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Abstract. In this paper, we have shown that the Diophantine equation 53
 	+	143� 	=
	�� has only two non-negative integer solutions for �, � and	�. The solutions are (0, 1, 12) 
and	(1, 1, 14). This equation has been solved by applying Catalan’s conjecture. As a 
consequence of main theorem we showed that the equation 53
 + 143� = �� has no 
solution in non-negative integers (�, �, �). 
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1. Introduction 
In 2004, Mihailescu [1] proved the Catalan's conjecture: (3, 2, 2, 3) is a unique solution 
(�, �, �, �)  for the Diophantine equation �
 − �� = 1  where �, �, �   and �  are non-
negative integers with	min$�, �, �, �% > 1. This result plays an important role in the study 
of exponential Diophantine equations. In 2005, Acu [2] studied Diophantine equations of 
the type �
 + �� = '(  for primes �	and	�. In 2007, Acu [3] proved that the Diophantine 
equation 2
 + 5� = ��  has exactly two solutions (�, �, �) in non-negative integers. The 
solutions are  (3, 0, 3)		and		(2, 1, 3) . In 2011, Suvarnamani, Singhta and Chotchaisthit 
[4] showed that the two Diophantine equations 4
 + 7� = ��  and  4
 + 11� = �� have 
no non-negative integer solutions. Sroysang [5, 6] in 2012 showed that the two 
Diophantine equations 3
 + 5� = ��  and 3
 	+	17� 	= 	 ��  have the unique solutions 
(1, 0, 2) in non-negative integers(�, �, �), respectively. Rabago [7] in 2013 solved the 
two Diophantine equations 3
 + 19� = ��  and 3
 + 91� = ��   where  �, �  and �  are 
non-negative integers. He found two solutions for each of the equations i.e., 
$(1, 0, 2), (4, 1, 10)% and $(1, 0, 2), (2, 1, 10)% , respectively. Again Sroysang [8] in 2014 
solved the equation 3
 	+	85� 	= 	 �� and found that (1, 0, 2)	is a unique solution in non-
negative integers �, �  and �  for this equation. The results on the related Diophantine 
equations have been found by several different mathematicians [9-14] employing a 
variety of methods. 
 
In this paper, we solved the Diophantine equation	

53
 + 143� = �� 
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and found that (0, 1, 12) and (1, 1, 14) are only two non-negative integer solutions for 
�, � and	�. 
 
2. Preliminaries: 
We start this section by presenting a Proposition and two Lemmas. 
 
Proposition 2.1. The Catalan's conjecture states that (3, 2, 2, 3)	is a solution (�, �, �, �) 
for the Diophantine equation �
 	− 	�� 	= 	1  where �, �, �  and �	 are integers 
with	min$�, �, �, �% > 1.  
 
Lemma 2.1. The Diophantine equation 53
 	+ 	1	 = 	 ��  has no non-negative integer 
solution where �	and � are non-negative integers. 
Proof:  Suppose that there are non-negative integers	�	and � such that 53
 	+ 	1	 = 	 ��. 
If 	� = 0, then �� = 2 which is not possible. Then 	�	 ≥ 1.	Thus, �� = 53
 + 1	 ≥ 53/ +
1 = 54. Then �	 ≥ 8.	Now we consider on the equation   �� 	−	53
 	 = 	1. By Proposition 
2.1, we have	�	 = 	1. Then	�� 	= 	54. This is a contradiction. Hence the equation 
53
 	+ 	1	 = 	 �� has no non-negative integer solution. 
 
Lemma 2.2.  (1, 12) is a unique solution for the (�, �) Diophantine equation 
1 + 143� = �� where � and � are positive integers. 
Proof: Let �	and �	be positive integers such that1	 + 	143� 	= 	 �� . If 	�	 = 	0 , then 
�� = 2  which is impossible. Then	�	 ≥ 1.  Thus �� = 1 + 143� 	≥ 1 + 143 = 144. 
Then	�	 ≥ 12	. Now we consider on the equation �� 	− 	143� 	= 	1. By Proposition 2.1, 
we have	�	 = 	1 . It follows that �� 	= 	144 . Hence, �	 = 	12 . Therefore, (1, 12) is a 
unique solution (�, �) for the equation 1 + 143� = ��  where  �  and �  are positive 
integers. 
 
3. Main result 
Theorem 3.1.  The only solutions to the Diophantine equation 53
 + 143� = �� in non-
negative integers are (0, 1, 12) and (1, 1, 14). 
Proof: The case � = 0	 is obviously impossible. Likewise, �	 = 	0 has no solution by 
Lemma 2.1.  When	� = 0, we have (�, �, �) 	= 	 (0, 1, 12) by Lemma 2.2. We consider 
the following remaining cases. 
 
