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1. Introduction

Levine [1963] introduced the notion of semi-open sets and semi-continuity in
topological spaces. Andrijevic [1996] introduced a class of generalized open sets in
topological spaces. Mashhour [1982] introduced pre open sets in topological
spaces.The class of b-open sets is contained in the class of semi-open and pre-open
sets.Tong [1989] introduced the concept of t-set and B-set in topological spaces.
The class of *b-open set is both semi-open and pre open. Indira, Rekha [2012]
introduced the concept of *b-open set, **b-open set, t*-set, B*-set, locally *b-
closed set, locally **b-closed set, *b-continuous in topological spaces. In this paper
we introduce the notion of **b-continuous, t*-continuous, B*-continuous, locally
**b-closed continuous, D(c,*b)-continuous, D(c,**b)-continuous in Topological
spaces. In this paper we discuss properties of the above sets and continuous
functions. All through this paper (X, 7)and (Y, o) stand for topological spaces with
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no separation assumed, unless otherwise stated. Let A < X ,the closure of 4 and the
interior of 4 will be denoted by C/(A4) and Int(A) , respectively.

2. Preliminaries

Definition 2.1. A subset A of a space X is said to be :

1. Semi-open [14] if 4 < CI(Int(A))

2. Pre open[15] if A < Int(CI(A))

3.a-open [16]if A < Int(Cl(Int(A)))

4. -open [1,4]if A < Cl(Int(CI(A)))

5.b-open [3]if A < Cl(Int(A)) Int(CI(A))

6. *b-open [10] if 4 < Cl(Int(A)) N Int(CIl(A))

7. b**-open [6] if A < Int(Cl(Int(A))) v Cl(Int(CI(A)))
8. **b-open [10] if 4 < Int(CIl(Int(A))) N Cl(Int(CI(A)))

Definition 2.2. A subset A of a space X is called:

1. t-set [21] if Int(A) = Int(CI(A))

. t*-set [10] if CI(A) = Cl(Int(A))

.B-set[21]1ifA=U NV ,whereU €7 and V is a t-set.

.B*-set [10]ifA=U NV, whereU €7 and V is a t*-set.

. locally closed [5]if A=U NV, whereU €7 and V is a closed set.

. locally b-closed [6]if A =U NV, whereU € 7 andV is a b-closed set.

. locally *b-closed [10,13]if A=U NV, whereU € 7 andV is a *b-closed set.
.locally b**-closed [6]ifA=U NV ,whereU € 7 andV is a b**-closed set.
9. locally **b-closed [10]if A =U NV, whereU € randV is a **b-closed set.
10. D(c,b) —set [21] if Int(A) = bint(A)

11. D(c,b**) —set [6] if Int(A) =b**Int(A)
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Definition 2.3. A function f : X — Yis called [1,2,12,13,14,15,16,22]:

1. semi continuous if f - (V) is semi open in X for each open set V of Y.
2. pre continuous if f’ - (V) is pre open in X for each open set V of Y .

3. a -continuous if f'(V)isa - open in X for each open set ¥ of Y .

4. B -continuous if £~ (V)is f-openin X for each openset V of Y .

5. b-continuous if f ' (V)is b-openin X for each openset V of Y .

6. *b-continuous if f ' (V)is *b-open in X for each open set V of Y .

7. b**-continuous if /' (V)is b**-open in X for each open set ¥ of Y .
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8. t-continuous if ' (V)is t-set in X for each open set V of Y .

9. B-continuous if f ' (V)is B-set in.X for cach open set ¥ of Y .

10. locally closed continuous if /' (V)is locally closed in X for each open set V/
of Y.

11. locally b-closed continuous if f - (V) is locally b-closed in X for each open
set Vof Y.

12. locally *b-closed continuous if /' (V)is locally *b-closed in X for each
openset Vof Y.

13. locally b**-closed continuous if f - (V)is locally b**-closed in X for each
openset V of Y.

14. completely continuous if f - (V) is regular open in X for each open set J of Y

15. D(c,b)-continuous if ' (V)is D(c,b)-set in X for each open set V of Y .
16. D(c,*b)-continuous if /' (V) is D(c,*b)-set in X for each open set V of ¥ .

