefore by using lemma 2.2, we have 

Bz = z  and also we have   ABz = Z 
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This implies Az = z  
Therefore Az = Bz = Pz = z.                                                (4) 
Step 5.  As P(X) ⊆ ST(X),  there exist u ∈ X such that 

 z = Pz = STu.                                                                (5) 
Putting x = x2n   and  y = u in condition (3.3), we get 

F{M (Px2n, Qu, qt), M(ABx2n, STu, t), M(Px2n, ABx2n, t),  
                                          M(Qu, STu, qt), M (Px2n, STu, t)} ≥ 0. 

Letting  n→∞ and using (2) and  (5), we get 
F{M (z, Qu, qt), M (z, z, t), M (z, Pz, t), M (Qu, z, qt), M (z, z, t)} ≥ 0 

As F is non-decreasing in the first argument, we have  
F{M (z, Qu, qt), 1, 1, M (Qu, z, qt), 1} ≥ 0 

i.e.,   M(z, Qu, qt) ≥ 1. 
Therefore,  z = Qu = STu.   
Since Q is ST absorbing,  we have 

M(STu, STQu, t) ≥ M (STu, Qu, t/R) ≥ 1 
i.e.,  STu = STQu    which implies z = STz. 
Putting x = z and y = z in (3.3) , we get 
     F{M(Pz, Qz, qt), M(ABz, STz, t), M (Pz, ABz, t), M(Qz, STz, qt), M(Pz, STz, t)} ≥ 0 
or, F{M(z, Qz, qt), M(z, z, t), M (z, z, t), M(Qz, z, qt), M (z, z, t)} ≥ 0. 
As F is non-decreasing in the first argument, we have  
      F{M(z, Qz, qt), 1, 1, M (Qz, z, qt), 1} ≥ 0, 
i.e., M (z, Qz, qt) ≥ 1.  
Therefore,  z = Qz  
Hence, z = Qz = STz. 
Step 6.   Putting x = x2n and y = Tz in condition (3.3), we get 

F{M (Px2n, QTz, qt), M (ABx2n, STTz, t), M (Px2n, ABx2n, t),  
                                         M (QTz, STTz, qt), M (Px2n, STTz, t)} ≥ 0 

As QT = TQ and ST = TS, we have 
QTz = TQz = Tz    and     ST(Tz) = T(STz) = TQz  = Tz. 

Letting  n→∞ and using (2) we get 
F{M (z, Tz, qt), M (z, Tz, t), M (z, z, t), M (Tz, Tz, qt), M (z, Tz, t)} ≥ 0 
F{M (z, Tz, qt), M (z, Tz, t)} ≥ 0 

i.e.,  M(z, Tz, qt) ≥ M (z, Tz, t).  
Therefore, by lemma 2.2, we get 

Tz  = z 
Now, STz = Tz = z implies Sz = z. 
Hence,  Sz = Tz = Qz = z.                                          
(7) 
Hence, z is the common fixed point of A, B, S, T, P and Q.                           
Uniqueness: Let w be another fixed point of A, B, P, Q, S and T. Then putting  x = z and 
y = u in (3.3), we get  

 F{M (Pz, Qu, qt), M (ABz, STu, t), M (Pz, ABz, t),  
                                          M (Qu, STu, qt), M (Pz, STu, t)} ≥ 0 

As F is non-decreasing in the first argument, we have 
  F{M(z, u, qt), M(z, u, t), M(z, z, t), M(u, u, qt), M(z, u, t)} ≥ 0 



Arihant Jain, V.K.Gupta and Rajesh Kumar 

166 

 

or, F{M(z, u, qt), M(z, u, t), 1, 1, M(z, u, t)} ≥ 0 
i.e.  z = u.    
Hence z is unique fixed point in X. 
 
Remark 3.1. If we take B = T = I (the identity map) in theorem 3.1, we get the following 
corollary. 
 
Corollary 3.1. Let A, B, S, T, P and Q be self mappings of a complete fuzzy metric space 
(X, M, *) with t-norm defined by a * b = min{a, b}, satisfying : 
(3.1) P(X) ⊆  S(X),    Q(X)  ⊆  A(X);  
(3.2) Q is S-absorbing; 
(3.3) for some F∈ Φ there exists k ∈ (0,1) such that for all x, y ∈ X and  t > 0 

F{M(Px, Qy, kt), M(Ax, Sy, t), M (Px, Ax, t), M(Qy, Sy, kt), M(Px, Sy, t)} ≥ 0. 
If the pair of maps (P, A) is sub-sequential continuous and weakly semi-

compatible then P, Q, S and A have a unique common fixed point in X. 
 
Remark 3.2. In view of Remark 3.1, Corollary 3.1 is a generalization of the result of 
Ranadive and Chouhan [12] in the sense that condition of  reciprocal continuous and 
semi-compatible maps has been replaced by sub-sequential continuous and weakly semi-
compatible maps.  
 
Acknowledgement. Thanks for the referee for his valuable comments on the paper. 
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