Annals of Pure and Applied Mathematics Vol.19, No.2, 2019, 193-196 ISSN: 2279-087X (P), 2279-0888(online) Published on 20 May 2019 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.617v19n2a8

Annals of **Pure and Applied Mathematics**

On the Diophantine Equation $53^x + 143^y = z^2$

Shivangi Asthana¹ and Madan Mohan Singh²

¹Department of Mathematics, North- Eastern Hill University, Shillong- 793022 India. E-mail: shivangiasthana.1@gmail.com ²Department of Basic Sciences and Social Sciences, North- Eastern Hill University

Shillong- 793022, India. E-mail: mmsingh2004@gmail.com

Received 1 April 2019; accepted 18 May 2019

Abstract. In this paper, we have shown that the Diophantine equation $53^x + 143^y = z^2$ has only two non-negative integer solutions for x, y and z. The solutions are (0, 1, 12) and (1, 1, 14). This equation has been solved by applying Catalan's conjecture. As a consequence of main theorem we showed that the equation $53^x + 143^y = w^4$ has no solution in non-negative integers (x, y, w).

Keywords: Exponential Diophantine equation, integer solutions

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

In 2004, Mihailescu [1] proved the Catalan's conjecture: (3, 2, 2, 3) is a unique solution (a, b, x, y) for the Diophantine equation $a^x - b^y = 1$ where a, b, x and y are nonnegative integers with min{a, b, x, y} > 1. This result plays an important role in the study of exponential Diophantine equations. In 2005, Acu [2] studied Diophantine equations of the type $a^x + b^y = c^z$ for primes a and b. In 2007, Acu [3] proved that the Diophantine equation $2^x + 5^y = z^2$ has exactly two solutions (x, y, z) in non-negative integers. The solutions are (3,0,3) and (2,1,3). In 2011, Suvarnamani, Singhta and Chotchaisthit [4] showed that the two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$ have no non-negative integer solutions. Sroysang [5, 6] in 2012 showed that the two Diophantine equations $3^x + 5^y = z^2$ and $3^x + 17^y = z^2$ have the unique solutions (1, 0, 2) in non-negative integers(x, y, z), respectively. Rabago [7] in 2013 solved the two Diophantine equations $3^x + 19^y = z^2$ and $3^x + 91^y = z^2$ where x, y and z are non-negative integers. He found two solutions for each of the equations i.e., $\{(1, 0, 2), (4, 1, 10)\}$ and $\{(1, 0, 2), (2, 1, 10)\}$, respectively. Again Sroysang [8] in 2014 solved the equation $3^x + 85^y = z^2$ and found that (1, 0, 2) is a unique solution in nonnegative integers x, y and z for this equation. The results on the related Diophantine equations have been found by several different mathematicians [9-14] employing a variety of methods.

In this paper, we solved the Diophantine equation $53^{x} + 143^{y} = z^{2}$ Shivangi Asthana and Madan Mohan Singh

and found that (0, 1, 12) and (1, 1, 14) are only two non-negative integer solutions for x, y and z.

2. Preliminaries:

We start this section by presenting a Proposition and two Lemmas.

Proposition 2.1. The Catalan's conjecture states that (3, 2, 2, 3) is a solution (a, b, x, y) for the Diophantine equation $a^x - b^y = 1$ where a, b, x and y are integers with min $\{a, b, x, y\} > 1$.

Lemma 2.1. The Diophantine equation $53^x + 1 = z^2$ has no non-negative integer solution where x and z are non-negative integers.

Proof: Suppose that there are non-negative integers x and z such that $53^x + 1 = z^2$. If x = 0, then $z^2 = 2$ which is not possible. Then $x \ge 1$. Thus, $z^2 = 53^x + 1 \ge 53^1 + 1 = 54$. Then $z \ge 8$. Now we consider on the equation $z^2 - 53^x = 1$. By Proposition 2.1, we have x = 1. Then $z^2 = 54$. This is a contradiction. Hence the equation $53^x + 1 = z^2$ has no non-negative integer solution.

Lemma 2.2. (1, 12) is a unique solution for the (y, z) Diophantine equation $1 + 143^y = z^2$ where y and z are positive integers.