17. D(c,b**)-continuous if ' (V)is D(c,b**)-set in X for each open set V of Y .
The Figure 1 and Figure 2 give the relations between the above sets.
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3. Properties of *b-open sets and **b-open sets
Definition 3.1. A subset A of a space X is called:
1. D(c,*b) —set ifInt(A) =*blnt(A)

2. D(c,**b) —set if Int(A) =**bInt(A)
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Result 3.2.

1.Every regular open set is a t-set.
2.Every regular closed set is a t*-set.
3.Every locally closed set is a B-set.

Theorem 3.3. Let A be a subset of (X, 7).Then to prove the following:

1. Ais at-set iff it is semi closed.
2. Ais at*-set iff it is semi open.

Figure 2
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Proof.

1. Let A be at-set.
Then Int(A) = Int(CI(A))
Therefore Int(CIl(A)) < A
=> A is semi closed.

Conversly, Assume that A is semi closed
Then Int(CI(A)) < A

Int(Int(CI(A))) < Int(A)
Int(CI(A)) < Int(A) (1)
Since Int(A) < Int(CI(A)) ()
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From (1) and (2)
Int(A) = Int(CI(A))
= Aisat-set.

Let A be a t*-set.

Then CIA) = Cl(Int(A))
Therefore 4 < Cl(Int(A))
—> A is semi open.

Conversly, Assume that A is semi open
Then A < Cl(Int(A))

Cl(A) < CI(Cl(Int(A)))

Cl(A) < Cl(Int(A)) €))
Since Cl(Int(A)) < CI(A) (2)
From (1) and (2)

Cl(A) = Cl(Int(A))

= Aisat*-set.

Theorem 3.4.

1.
2.

Proof.

1.

If A and B are t-sets, then A N Bis a t-set.
If A and B are t*-sets, then 4\ Bis a t*-set.

Let A and B be t-set.
Then we have Int(A) = Int(CI(A)); Int(B) = Int(CI(B))
Since Int(A N B) < Int(Cl(AN B))
< Int(CI(A) N CI(B))
= Int(CI(A)) N Int(CI(B))
= Int(A) N Int(B)
=Int(AN B)
Int(AN B) < Int(Cl(An B)) < Int(AN B)

= Int(AN B) = Int(Cl(AN B))
= AN Bisat-set.

Let A and B be t*-set.

Then we have CI(A) = Cl(Int(A)); CI(B) = Cl(Int(B))

Since CI(Aw B) =CI(A) v CI(B) = Cl(Int(A)) v Cl(Int(B))
= Cl(Int(A) v Int(B))
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< Cl(Int(A U B))
CI(A U B) < Cl(Int(AL B)) (1)

Since Int(A U B)c AUB

Cl(Int(Avw B)) c CI(Av B) (2)
From (1) and (2)

Cl(Av B) = Cl(Int(A v B))

= AU Bis a t¥-set.

Theorem 3.5. A set 4 is at-set iff its complement is a t*-set.
Proof.

Let A be a t-set.

Then Int(A) = Int(CI(A))

< X —Int(A) = X — Int(CI(A))

< Cl(X — A)=Cl(Int(X — A))

o CI(A°) = CI(Int(A°))

& A%is a t*-set.

Theorem 3.6. For a subset A of a space (X, 7), the following are equivalent:

1. A isopen.
2. A ispre open and a B-set.
Proof.

To prove: (1)= (2)

Let A be open

Then A4 = Int(A)

= Int(A) < Int(Cl(A))

= A c Int(Cl(A))

= A s pre open

Let U =Aerand VV = X be a t-set containing 4
=>A4=UnNV

= A is a B-set.

Hence A is pre open and a B-set.

To prove: (2)= (1)

Let 4 be pre open and a B-set

Since A is a B-set

Therefore 4 =U NV where U is open and V is a t-set.
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= Int(V') = Int(CL(V))
since A is pre open
= A c Int(CI(A)) = Int(CI(U N V) = Int(CL(U)) N Int(V')
S UNV cnt(ClU)) N Int(V)
Consider U NV = (U nNV)nU
c [Int(CLU)) N Int(V)|InU

=UnNnInt(V)
=>UnVcUnInt(V)
=V chn()
=V =Imntl)
> A=UnV=UnInt(V)
= A=1Int(A)
= Ais open.

