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Abstract.  A radiocoloring of a graph G  is a function f  from the vertex set ( )V G  to the 
set of all non-negative integers (labels) such that | ( ) ( ) | 2f u f v− ≥  if ( , ) 1d u v =  and 

| ( ) ( ) | 1f u f v− ≥  if ( , ) 2d u v = . The number of discrete labels and the range of labels used 
are called order and span, respectively. In this paper, we concentrate on the minimum 
order span radiocoloring problem. The optimization problem tries to find, from all 
minimum order assignments, one that uses the minimum span. We completely determine 
the minimum order span of paths, cycles and regular lattices. Moreover, we consider 
some regular bipartite graphs and provide exact value for their minimum order spans.  
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1. Introduction 
The frequency assignment problem (FAP) [13] in radio networks is a well-studied, 
interesting problem, aiming at assigning frequencies to transmitters exploiting frequency 
reuse while keeping signal interference to acceptable levels. The FAP is, in many cases, 
studied as a graph coloring problem, in which the vertices represent transmitters, the 
edges represent interference between two transmitters and the colors represent the 
frequencies. A radiocoloring, also known as L(2,1)-labeling [11], of a graph G  is a 
function f  from the vertex set ( )V G  to the set of all non-negative integers (labels) such 
that| ( ) ( ) | 2f u f v− ≥ if ( , ) 1d u v = and| ( ) ( ) | 1f u f v− ≥ if ( , ) 2d u v = ， where ( , )d u v denotes 
the distance between u  and v . The number of discrete labels and the range of labels used 
are called order and span, respectively.  

Real networks reserve bandwidth (range of frequencies) rather than distinct 
frequencies. In this case, an assignment seeks to use as small range of frequencies as 
possible [1-2,6,8,11,14,18-24]. For more details, one may refer to the surveys [4,25]. It is 
sometimes desirable to use as few distinct frequencies of a given bandwidth (span) as 
possible, since the unused frequencies are available for other use. However, there are 
cases where the primary objective is to minimize the number of frequencies used and the 
span is a secondary objective, since we do not want to reserve unnecessary large span. 
These optimization versions of the radiocoloring problem (for short RCP) are the main 
objects of study in this work and are defined as follows. 
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Definition 1.1. (Minimum order RCP) The optimization version of the RCP that tries to 
minimize the order. The optimal order is called orderX . 
Definition 1.2. (Minimum span RCP) The optimization version of the RCP that tries to 
minimize the span. The optimal span is called spanX . 

Definition 1.3. (Minimum span order RCP) The optimization version of the RCP that 
tries to find from all minimum span assignments, one that uses as few labels as possible. 
The order of such an assignment is called orderX ′ . 
Definition 1.4. (Minimum order span RCP) The optimization version of the RCP that 
tries to find, from all minimum order assignments, one that uses a minimum span. The 
span of such an assignment is called spanX ′ . 

It easy to see that order orderX X ′≤  and 1order spanX X≤ + . Also, it holds that span spanX X ′≤ .  

The equality holds for graphs of diameter at most two.  However, spanX  can be much less 

than spanX ′ . For example, we can show that ( ) 2spanX T = ∆ +  while ( ) 2spanX T′ = ∆ , where 

T is a tree containing a ∆ -vertex such that all of its adjacent vertices are ∆ -vertex. 
Another variation of FAP is related to the square of a graph, which is defined as follows: 
the square 2G of a graph G  is given by 2( ) ( )V G V G=  and 2( )uv E G∈  if and only if 

( , ) 2d u v ≤ . The problem is to color the square of a graph G , so that no two adjacent 

vertices (in 2G ) get the same color. The objective is to use the minimum number of 
colors, denoted 2( )Gχ  and called chromatic number of the square of the graph. [9-10] 

first observed that for any graph G , orderX  is the same as the chromatic number of 2G , 

i.e. 2( ) ( )orderX G Gχ= . However, notice that, the set of colors used in the computed 
assignments of the two problems are different. The colors of the distance one vertices in 
the RCP should be at frequency distance two instead of one in the coloring of the 2G . 
However, from a valid coloring of 2G we can always reach a valid radiocoloring of G  by 
doubling the assigned color of each vertex. Observe that 2 2( ) ( ) 1 2 ( ) 1spanG X G Gχ χ≤ + ≤ − . 

