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Abstract. In this paper, we have shown that the Diophantopgagon53* + 143Y =
z? has only two non-negative integer solutionsxfor andz. The solutions ar€0, 1,12)
and(1,1,14). This equation has been solved by applying Catalaonjecture. As a
consequence of main theorem we showed that thetieqia* + 143Y = w* has no
solution in non-negative integegs, y, w).
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1. Introduction

In 2004, Mihailescu [1] proved the Catalan's conjex (3,2, 2,3) is a unique solution
(a,b,x,y) for the Diophantine equatiom® — bY =1 wherea,b,x andy are non-
negative integers withmin{a, b, x, y} > 1. This result plays an important role in the study
of exponential Diophantine equations. In 2005, Ajustudied Diophantine equations of
the typea® + bY = ¢# for primesa andb. In 2007, Acu [3] proved that the Diophantine
equation2* + 5Y = z2 has exactly two solutiorn(g, y, z) in non-negative integers. The
solutions are(3,0,3) and (2,1,3) . In 2011, Suvarnamani, Singhta and Chotchaisthit
[4] showed that the two Diophantine equatidfist 7Y = z2 and 4* + 11¥ = z?2 have

no non-negative integer solutions. Sroysang [5,ir6]2012 showed that the two
Diophantine equation3* + 5Y = z? and3* + 17Y = z? have the unigue solutions
(1,0,2) in non-negative integefs, y, z), respectively. Rabago [7] in 2013 solved the
two Diophantine equationd* + 19¥ = z2 and3* + 917 = z2 where x,y andz are
non-negative integers. He found two solutions fache of the equations i.e.,
{(1,0,2),(4,1,10)} and{(1,0, 2),(2,1,10)} , respectively. Again Sroysang [8] in 2014
solved the equatio8® + 85 = z? and found thaf1, 0, 2) is a unique solution in non-
negative integers,y andz for this equation. The results on the related Dagine
equations have been found by several different ema#tticians [9-14] employing a
variety of methods.

In this paper, we solved the Diophantine equation
53% + 143Y = z2
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and found thaf0, 1,12) and(1,1,14) are only two non-negative integer solutions for
x,y andz.

2. Preiminaries:
We start this section by presenting a Propositimhtavo Lemmas.

Proposition 2.1. The Catalan's conjecture states {13a2, 2,3) is a solution(a, b, x, y)
for the Diophantine equatiom® — bY = 1 where a,b,x and y are integers
with min{a, b, x, y} > 1.

Lemma 2.1. The Diophantine equatioB3* + 1 = z2 has no non-negative integer
solution wherex andz are non-negative integers.

Proof: Suppose that there are non-negative integarglz such thas3* + 1 = z2.

If x = 0, thenz? = 2 which is not possible. Them > 1. Thus,z? =53* +1 > 53! +

1 = 54. Thenz > 8. Now we consider on the equatios® — 53* = 1. By Proposition
2.1, we haver = 1. Thenz? = 54. This is a contradiction. Hence the equation

53* + 1 = z2 has no non-negative integer solution.

LemmaZ2.2. (1,12) is a unique solution for thgy, z) Diophantine equation

1+ 143Y = z% wherey andz are positive integers

Proof: Lety andz be positive integers such tHat 143Y = z2. If y = 0, then
z? =2 which is impossible. Thery > 1. Thus z? =1+ 1437 > 1+ 143 = 144.

Thenz > 12. Now we consider on the equatioh — 143Y = 1. By Proposition 2.1,
we havey = 1. It follows thatz? = 144. Hence,z = 12. Therefore,(1,12)is a
unique solution(y, z) for the equationl + 143Y = z2 where y andz are positive
integers.

3. Main result

Theorem 3.1. The only solutions to the Diophantine equati®¥ + 143Y = z2 in non-
negative integers a@®, 1,12) and(1, 1, 14).

