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Abstract. We define the multiplicative total neighborhooddém, multiplicative F-
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exact formulas for line graphs of subdivision gmapdf 2-D lattice, nanotube and
nanotorus offUC,Cg[p, q].
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1. Introduction
Throughout this papeB is a finite, simple, connected graph with vertek \#&) and
edge seE(G). The degreéls(v) of a vertexv is the number of vertices adjacentwtdrhe
line graphL(G) of G is the graph whose vertex set corresponds to thesedfG such
that two vertices of(G) are adjacent if the corresponding edge& @fre adjacent. The
subdivision graptgG) of G is the graph obtained frof@ by replacing each of its edges
by a path of length two. L&g(v) ={u: uv O E(G)}. Let

SW= > ds(

ueNg (v)

be the degree sum of neighbor vertices. For uneiéfiarm and notation, we refer to [1].
We need the following results.

Lemma 1. Let G be a graph witlp vertices andj edges. Thel®G) hasp+(q vertices and
2q edges.

Lemma 2. Let G be a graph witlp vertices andj edges. Theh(G) hasq vertices and
1z:de (u)* —q edges.
2 i=1

A molecular graph is a graph such that its vestimpresent to the atoms and the
edges to the bonds. Chemical Graph Theory has poriemt effect on the development
of Chemical Sciences. A topological index is a nrioa¢ parameter mathematically
derived from the graph structure. Numerous topalmgindices have been considered in
Chemistry and have found some useful applicatiespgecially inQSPR/QSAR research
see [2, 3].
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Recently, the first neighborhood Zagreb index wasoduced and studied by
Basavangoud et al. [4] and Mondal et al. [5], dedias

NM, (G)= Y s ()
ueV(G)
The fifth M; and M, Zagreb indices were introduced by Graovac etra[6],
defined as

M,G,(G)= > [S (W +S ()], M,G,(G)= > S (u)s (V).

uveE(G) weE(G)

The fifth multiplicativeM; andM, Zagreb indices were proposed by Kulli in [7],
defined as

MG (G = J] [SsW+S W], MGG = [] S WS (W.

weE(G) weE(G)

Recently, the fifth arithmetic-geometric index ,[8burth multiplicative ABC
index [9], fifth multiplicative arithmetic-geometriindex [10], fifth multiplicative hyper
Zagreb indices [11], multiplicative atom bond coctingty index [12] were introduced
and studied.

In [7], Kulli introduced the multiplicative firsteighborhood index, defined as

NM, I (G) = [T s W),
)

uev(G

We introduce the multiplicative total neligithood index of a grap®, defined as

TG =[] W,

ueVv(G)

We propose the multiplicatiVg@-neighborhood index of a graph and it is defined as

ENIHG) = [] S W)
uev(G)

We now continue the generalization and definegeeeral first multiplicative
neighborhood index of a graghas

NMA(G) = [] S W)*

uev(G) (1)

wherea is a real number.

In this paper, we compute the multiplicative firseighborhood index,
multiplicative total neighborhood index, multiplioze Fi-neighborhood index and the
general first multiplicative neighborhood indexlioie graphs of subdivision graphs of 2-
D lattice, nanotube and nanotorustafC,Cg[p, q].

2. 2-D lattice, nanotube and nanotor us of TUC,Cg[p, ]
In this section, the graphs of 2-D lattice, nanet@nd nanotorus ofUC,Cg[4,2] are
shown in Figure 1.
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L

1 1 1
(a) (b) (c)
Figure 1:
(a) 2D-lattice ofTUC,Cq[4, 2] (b) TUC4Cg[4,2] nanotube (cJUC,Cz[4, 2] nanotorus

3. 2-D lattice of TUC,Cq[p, d]
A subdivision graph of 2-D lattice and line graphsabdivision graph of 2-D lattice of
TUC,C4[4, 2] are shown in Figure 2(a) and Figure 2(bpeesively.