In [12], it has been proved that the problem of the minimum span RCP is NP-
complete, even for graphs of diameter 2. In [16], Lin proved that the problem of coloring 
the square of a general graph (i.e. the minimum order RCP) is NP-complete. It is also 
shown that the minimum span order RCP are NP-complete for planar graphs in [9]. To 
our knowledge, the minimum order span RCP has not been investigated before. 

In this paper, we concentrate on the minimum order span radiocoloring problem. The 
optimization problem tries to find, from all minimum order assignments, one that uses the 
minimum span. In Section 2, we completely determine the minimum order span of paths, 
cycles and regular lattices. In Section 3, we consider some regular bipartite graphs and 
provide exact value for their minimum order spans. 
 
2. The minimum order span of paths, cycles and regular lattices 
A vertex v  is called k-vertex if ( )d v k= , where ( )d v  is the degree of v  in G . We denote 
the maximum degree of G  by ( )G∆ , or ∆  if G  is clear in the context. As we are seeking 
for the minimum order span of a radiocoloring, we may assume that the label 0 is used by 
any radiocoloring. The following lemma is easy to verify. 
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Lemma 2.1. Let G  be a graph. Then 
(1) 1 ( ) | ( ) |orderX G V G∆ + ≤ ≤ , and ( ) | ( ) |orderX G V G=  if and only if the diameter of G  is at 

most two. 
(2) ( ) ( )span spanX G X G′≤ , and ( ) ( )span spanX G X G′=  if the diameter of G  is at most two. 

(3) [15] 2( ) ( ) 1orderX T Tχ= = ∆ + , where T  is a tree with at least one edge. 
 

In [11], Griggs and Yeh studied the minimum spans of paths and cycles and proved 
the following results. 
 
Theorem 2.2. [11] Let nP  be a path with n  vertices.  

Then  
2, 2,

( ) 3, 3,4,

4, 5.
span n

if n

X P if n

if n

=
= =
 ≥

 

 
Theorem 2.3. [11] Let nC  be a cycle with n  vertices. Then ( ) 4span nX C = . 

 
Now we consider the minimum order span of paths and cycles. 

 
Theorem 2.4.  Let nP  be a path with n  vertices. 

Then
2, 2,

( ) 3, 3,

4, 4.
span n

if n

X P if n

if n

=
′ = =
 ≥

 

Proof: Let 1 2...n nP v v v= . By Lemma 2.1, it is clear that 2( ) 2orderX P =  and ( ) 3order nX P =  
when 3n ≥ .  

For 2,3n = , 2 2( ) ( ) 2span spanX P X P′ = =  and 3 3( ) ( ) 3span spanX P X P′ = =  using the Lemma 

2.1 and the fact that the diameters of 2P  and 3P  are at most 2. 
For 4n = , suppose for the contrary, that f  is a radiocoloring with order 3 and span 3. 

If 2( ) 1f v = , then 1 3{ ( ), ( )} {3,4}f v f v =  and 4( ) 2f v = , a contradiction to 4( ) 3orderX P = . If 

2( ) 2f v = , then 1 3{ ( ), ( )} {0,4}f v f v = . This contradicts the assumption that the span of f  
is 3. So 2( ) {1,2}f v ∉ . Similarly, 3( ) {1,2}f v ∉ . This implies 2 3{ ( ), ( )} {0,3}.f v f v =  But 
now 1 4{ ( ), ( )} {1,2}f v f v = , again a contradiction to 4( ) 3orderX P = . Hence 4( ) 4spanX P′ ≥ . 

For 5n ≥ , ( ) ( ) 4span n span nX P X P′ ≥ =  in view of Lemma 2.1 and Theorem 2.2. 

For 4n ≥ , in order to show the upper bound, we define a radiocoloring with order 3 

and span 4 as follows:   
0, 0(mod3),

( ) 2, 1(mod3),

4, 2 (mod3).
i

if i

f v if i

if i

≡
= ≡
 ≡

 

Therefore, ( ) 4span nX P′ ≤  for 4n ≥ . □ 
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Theorem 2.5.  Let nC  be a cycle with n  vertices. 