Proof: The case = 0 is obviously impossible. Likewisg; = 0 has no solution by
Lemma 2.1. Wher =0, we havgx,y,z) = (0,1,12) by Lemma 2.2. We consider
the following remaining cases.

Case (I)x = 1. If x = 1, then we hav3* + 143Y = z2. Takingmodulo 4 both
sides, we havé3 + 143Y = z? = 0 (mod 4)that isz = 2m for some natural number
m. Then53 + 143Y = 4m?. It follows that

53 +90 + 143Y = 4m? + 90

Or, 143 + 143Y = 4m? + 90

Or, 143(1 + 143Y~Y) = 2(2m? + 45)
S01430-1 41 = 2 and2m? 4 45 = 143. Thus,y = 1 andm? = 49 which implies
m = 7. Hence, fom = 7, we havezr = 14. Therefore(x,y,z) = (1,1, 14) is a solution
to 53% + 143Y = z2,
Fory =1 andx =1, we havez = 14.
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Case (I1) x,y,z > 1. Supposé3* + 143Y = z2 is true for positive integersy and z.
Here 53* =1 (mod 4) and 143Y =1 (mod 4) for even integery and 143% =
3 (mod 4) for odd integer y. Sincez? = 0,1 (mod 4) theny must be odd and is
even. We have two possibilities fat.

If x is eveni.ex = 2l for some natural numhieiThen53* + 143Y = z2
become$3?! + 1437 = z2. So(z — 53!)(z + 53!) = z? — 532! = 143%. So
143Y7% — 143* = 2 - 53! wherez — 53! = 143% andz + 53! = 14394,y > 2u,u is
a non-negative integer. It follows tht3%(143Y-2% — 1) = 2 - 53! which implies that
143% = 1 and143?Y~2% — 1 = 2-53L. Thusu = 0 and143” — 1 = 2- 53, Since
| >1,then143Y =2- 53! +1 >2- 53" + 1 = 107, not possible to get a solution.

If X is odd, thatisx = 21 + 1 wherel is a natural number. Then
53% + 143Y = z2

becomes 53%*! + 143Y = z2. So 143Y —11-532' =22 -64-53% or
equivalently 143Y — 11:53% = (z — 8-53))(z + 8-53Y) . If z — 8-53! =
landz +8-53! =143 —11-53%, then we have6-53'+ 11-53! = 143Y — 1.
So 53'(16 + 11-53%) = 143Y — 1. Clearly we see that there is no possible values
for I andy to hold the equality. On the other hand; # 8- 53! = 143 — 11 - 532! and
z+8-53! =1, then we havé3!(16 + 11-53") = 1 — 143Y not possible to get a
solution. This completes the proof.

Corollary 3.1. (0,1,6) and(1,1,7) are exactly two non-negative integer solutions
(x,y,u) for the Diophantine equatid8® + 143Y = 4u? wherex,y andu are non-
negative integers.

Proof: Let x,y andu be non-negative integers such sz + 143Y = 4u?. Let

z = 2u. Then 53* + 143Y = z2. By Theorem 3.1, it follows thatx,y,z) €
{(0,1,12),(1,1,14)}. Thus,2u = ze{12,14}. Soue {6,7} . Hence,(0,1,6) and
(1,1,7) are exactly two non-negative integer solutigrsy,u) for the Diophantine
equations3* + 1437 = 4u?.

Corollary 3.2. The Diophantine equatioB3* + 143Y = v* has no non-negative
integer solution where, y andw are non-negative integers.

Proof: Suppose that there are non-negative integgrandw such that

53*% + 143Y = w*. Let z=w?2. Then53* + 143Y =z2. By Theorem 3.1 we
have(x,y,z) € {(1,0,12),(1,1,14)}. Thenw? = z € {12, 14}. This is a contradiction.

4. Conclusion

In this paper, we have shown that the Diophantineaton53* + 143Y = z?2 has only
two non-negative integer solutions whefgy andz are non-negative integers. The
solutions ar€0,1,12) and(1, 1, 14) respectively.
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