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1. Introduction 
 Levine [1963] introduced the notion of semi-open sets and semi-continuity in 
topological spaces. Andrijevic [1996] introduced a class of  generalized open sets in 
topological spaces. Mashhour [1982] introduced pre open sets in topological 
spaces.The class of  b-open sets is contained in the class of semi-open and pre-open 
sets.Tong [1989] introduced the concept of  t-set and B-set in topological spaces. 
The class of  *b-open set  is both semi-open and pre open. Indira, Rekha [2012] 
introduced the concept of  *b-open set, **b-open set, t*-set, B*-set, locally  *b-
closed set, locally **b-closed set, *b-continuous  in topological spaces. In this paper 
we introduce the notion of  **b-continuous, t*-continuous, B*-continuous, locally  
**b-closed continuous, D(c,*b)-continuous, D(c,**b)-continuous in Topological 
spaces. In this paper we discuss properties of the above sets and continuous 
functions.  All through this paper ),( τX and ),( σY stand for topological spaces with 
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no separation assumed, unless otherwise stated. Let XA⊆ ,the closure of A and the 
interior of A will be denoted by )(ACl and )(AInt , respectively. 

2. Preliminaries 

Definition 2.1.  A subset A of a space X is said to be : 
1. Semi-open [14] if ))(( AIntClA ⊆  
2. Pre open[15] if ))(( AClIntA ⊆   
3.α -open [16] if )))((( AIntClIntA ⊆  
4.β -open [1,4] if )))((( AClIntClA ⊆  
5. b-open [3] if ))(())(( AClIntAIntClA ∪⊆  
6. *b-open [10] if ))(())(( AClIntAIntClA ∩⊆  
7.  b**-open [6] if )))((()))((( AClIntClAIntClIntA ∪⊆  
8. **b-open [10] if )))((()))((( AClIntClAIntClIntA ∩⊆  
 
Definition 2.2.  A subset A of  a space X is called: 
1. t-set [21] if ))(()( AClIntAInt =  
2. t*-set [10] if ))(()( AIntClACl =  
3. B-set [21] if VUA ∩= , where τ∈U  and V is a t-set. 
4. B*-set [10] if VUA ∩= , where τ∈U  and V is a t*-set. 
5. locally closed [5] if VUA ∩= , where τ∈U  and V is a closed set. 
6. locally b-closed [6] if VUA ∩= , where τ∈U andV is a b-closed set. 
7. locally  *b-closed [10,13] if VUA ∩= , where τ∈U andV is a *b-closed set. 
8. locally  b**-closed [6] if VUA ∩= , where τ∈U andV is a b**-closed set. 
9. locally  **b-closed [10] if VUA ∩= , where τ∈U andV is a **b-closed set. 
10. D(c,b) –set [21] if )()( AbIntAInt =  
11. D(c,b**) –set [6] if )(**)( AIntbAInt =  
 
Definition 2.3.  A function YXf →: is called [1,2,12,13,14,15,16,22]: 
1. semi continuous  if )(1 Vf − is semi open in X for each open set V of Y . 

2. pre continuous  if )(1 Vf − is pre open in X for each open set V of Y . 

3. α -continuous  if )(1 Vf − isα - open in X for each open set V of Y . 

4.β -continuous  if )(1 Vf − is  β -open in X for each open set V of Y . 

5. b-continuous  if )(1 Vf − is b-open in X for each open set V of Y . 

6. *b-continuous  if )(1 Vf − is *b-open in X for each open set V of Y . 

7. b**-continuous  if )(1 Vf − is b**-open in X for each open set V of Y . 
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8. t-continuous  if )(1 Vf − is t-set  in X for each open set V of Y . 

9. B-continuous  if )(1 Vf − is B-set  in X for each open set V of Y . 

10. locally closed continuous  if )(1 Vf − is locally closed  in X for each open set V    
       of Y . 
11. locally b-closed continuous  if )(1 Vf − is locally  b-closed  in X for each open  
       set V of Y . 
12. locally  *b-closed continuous  if )(1 Vf − is locally  *b-closed  in X for each  
       open set V of Y . 
13. locally  b**-closed continuous  if )(1 Vf − is locally  b**-closed  in X for each  
       open set V of Y . 
14. completely continuous if )(1 Vf − is regular open in X for each open set V of Y
. 
15. D(c,b)-continuous  if )(1 Vf − is D(c,b)-set in X for each open set V of Y . 