Then 
4, 5 0(mod3) 0(mod 4),

( )
5, .span n

if n or n or n
X C

otherwise

= ≡ ≡′ = 


 

Proof：：：：Let 1 2 1...n nC v v v v= . Observe that 5( ) 5orderX C =  and ( ) 3order nX C =  if 0(mod3)n ≡ . 
Otherwise, ( ) 4order nX C =  by [3]. 

It follows from Lemma 2.1 and Theorem 2.3 that ( ) ( ) 4span n span nX C X C′ ≥ = . Now we 

treat the following two cases to prove. 
Case 1: 5n =  or 0(mod3)n ≡  or 0(mod 4)n ≡ . 

For 5n = , it is clear that 5 5( ) ( ) 4span spanX C X C′ = =  since the diameter of 5C  is 2. 

For 0(mod3)n ≡ , in order to prove ( ) 4span nX C′ ≤ , we define a radiocoloring f  with 

order 3 and span 4 as follows:  
0, 0(mod3),

( ) 2, 1(mod3),

4, 2 (mod3).
i

if i

f v if i

if i

≡
= ≡
 ≡

 

For 0(mod 4)n ≡ , we construct a radiocoloring f  with order 4 and span 4 as follows: 

0, 0(mod 4),

3, 1(mod 4),
( )

1, 2(mod 4),

4, 3(mod 4).

i

if i

if i
f v

if i

if i

≡
 ≡=  ≡
 ≡

 

Thus, ( ) 4span nX C′ =  when 5n =  or 0(mod3)n ≡  or 0(mod 4)n ≡ . 

Case 2: 5n ≠  and 0(mod3)n ≠  and 0(mod 4)n ≠ . 
Suppose to the contrary that nC  admits a radiocoloring f  with order 4 and span 4. 

Without loss of generality, let 1( ) 0f v = . Then 2{ ( ), ( )} {{2,3},{2,4},{3,4}}nf v f v ∈ .  
Case 2.1:  2{ ( ), ( )} {2,3}nf v f v = . 

Then 3 1{ ( ), ( )} {1,4}nf v f v − = , a contradiction to ( ) 4order nX C = . 
Case 2.2:  2{ ( ), ( )} {2,4}nf v f v = . 

Assume that 2( ) 4, ( ) 2nf v f v= = . In the case, if 3( ) 1f v = , then we need 4( ) 3f v = ,    

again a contradiction to ( ) 4order nX C = . This implies that 3 4( ) 2, ( ) 0f v f v= = . Going on 

this process, we have 3 1 3 2( ) 0, ( ) 4k kf v f v+ += =  and 3 3( ) 2kf v + = , where 0,1,...k = . 

Therefore, 0(mod3)n ≡ . This contradics to our assumption. 
Case 2.3:  2{ ( ), ( )} {3,4}nf v f v = . 

Suppose that 2( ) 4, ( ) 3nf v f v= = . Then 1 3( ) ( ) 1nf v f v− = = . Going on this process, we 

have 4 1 4 2 4 3( ) 0, ( ) 4, ( ) 1k k kf v f v f v+ + += = =  and 4 4( ) 3kf v + = , where 0,1,...k = . Therefore, 

0(mod 4)n ≡ , again a contradiction. 
Accordingly, ( ) 5span nX C′ ≥ . It remains to show that ( ) 5span nX C′ ≤ .  
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We present a radiocoloring with order 4 and span 5 as follows: 3 1( ) 0,kf v + =  

3 2( ) 4,kf v + =  3 3( ) 2kf v + = , where 0,1,...k =  and ( ) 5nf v =  for 1(mod3)n ≡ ; 1 5( ) ( )f v f v=  

0= , 2 6( ) ( ) 3f v f v= = , 3 7( ) ( ) 1f v f v= = , 4 8( ) ( ) 5f v f v= =  and 3 3 1( ) 0, ( ) 3,k kf v f v += =  

3 2( ) 5kf v + = , where 3,4,...k = , for 2(mod3)n ≡ . 
Therefore, ( ) 5span nX C′ =  when 5n ≠  and 0(mod3)n ≠  and 0(mod 4)n ≠ .  