Theorem 3.7. For a subset 4 of a space (X, 7), the following are equivalent:

1. 4 is regular open

2. Ais pre open and a t-set.
Proof.

To prove: (1)= (2)

Let A be regular open.
Then A = Int(CI(A))

= Ais pre open

Since A = Int(CI(A))

= Int(A) = Int(CI(A))
= Ais at-set.

To prove: (2)= (1)

Let A be pre open and a t-set.

Then A < Int(Cl(A)) (D
Since A is a t-set
Then Int(CI(A)) < A )

From (1) and (2)
A is regular open.

Theorem 3.8. For a subset 4 of a space (X,7), the following are equivalent:
1. A is regular closed

2. A is pre closed and a t*-set.

Proof.

To prove: (1)= (2)

Let A be regular closed

50



Applications of *b-open Sets and **b-open Sets in Topological spaces

Then A = Cl(Int(A))

= Ais pre closed

Since A = Cl(Int(A))

= CI(A) = Cl(Int(A))

= Aisat*-set.

To prove: (2)= (1)

Let 4 be pre closed and a t*-set.

Then Cl(Int(A)) < A (1)
Since A is a t-set
Then A < Cl(Int(A)) 2

From (1) and (2)
A is regular closed.

Theorem 3.9.
1. The intersection of a b-open set and a *b-open set is a b-open set.
2. The intersection of a b**-open set and a **b-open set is a b**-open set.

Theorem 3.10.

1. The intersection of a locally b-closed set and a locally *b-closed set is a locally
b-closed set.

2. The intersection of a locally b**-closed set and a locally **b-closed set is a
locally b**-closed set.

Theorem 3.11. For a subset A4 of an extremally disconnected space (X, 7),the
following are equivalent:

1. Ais open

2. Ais *b-open and locally closed

3. Ais b-open and locally closed

Proof.

Let A be a subset of an extremally disconnected space (X,7).
Then Cl(Int(A)) = Int(CI(A))

To prove: (1)= (2)

From theorem 2.4[13],

To prove: (2)= (3)

Let 4 be *b-open and locally closed

Since Every *b-open set is b-open.

= A is b-open and locally closed

To prove: (3)= (1)

From theorem 2.1[2],

Theorem 3.12. For a subset A of a space (X, 7) ,the following are equivalent:
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1. 4 is open

2. Ais *b-open and D(c,*b)-set

3. Ais b-open and D(c,b)-set
Proof.

To prove: (1)= (2)

From theorem 2.7[13],

To prove: (2)= (3)

Let A be *b-open and D(c,*b)-set
Then A =*blnt(A) and Int(A) =*bInt(A) (1)
Since Every *b-open set is b-open.
= Ais b-open.

= A=>bInt(A) (2)
From (1) and (2)
A =bInt(A) =*bInt(A) 3)

From (1) and (3)

Int(A) = bint(A)

= Ais aD(c,b)-set.

To prove: (3)= (1)

Let A be b-open and D(c,b)-set

To prove: A is open

Since A = bInt(A) and Int(A) = bint(A)
= Ais open.

Theorem 3.13. For a subset A4 of an extremally disconnected space(X,7), the

following are equivalent:

1. Ais open

2. A is **b-open and locally closed

3. A is b**-open and locally closed
Proof.

Let A be a subset of an extremally disconnected space (X,7).
Then Cl(Int(A)) = Int(CI(A))

To prove: (1)= (2)

From theorem 2.9 [10],

To prove: (2)= (3)

Let 4 be **b-open and locally closed
Since Every **b-open set is b**-open.
= Ais b**-open and locally closed
To prove: (3)= (1)

From theorem 2.1[6],

Theorem 3.14. For a subset A4 of a space (X, 7), the following are equivalent:
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1. 4 is open

2. A is **b-open and D(c,**b)-set

3. A is b**-open and D(c,b**)-set

Proof.

To prove: (1)= (2).

Let A be open

To prove: A4 is **b-open

From theorem 2.9[10],

To prove: A is a D(c,**b)-set

Since A is open and Every open set is **b-open.

Then A = Int(A) =**bInt(A)

= Ais a D(c,**b)-set.

To prove: (2)= (3)

Let A4 be **b-open and D(c,**b)-set

Then A =**bint(A)and Int(A) =**blnt(A)
6]

Since Every **b-open set is b**-open.

= Ais b**-open.