Proof: Let y and z be positive integers such that $1 + 143^y = z^2$. If y = 0, then $z^2 = 2$ which is impossible. Then $y \ge 1$. Thus $z^2 = 1 + 143^y \ge 1 + 143 = 144$. Then $z \ge 12$. Now we consider on the equation $z^2 - 143^y = 1$. By Proposition 2.1, we have y = 1. It follows that $z^2 = 144$. Hence, z = 12. Therefore, (1, 12) is a unique solution (y, z) for the equation $1 + 143^y = z^2$ where y and z are positive integers.

3. Main result

Theorem 3.1. The only solutions to the Diophantine equation $53^x + 143^y = z^2$ in non-negative integers are (0, 1, 12) and (1, 1, 14).

Proof: The case z = 0 is obviously impossible. Likewise, y = 0 has no solution by Lemma 2.1. When x = 0, we have (x, y, z) = (0, 1, 12) by Lemma 2.2. We consider the following remaining cases.

Case (I) x = 1. If x = 1, then we have $53^x + 143^y = z^2$. Taking modulo 4 both sides, we have $53 + 143^y = z^2 \equiv 0 \pmod{4}$ that is z = 2m for some natural number m. Then $53 + 143^y = 4m^2$. It follows that

 $53 + 90 + 143^{y} = 4m^{2} + 90$ Or, 143 + 143^{y} = 4m^{2} + 90 Or, 143(1 + 143^{\{y-1\}}) = 2(2m^{2} + 45)

So $143^{\{y-1\}} + 1 = 2$ and $2m^2 + 45 = 143$. Thus, y = 1 and $m^2 = 49$ which implies m = 7. Hence, for m = 7, we have z = 14. Therefore, (x, y, z) = (1, 1, 14) is a solution to $53^x + 143^y = z^2$.

For y = 1 and x = 1, we have z = 14.

On the Diophantine equation $53^x + 143^y = z^2$

Case (II) x, y, z > 1. Suppose $53^x + 143^y = z^2$ is true for positive integers x, y and z. Here $53^x \equiv 1 \pmod{4}$ and $143^y \equiv 1 \pmod{4}$ for even integer y and $143^y \equiv 3 \pmod{4}$ for odd integer y. Since $z^2 \equiv 0, 1 \pmod{4}$ then y must be odd and z is even. We have two possibilities for x.

If x is even i.e. x = 2l for some natural numberl. Then $53^x + 143^y = z^2$ becomes $53^{2l} + 143^y = z^2$. So $(z - 53^l)(z + 53^l) = z^2 - 53^{2l} = 143^y$. So $143^{y-u} - 143^u = 2 \cdot 53^l$ where $z - 53^l = 143^u$ and $z + 53^l = 143^{\{y-u\}}$, y > 2u, u is a non-negative integer. It follows that $143^u(143^{y-2u} - 1) = 2 \cdot 53^l$ which implies that $143^u = 1$ and $143^{y-2u} - 1 = 2 \cdot 53^l$. Thus u = 0 and $143^y - 1 = 2 \cdot 53^l$. Since $l \ge 1$, then $143^y = 2 \cdot 53^l + 1 \ge 2 \cdot 53^l + 1 = 107$, not possible to get a solution.

If x is odd, that is, x = 2l + 1 where l is a natural number. Then $53^{x} + 143^{y} = z^{2}$

becomes $53^{2l+1} + 143^y = z^2$. So $143^y - 11 \cdot 53^{2l} = z^2 - 64 \cdot 53^{2l}$ or equivalently $143^y - 11 \cdot 53^{2l} = (z - 8 \cdot 53^l)(z + 8 \cdot 53^l)$. If $z - 8 \cdot 53^l = 1$ and $z + 8 \cdot 53^l = 143^y - 11 \cdot 53^{2l}$, then we have $16 \cdot 53^l + 11 \cdot 53^l = 143^y - 1$. So $53^l(16 + 11 \cdot 53^l) = 143^y - 1$. Clearly we see that there is no possible values for *l* and *y* to hold the equality. On the other hand, if $z - 8 \cdot 53^l = 143^y - 11 \cdot 53^{2l}$ and $z + 8 \cdot 53^l = 1$, then we have $53^l(16 + 11 \cdot 53^l) = 1 - 143^y$ not possible to get a solution. This completes the proof.