This concludes the proof of Theorem 2.5. □ 
 

In the following, we will consider the minimum order span of regular lattices. The 
minimum order and span of regular lattices have been proved by means of optimal-
labelling algorithms in [3,5] respectively. 
 
Theorem 2.6. [3,5] Let G∆  be a ∆ -regular lattice, where 3,4∆ =  or 6.  

Then 
4, 3,

( ) 5, 4,

7, 6.
order

if

X G if

if
∆

∆ =
= ∆ =
 ∆ =

 

 
For a vertex ( )v V G∈ , let ( ) { : ( )}N v u uv E G= ∈  and [ ] ( ) { }N v N v v= ∪ . 
 
Theorem 2.7.  Let G∆  be a ∆ -regular lattice.  

Then  
6, 3,

( ) 8, 4,

12, 6.
span

if

X G if

if
∆

∆ =
′ = ∆ =
 ∆ =

 

Proof：：：：In view of 4( ) 5orderX G = , we assume that f  is a radiocoloring with order 5 and 

4 1 2 3 4 5( ( )) { , , , , }f V G a a a a a= . Let 4( )u V G∈  and ( ) if u a=  for some {1,2,3,4,5}i ∈ . Then 

1 2 3 4 5( ( )) { , , , , } \ { }if N u a a a a a a= . This implies | | 2j ia a− ≥  for each j i≠ . In fact, for all 

{1,2,3,4,5}i ∈ , we always have | | 2j ia a− ≥  for each j i≠ . Hence 4( ) 8spanX G′ ≥ .  

Similarly, we can show that 3( ) 6spanX G′ ≥  and 6( ) 12spanX G′ ≥ . 

It remains to give a radiocoloring of 4G  with order 5 and span 8, as shown in Figure 

1; a radiocoloring of 3G  with order 4 and span 6, as shown in Figure 2. And a 
radiocoloring of 6G  with order 7 and span 12 is given in Figure 3. This complete the 

proof of Theorem 2.7. □ 
 
3. The minimum order span of some regular bipartite graphs 
In this section, we consider the minimum order span of k-regular bipartite graphs on 2n  
vertices. 
 
Theorem 3.1. Let G  be a k-regular bipartite graph on 2n  vertices. If k n=  or 1n − , then 

2 , ,
( ) ( )

2 2, 1.span span

n if k n
X G X G

n if k n

=′ = =  − = −
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Proof：：：：For k n=  or 1n − , observe that G  is a regular bipartite graphs with diameter 
two. Thus ( ) ( )span spanX G X G′ =  by Lemma 2.1. 

On the other hand, ( ) 2spanX G n=  when k n= , which is shown by Crompton in [7]. 

For 1k n= − ,  it is shown by Liu and Yeh [17] that ( ) 2 2spanX G n= − . This completes the 

proof of the theorem. □ 

 
Figure 1: A radiocoloring of 4G  with order 5 and span 8. 

 
Figure 2: A radiocoloring of 3G  with order 4 and span 6. 

 
Next, we consider the case for 2k n= − . The following result shows the order of 

( 2)n − -regular bipartite graph on 2n  vertices. 
 
Theorem 3.2. [26] Let G be a ( 2)n − -regular bipartite graph on 2n  vertices.  

Then 
1, 2,

( ) 2, 3,

, 4.
order

if n

X G if n

n if n

=
= =
 ≥
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Figure 3: A radiocoloring of 6G with order 7 and span 12. 

 
Theorem 3.3. Let G  be a ( 2)n − -regular bipartite graph on 2 ( 5)n n ≥  vertices. Then 

( ) 2( 1)spanX G n l′ = − − , where l  is the number of 4-cycles in ,n nK G− . 

Proof：：：：Firstly, ( )orderX G n=  in view of 5n ≥ . Suppose that 1 2{ , ,..., }kC C C is the set of all 

cycles in ,n nK G− . Let ( , )G X Y= , [ ] ( , )i i i iG G C X Y= = , where ( ) , ( )i i i iX V C X Y V C= =∩  

Y∩ . Let f  be a radiocoloring of G with order n  and 1 2( ( )) { , ,..., }i nf V G a a a= . Then we  
have the following facts hold. 
Fact 1: For each ,x y X∈  (or ,x y Y∈ ), it must be that ( , ) 2d x y =  since 5n ≥ . Thus all 
labels in ( )f X or all labels in ( )f Y  are all different. This means 

( ) ( ) ( ( ))f X f Y f V G= = . 