9909099

(a) (b)
(a) subdivision graph of (b) line graph of thédivision graph
2D-lattice of TUC,Cg[4,2] of 2D-lattice offUC,C;[4, 2]
Figure2:

Let G be a line graph of subdivision graph of 2-D lattiderUC,Cq[p, q], where
p is the number of squares in a row anid the number of rows of squares. The graph of
2-D lattice of TUC,Cg[p, q] has 4q vertices and g — p — g edges. By Lemma 1, a
subdivision graph of B lattice of TUC,Cq[p, g] has 1®qg — p —q vertices and 2(6g — p
—(0) edges. Thus by Lemma @,has 2(fq — p — q) vertices and 1& — 5 — 5q edges.
From Figure 2(b), we see th@thas vertices of degree 2 or 3. The vertex partibased
on the degree sum of neighbor vertices is obta@isegiven in Table 1 and Table 2.

S(WWOV(G) 4 5 8 9
Number of vertice 8  4(p+q-2) 4 (p+tq-2) 2(6pq-5p-5q+4)
Table 1: Vertex partition olGwhenp>1,9>1

Se(UW\OV(G) 4 5 8 9
Number of vertice 8 4p-1) 4(p-1) 2(p-1)

Table 2: Vertex partition olGwhenp>1,g=1

Theorem 1. The general first multiplicative neighborhood irdef a line graph of
subdivision graph of B lattice of TUC,Cqg[p, q] is given by

NMZII (G) = 4% x 5alPta-2) o gRipra-2 gal6m-%-8t 4 if n>1 g>1, 2)
= 4 5P ghlrd o B3 if p>1, g=1. (3)
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Proof: Let G be a line graph of subdivision graph obZattice of TUC,Cg[p, q].
Casel. Supposep>1, g> 1.
From equation (1) and by using Table 1, we deduce

NMPT(G)= ] & W*
ueVv(G)
_ (4a)8 X(Sa)4(p+q72) X(8a)4(p+q72) ><(9’) 269- P- 8+ ¥
_ g8y 5Rapra-2)  glapta-2  g( - -+ 4
Case 2. Supposp > 1,q=1.
By using equation (1) and Table 2, we derive

NMAT(G) = [] & W*
uev(G)
:(43)3X(5a)4<p4)X(ga)‘(pfj)x(ga)lpfi
— g8y gRalp-Y  ghalp-) galp-3

We obtain the following results by Theorem 1.

Corollary 1.1. The multiplicative first neighborhood index ofiad graph of subdivision
graph of 2b lattice of TUC,Cqg[p, q] is given by

NM, |1 (G) = 4" x 5*Pra-2 5 glpra 2, gh®a- -84 4 it 551 g1,
= 410 5 P o glPd y gted if p>1,0=1.
Proof: Puta = 2 in equations (2) and (3), we get the desiesdilts.

Corollary 1.2. The multiplicative total neighborhood index ofirgel graph of subdivision
graph of 2b lattice of TUC,Cq[p, q] is given by

T I (G)=4° x5 Pra-2 y glpra-2  gA®- 9854 if n>q g1,
=48 5P gl Y R if p>1,q=1.
Proof: Puta= 1 in equations (2) and (3), we get the desiesdits.

Corollary 1.3. The multiplicativeF;-neighborhood index of a line graph of subdivision
graph of 2P lattice of TUC,Cq[p, q] is given by

FNII(G) = 4% x BAPFI72 5 gAPHa=2 5 gf #1804 if p>] g1,
=42 5APY 5 g d o gfet if p>1,q=1.
Proof: Puta = 3 in equations (2) and (3), we obtain the ddsiesults.