= A=b**Int(A)

From (1) and (2)

A=b**Int(A) =**bInt(A)

From (1) and (3)

Int(A) =b**Int(A)

= Ais a D(c,b**)-set.

To prove: 3)= (1)

Let A be b**-open and D(c,b**)-set

To prove: A is open

Since 4 =b**Int(A)and Int(A) =b**Int(A)

= Ais open.

4. Applications of *b-continuous and **b-continuous functions

Definition 4.1.
A function f : X — Yis called:

1. **b-continuous if f ' (V)is **b-open in X for each open set V of Y .

2. t*-continuous if f ' (V)is t*-set in X for each open set V of Y .

3. B*- continuous if f ' (V)is B*-set in X for cach open set ¥ of Y .

4. locally **b-closed continuous if £~ (V)is locally **b-closed in X for each

openset V of Y.

2
3)

5. D(c,**b)-continuous if £ (V)is D(c,**b)-set in X for each open set ¥ of ¥ .
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Example 4.2.

Let X ={a,b,c,d}
r={X,¢p.{c},{d},{c,d} {a,c,d}, {{b,c,d}}
¢ ={X.¢.{a,b,d},{a,b,c},{a,b},{b}, {a} }

1.The collection of **b-open sets =

{X,9.{c}.{d},{c.d} {a,c,d} {b,c,d}}
Define a function f : X — X suchthat f(a)=b, f(b)=a, f(c)=d,f(d)=c
Then f is **b-continuous.
2.The collection of t*- sets =

{X,0.{b},{c},{d},{a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c},{a,b,d},{b,c,d}}
Define a function f: X — X suchtha f(a)=b, f(b)=d, f(c)=a, f(d)=c
Then fis t*-continuous.

3.The collection of B*-sets =

X, 9,1}, {c}, d} {a, ¢} a,d}, ib, ¢y, {b,d}, {c,d},{a,b,c} {a, b,d}  {a, ¢, d}, b, c,d}

Define a function f: X — X suchtha f(a)=b, f(b)=d, f(c)=a, f(d)=c
Then fis B*-continuous.

4. The collection of locally **b-closed sets =

{X.¢,{a},{b}.{c}.{d}.{a,b} . {a,c},{a.d}, {b,c}, b, d},
{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d}}

Define a function f: X — X suchtha f(a)=c, f(b)=a, f(c)=b,f(d)=d
Then f is locally **b-closed continuous.

5. The collection of D(c,**b)-sets =

{X.¢.1a},{b},{c},{d}. {a, b}, {a, c}, {a,d}, (b, c}, (b, d},

{c.d}.{a,b,c}.{a,b,d},{a,c,d},{b,c,d}}
Define a function f: X — X suchthat f(a)=c, f(b)=a, f(c)=f(d)=d
Then fis D(c,**b)-continuous.

Theorem 4.3. Let f : X — Y be a function and let X be an extremally

disconnected space. Then the following are equivalent:
1. f is continuous

2. f'is *b-continuous and locally closed continuous
3. fis b-continuous and locally closed continuous
Proof.
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It follows from theorem 3.11.

Theorem 4.4. Let [ : X — Y be a function. Then the following are equivalent:
1. f is continuous

2. fis *b-continuous and D(c,*b)-continuous

3. fis b-continuous and D(c,b)-continuous

Proof.
It follows from theorem 3.12.

Theorem 4.5. Let f:X — Y be a function and let X be an extremally

disconnected space. Then the following are equivalent:
1. f is continuous

2. f'is **b-continuous and locally closed continuous
3. fis b**-continuous and locally closed continuous
Proof. It follows from theorem 3.13 .

Theorem 4.6. Let f : X — Y be a function. Then the following are equivalent:
1. f is continuous

2. f'is **b-continuous and D(c,**b)-continuous

3.. fis b**-continuous and D(c,b**)-continuous

Proof. It follows from theorem 3.14.

Theorem 4.7. Let f : X — Y be a function. Then
1. f'is continuous iff f is pre continuous and B-continuous
2. f'is completely continuous iff f is pre continuous and t-continuous

3.. fis t*-continuous iff f is semi continuous

Proof.

1.1t follows from theorem 3.6.
2.1t follows from theorem 3.7.
3.1t follows from theorem 3.3(2).
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