Corollary 3.1. (0, 1, 6) and (1, 1, 7) are exactly two non-negative integer solutions (x, y, u) for the Diophantine equation $53^x + 143^y = 4u^2$ where x, y and u are non-negative integers.

Proof: Let x, y and u be non-negative integers such that $53^x + 143^y = 4u^2$. Let z = 2u. Then $53^x + 143^y = z^2$. By Theorem 3.1, it follows that $(x, y, z) \in \{(0, 1, 12), (1, 1, 14)\}$. Thus, $2u = z \in \{12, 14\}$. So $u \in \{6, 7\}$. Hence, (0, 1, 6) and (1, 1, 7) are exactly two non-negative integer solutions (x, y, u) for the Diophantine equation $53^x + 143^y = 4u^2$.

Corollary 3.2. The Diophantine equation $53^x + 143^y = v^4$ has no non-negative integer solution where x, y and w are non-negative integers.

Proof: Suppose that there are non-negative integers x, y and w such that $53^x + 143^y = w^4$. Let $z = w^2$. Then $53^x + 143^y = z^2$. By Theorem 3.1 we have, $(x, y, z) \in \{(1, 0, 12), (1, 1, 14)\}$. Then $w^2 = z \in \{12, 14\}$. This is a contradiction.

4. Conclusion

In this paper, we have shown that the Diophantine equation $53^x + 143^y = z^2$ has only two non-negative integer solutions where x, y and z are non-negative integers. The solutions are (0, 1, 12) and (1, 1, 14) respectively.

Acknowledgements. The authors are highly grateful to the learned referees for their valuable suggestions for improvement of the paper.

Shivangi Asthana and Madan Mohan Singh

REFERENCES

- 1. P.Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, *J. Reine Angew.Math.*, 572 (2004) 167-195.
- 2. D.Acu, On the Diophantine equations of type $a^x + b^y = c^z$, Gen. Math., 13 (2005) 67-72.
- 3. D.Acu, On a Diophantine equation $2^{x} + 5^{y} = z^{2}$, Gen. Math., 15 (2007) 145-148.
- 4. A.Singta, S.Chotchaisthit and S.Suvarnamani, On two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, Sci. *Tech. RMUTT. J.*, 1 (2011) 25-28.
- 5. B.Sroysang, On the Diophantine equation $3^x + 5^y = z^2$, Int. J. Pure and Appl. Math., 81 (2011) 605-608.
- 6. B.Sroysang, On the Diophantine equation $3^x + 17^y = z^2$, Int. J. Pure and Appl. Math., 89 (2013) 111-114.
- 7. J.F.T.Rabago, On two Diophantine equations $3^x + 19^y = z^2$ and $3^x + 91^y = z^2$, Int. J. of Math. and Scientific Computing, 3 (2013) 28-29.
- 8. B.Sroysang, More on the Diophantine equation $3^x + 85^y = z^2$, Int. J. Pure and Appl. Math., 91 (2014) 131-134.
- 9. B.Sroysang, More on the Diophantine equation $2^x + 3^y = z^2$, Int. J. Pure and Appl. Math., 84 (2013) 133.
- 10. B.Sroysang, More on the Diophantine equation $2^x + 19^y = z^2$, Int. J. Pure Appl. Math, 88 (2013) 157-160.
- 11. B.Sroysang, On the Diophantine equation $32^{x} + 49^{y} = z^{2}$, J. of Mathematical Sciences: Advances and Applications, 16 (2012) 9-12.
- 12. N.Burshtein, Solutions of the Diophantine Equation $p^x + (p+6)^y = z^2$ when p, (p+6) are primes and x + y = 2, 3, 4, Annals of Pure and Applied Mathematics, 17(1) (2018) 101-106.
- 13. N.Burshtein, On solutions of the Diophantine equation $p^x + q^y = z^2$, Annals of Pure and Applied Mathematics, 13(1) (2017) 143- 149.
- 14. N.Burshtein, All the solutions of the Diophantine equation $p^3 + q^2 = z^3$, Annals of *Pure and Applied Mathematics*, 14(2) (2017) 207-211.