16. D(c,*b)-continuous  if )(1 Vf − is D(c,*b)-set in X for each open set V of Y . 

17. D(c,b**)-continuous  if )(1 Vf − is D(c,b**)-set in X for each open set V of Y . 
The Figure 1 and Figure 2 give  the relations  between the above sets. 

Figure 1 

 

3. Properties of  *b-open sets and  **b-open sets 
Definition 3.1.  A subset A of  a space X is called: 
1. D(c,*b) –set  if )(*)( AbIntAInt =  
2. D(c,**b) –set  if )(**)( AbIntAInt =  
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Result 3.2. 
1.Every regular open set is a t-set. 
2.Every regular closed set is a t*-set. 
3.Every locally closed set is a B-set. 
 
Theorem 3.3.  Let A be a subset of ),( τX .Then to prove the following: 
1. A is a t-set  iff  it is semi closed. 
2. A is a t*-set  iff it is semi open. 
 

Figure 2 

 

Proof. 

1. Let A be a t-set. 
Then ))(()( AClIntAInt =  
Therefore AAClInt ⊆))((  
⇒ A is semi closed. 
Conversly, Assume that A is semi closed 
Then AAClInt ⊆))((  

)()))((( AIntAClIntInt ⊆  
)())(( AIntAClInt ⊆                               (1) 

Since ))(()( AClIntAInt ⊆                                    (2) 
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From (1) and  (2) 
))(()( AClIntAInt =  

⇒  A is a t-set. 

    2        Let A be a t*-set. 
Then ))(() AIntClClA =  
Therefore ))(( AIntClA ⊆  
⇒ A is semi open. 
Conversly, Assume that A is semi open 
Then ))(( AIntClA ⊆  

)))((()( AIntClClACl ⊆  
))(()( AIntClACl ⊆                                                                                   (1) 

Since )())(( AClAIntCl ⊆                                                                         (2) 
From (1)  and  (2) 

))(()( AIntClACl =  
⇒  A is a t*-set. 

Theorem 3.4. 

1. If A  and B are t-sets, then BA∩ is a t-set. 
2. If A  and B  are t*-sets, then BA∪ is a t*-set. 

Proof. 

1. Let A and B be t-set. 
Then we have ))(()( AClIntAInt = ; ))(()( BClIntBInt =  
Since ))(()( BAClIntBAInt ∩⊆∩  

                              ))()(( BClAClInt ∩⊆  

                              ))(())(( BClIntAClInt ∩=  

                              )()( BIntAInt ∩=  

                              )( BAInt ∩=  
         )())(()( BAIntBAClIntBAInt ∩⊆∩⊆∩  

                 ⇒ ))(()( BAClIntBAInt ∩=∩  

                ⇒ BA∩ is a t-set. 

2. Let A and B be t*-set. 
Then we have  ))(()( AIntClACl = ; ))(()( BIntClBCl =  
Since ))(())(()()()( BIntClAIntClBClAClBACl ∪=∪=∪  

                              ))()(( BIntAIntCl ∪=  
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                             ))(( BAIntCl ∪⊂  

         ))(()( BAIntClBACl ∪⊂∪                            (1) 

             Since BABAInt ∪⊂∪ )(  

            )())(( BAClBAIntCl ∪⊂∪           (2) 

             From (1)  and  (2) 

            ))(()( BAIntClBACl ∪=∪  

            ⇒ BA∪ is a t*-set. 

Theorem 3.5. A set A  is a t-set  iff  its complement is a t*-set. 
Proof. 
Let A  be a t-set. 
Then ))(()( AClIntAInt =  
⇔ ))(()( AClIntXAIntX −=−  
⇔ ))(()( AXIntClAXCl −=−  

⇔ ))(()( cc AIntClACl =  

⇔ cA is a t*-set. 
 