Case (I)�	 = 	1 . If �	 = 	1,	 then we have53
 + 143� = �� . Taking 012341	4	  both 
sides, we have 53 + 143� = �� 	≡ 0	(012	4)that is � = 20 for some natural number 
0. Then 53 + 143� = 40�. It follows that  

53 + 90 + 143� = 40� + 90 
Or, 143 + 143� = 40� + 90 

Or, 14361 + 143$�7/%8 = 2(20� + 45) 
So 143$�7/% + 1 = 2	and20� + 45 = 143 . Thus, � = 1  and 0� = 49  which implies  
0 = 7. Hence, for	0 = 7, we have	� = 14. Therefore, (�, �, �) = (1, 1, 14) is a solution 
to 53
 + 143� = ��. 
 For �	 = 1 and	�	 = 1, we have	� = 14.   
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Case (II) �, �, � > 1. Suppose 53
 + 143� = �� is true for positive integers �, � and z. 
Here 53
 ≡ 1	(012	4)  and 143� ≡ 1	(012	4)  for even integer �  and 143� ≡
3	(012	4) for odd integer   �. Since �� ≡ 0, 1	(012	4) then �  must be odd and	� is 
even. We have two possibilities for   �. 
 If � is even i.e. �	 = 	24 for some natural number4. Then 53
 + 143� = �� 
becomes	53�9 + 143� = ��. So 6� − 53986� + 5398 = �� − 53�9 = 143� .		So 
143�7: − 143: = 2 ∙ 539 where � − 539 = 143: and � + 539 = 143$�7:%, � > 23, 3	 is 
a non-negative integer. It follows that 143:(143�7�: − 1) = 2 ∙ 539 which implies that 
143: = 1 and 143�7�: − 1 = 2 ∙ 539 .	Thus 3 = 0 and 143� − 1 = 2 ∙ 539 . Since 
4	 ≥ 1,	then 143� = 2 ∙ 	539 + 1	 ≥ 2 ∙ 	539 + 1 = 107, not possible to get a solution. 
 
 If x is odd, that is,	�	 = 	24	 + 	1 where 4 is a natural number. Then  

53
 +	143� =	�� 
becomes 53�9</ 	+ 	143� 	= 	 ��.			 So 143� − 11 ∙ 53�9 = �� − 64 ∙ 53�9 or 
equivalently 	143� 	− 	11 ∙ 53�9 	= 	 (�	 − 	8 ∙ 539)(�	 + 	8 ∙ 539) . If �	 − 	8 ∙ 539 	=
	1and	� + 8 ∙ 539 = 143� − 11 ∙ 53�9 , then we have 16 ∙ 539 + 11 ∙ 539 = 143� − 1 . 
So			539(16	 +	11 ∙ 539) 	= 	143� 	− 	1. Clearly we see that there is no possible values 
for 4 and � to hold the equality. On the other hand, if � − 8 ∙ 539 = 143� − 11 ∙ 53�9 and 
� + 8 ∙ 539 = 1,	then we have 539(16	 + 	11 ∙ 539) 	= 	1	 − 143�  not possible to get a 
solution. This completes the proof. 
 
Corollary 3.1. (0, 1, 6)  and (1, 1, 7)  are exactly two non-negative integer solutions 
(�, �, 3) for the Diophantine equation 53
 	+ 	143� 	= 	43�  where �, �  and 3  are non-
negative integers. 
Proof:  Let   �, � and 3 be non-negative integers such that	53
 	+ 	143� 	= 	43�. Let 
�	 = 	23 . Then		53
 	+ 	143� 	 = 	 �� . By Theorem 3.1, it follows that (�, �, �)  ϵ  
$(0, 1, 12), (1, 1, 14)% . Thus, 23	 = 	�	ϵ	$12, 14% . So 3	?		$6, 7%  . Hence, (0, 1, 6)  and 
(1, 1, 7)  are exactly two non-negative integer solutions (�, �, 3)  for the Diophantine 
equation	53
 	+ 	143� 	 = 	43�. 
 
Corollary 3.2. The Diophantine equation 53
 	+ 	143� 	= 	 @�  has no non-negative 
integer solution where �, � and �	are non-negative integers. 
Proof:    Suppose that there are non-negative integers �, � and � such that  
53
 	+ 	143� 	= 	��.  Let   � = �� . Then 53
 + 143� = ��.   By Theorem 3.1 we 
have,(�, �, �)	?		$(1, 0, 12), (1, 1, 14)%. Then �� = �	?	$12, 14%. This is a contradiction. 
 
4. Conclusion  
In this paper, we have shown that the Diophantine equation 53
 	+ 	143� 	= 	 �� has only 
two non-negative integer solutions where �, �  and �  are non-negative integers. The 
solutions are (0, 1, 12) and (1, 1, 14) respectively. 
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