Fact 2: For each ( )ix V G∈ , ( )( )jy V G i j∈ ≠ , we have ( , ) 1d x y = .  

Therefore ( ( )) ( ( ))i jf V G f V G = ∅∩  for all i j≠ . 

Combined with Fact 1 and Fact 2, we obtain ( ) ( ) ( ( ))i i if X f Y f V G= =  for each i . 

Fact 3: If | | 6iC ≥ , then any two labels in ( ( ))if V G  are at least two apart. 
By Fact 1-3, we conclude that ( ) 2( 1)spanX G n l′ ≥ − − . 
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On the other hand, suppose 1 1 2 2 1... i i

i i i i i i i
i n n

C x y x y x y x= , where i
jx X∈ and i

jy Y∈  for 

1,2,..., ij n= , 1,2,...,i k= . With no loss of generality, let 1 2, ,..., lC C C  be all the 4-cycles. 
We define a radiocoloring of G  with order n  and span 2( 1)n l− −  as follows. 

For 1,2,...,i l= , 
3 3, 1,

( ) ( )
3 2, 2.

i i
j j

i if j
f x f y

i if j

− =
= =  − =

 

For 1,...,i l k= + , 1,2,..., ij n= , 1

1

(3 2) 2 , 1,
( ) ( )

2,..., .(3 2) 2 2 ,
i i

ij j

t
t l

l j if i l
f x f y

if i l kl n j
−

= +

− + = += =  = +− + Σ +

 

Then 
1

1 1
( ) ( ) (3 2) 2 2 (3 2) 2 (3 2) 2( 2 ) 2( 1)k

k k
k

span t k tn t l t l
X G f y l n n l n l n l n l

−

= + = +
′ ≤ = − + Σ + = − + Σ = − + − = − − .

Therefore, ( ) 2( 1)spanX G n l′ = − − . □ 

 

 
Figure 4: The radiocoloring on a 14-regular bipartite graph on 32 vertices  
                 with order 16 and span 28, where , 1 2 3 4 5n nK G C C C C C− = ∪ ∪ ∪ ∪   

                               and 1 2 3 4 5| | | | 4,| | 6,| | 6,| | 10C C C C C= = = = = . 
 

Finally, we consider the minimum order span of incidence graph of a projective 
plane. We say a graph G is an incidence graph of a projective plane ( )nΠ  of order n , if 

( , , )G X Y E  is a bipartite graph such that 

(1) 2| | | | 1X Y n n= = + + , 
(2) each x X∈  corresponds to a point xp  in ( )nΠ  and each y Y∈  corresponds to a line 

yl  in ( )nΠ , and  

(3) {{ , }, ,E x y x X y Y= ∈ ∈  such that  x yp l∈  in ( )}nΠ . 

By the definition of ( )nΠ , we know that such G is ( 1)n + -regular, for every 

,x y X∈ , ( , ) 2d x y = , and for every ,x y Y∈ , ( , ) 2d x y = . Also, if ,x X y Y∈ ∈ such that x  

is not adjacent to y , then ( , ) 3d x y = . 
 
Theorem 3.4. Let G be the incidence graph of a projective plane of order n . 
Then 2( )spanX G n n′ = + . 

Proof：：：：It is shown by Liu and Yeh [17] that 2( ) ( ) 1span orderX G X G n n= + = + . Since 
2| | 1X n n= + +  and  for every ,x y X∈ , ( , ) 2d x y = , for any radiocoloring f  of G  with 

span 2n n+ , the order of f  is always 2 1n n+ + . Hence 2( )spanX G n n′ = + . □ 
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By the definition, we know that the diameter of the incidence graph of a projective 
plane of order n  is 3. However, ( ) ( )span spanX G X G′ = . This implies the diameter of G  is at 

most two is sufficient but not necessary for ( ) ( )span spanX G X G′ = . 
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