4. TUC,Cg[p, q] nanotubes

In this section, a subdivision graph ®UC,Cg4, 2] nanotube and a line graph of
subdivision graph oTUC,Cg[4, 2] nanotube are presented in Figure 3(a) agdrEi3(b)
respectively.
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BOSSENOOeS

(a) Subdivision graph (b) Line graph dbdivision
ofTUC,4C4[4, 2] nanotube graphrofC,Cg[4, 2] nanotube

Figure3:

LetH be a line graph of subdivision graphTadC,Cg[p, g] nanotube. A graph of
TUC4Cq[p, q] nanotube haspt] vertices and fiq — p edges. By Lemma 1, a subdivision
graph of TUC,Cg[p, g] nanotube has 10q — p vertices and 1pq — 2 edges. Hence by
Lemma 2,H has 1§q — p vertices and &y — 2 vertices and 18 — 5 edges. From
Figure 3(b), we see thit has vertices of degree 2 or 3. The vertex partitiased on the
degree sum of neighbor vertices is obtained asgivéable 3 and Table 4.

S\ udV(H) 5 8 9

Number of vertice 4p 4ap 12pg- 10p
Table 3: Vertex partitionoH if p>1,q>1

S\ udV(H) 5 8 9

Number of vertice 4p 4p 2p

Table4: Vertex partitionoH if p>1,q=1

Theorem 2. LetH be a line graph of subdivision graphTddC,Cg[p, g] nanotube. Then
the general first multiplicative neighborhood indeh is

NM 211 (H) =5 x 8% 5 gt2p-1%) if n>1 g1, (4)
=5 x 8% x 9 | if p>1, g=1. (5)
Proof: Case 1. Suppose >1,q>1.
By using equation (1) and Table 3, we deduce

NMA(H) = ] sy W)°

ueVv(H)

=(59)"" x(g)" x(g)*

— Ghap o ghap o gpll2pa-10p)
Case 2. Suppose>1,q=1.
From equation (1) and by using Table 4, we derive

NMPH(H) = [T s, )*

uev(H)

=(52)" x(8)" x(g)
= 5% 5 8" O

We establish the following results by Theorem 2.
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Corollary 2.1. The multiplicative first neighborhood index Idfis given by
NM, Il (H)=5% x &P x F12P1%) jf p>1 g>1,
=5P x &P x 9", if p>1,9= 1.
Proof: Puta = 2 in equations (4) and (5), we get the desiesdits.

Corollary 2.2. The multiplicative total neighborhood indextdfs given by
T I (H)=5% x 8" x g% 'if p>1,g>1,
=5 x 8P x 9P| if p>1,q=1.
Proof: Puta = 1 in equations (4) and (5), we get the desiesdlts

Corollary 2.3. The multiplicativel;-neighborhood index dfl is given by
ENII(H) =5%2P x 8% x gt2a-1% - jf p>1 g>1,
=5 x 8% x 9% if p>1,q=1.
Proof: Puta = 3 in equations (4) and (5), we obtain the ddsiesults.

5. TUC,Cg[p, ] nancturus
In this section, a subdivision graph ®fC,Cg[4, 2] nanotorus and line graph of
subdivision graph ofUC,Cg[4, 2] nanotorus are shown in Figure 4(a) and Fgl(b).

(a) Subdivision graph of (b) Line graph of sulision
TUC,C4[p, g] nanotorus graph BYC,Cq[p, q] nanotorus
Figure4:

LetK be a line graph of subdivision graphT®dC,Cqg[p, g] nanotorus. A graph
of TUC,C4[p, g] nanotorus haspt vertices and g edges. By Lemma 1, a subdivision
graph ofTUC,Cg[p, d] nanotorus has 1 vertices and 1&] edges. Therefore by Lemma
2, K has 1§q vertices and 1&) edges. Clearly the degree of each vertex is 3.VEhex
partition based on the degree sum of neighboroe=rtdf each vertex is as given in Table
5.

Se(u) \ U 0 V(K) 9
Number of vertice 12pq
Table 5: Vertex partition oK

Theorem 3. LetK be a line graph of subdivision graphTafC,Cg[p, g] nanotorus. Then
0 NM 211 (K) = (97)™.
(ii) NM, 11 (K) = 9™,
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(iii) T I (K)=9"™,

(iv) FENII (K)= 9™,
Proof: By using definitions and Table 5, we get the dmbhesults.
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