Theorem 3.6.   For a subset A of a space ),( τX , the following are equivalent: 

1. A  is open. 
2. A  is pre open and a B-set. 

Proof. 
To prove: (1)⇒ (2) 
Let A  be open  
Then )(AIntA =  
⇒ ))(()( AClIntAInt ⊆  
⇒ ))(( AClIntA ⊆  
⇒ A is pre open 
Let τ∈= AU and XV = be a t-set containing A  

VUA ∩=⇒  
⇒ A  is a B-set. 
Hence A  is pre open and  a B-set. 
To prove: (2)⇒ (1) 
Let A be pre open and a B-set 
Since A is a B-set 
Therefore VUA ∩= where U is open and V is a t-set. 
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⇒ ))(()( VClIntVInt =  
since A is pre open  
⇒ ))(( AClIntA ⊆ ))(( VUClInt ∩= )())(( VIntUClInt ∩=  
∴ )())(( VIntUClIntVU ∩⊂∩  
Consider UVUVU ∩∩=∩ )(  
                             UVIntUClInt ∩∩⊂ )]())(([  
                             )(VIntU ∩=  

)(VIntUVU ∩⊂∩⇒  
)(VIntV ⊂⇒  
)(VIntV =⇒  

⇒ )(VIntUVUA ∩=∩=  
⇒ )(AIntA =  
⇒ A is open. 
 
Theorem 3.7.   For a subset A of a space ),( τX , the following are equivalent: 
1. A is regular open 
2. A is pre open and a t-set. 
Proof. 
To prove: (1)⇒ (2) 
Let A be regular open. 
Then ))(( AClIntA =  

A⇒ is pre open 
Since ))(( AClIntA =  
⇒ ))(()( AClIntAInt =  
⇒ A is a t-set. 
To prove: (2)⇒ (1) 
Let A be pre open and a t-set. 
Then ))(( AClIntA ⊆                                   (1) 
Since A is a t-set 
Then AAClInt ⊆))((                      (2) 
From (1)  and  (2) 
A is regular open. 

 
Theorem 3.8.  For a subset A of a space ),( τX , the following are equivalent: 
1. A is regular closed 
2. A is pre closed and a t*-set. 
Proof. 
To prove: (1)⇒ (2) 
Let A be regular closed 
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Then ))(( AIntClA =  
A⇒ is pre closed 

Since ))(( AIntClA =  
⇒ ))(()( AIntClACl =  
⇒ A is a t*-set. 
To prove: (2)⇒ (1) 
Let A be pre closed and a t*-set. 
Then AAIntCl ⊆))((                                                                                      (1) 
Since A is a t-set 
Then ))(( AIntClA ⊆                                                                                      (2) 
From (1)  and  (2) 
A is regular closed. 

 
Theorem 3.9. 
1. The intersection of a b-open set  and  a *b-open set is a b-open set. 
2. The intersection of a b**-open set  and  a **b-open set is a b**-open set. 
 
Theorem 3.10. 
1. The intersection of a locally b-closed set  and  a locally *b-closed set is a locally 
b-closed set. 
2. The intersection of a locally b**-closed set  and  a locally  **b-closed set is a 
locally  b**-closed set. 
 
Theorem 3.11. For a subset A of an extremally disconnected  space ),( τX ,the 
following are equivalent: 
1. A is open 
2. A is *b-open and locally closed 
3. A is b-open and locally closed 
Proof. 
Let A be a subset of an extremally disconnected space ),( τX . 
Then ))(())(( AClIntAIntCl =  
To prove: (1)⇒ (2) 
From theorem  2.4[13], 
To prove: (2)⇒ (3) 
Let A be *b-open  and locally closed 
Since Every *b-open set is b-open. 
⇒ A is b-open and locally closed  
To prove: (3)⇒ (1) 
From theorem 2.1[2], 
 
Theorem 3.12. For a subset A of a space ),( τX ,the following are equivalent: 
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1. A is open 
2. A is *b-open and D(c,*b)-set 
3. A is b-open and D(c,b)-set 
Proof. 
To prove: (1)⇒ (2) 
From theorem 2.7[13],  
To prove: (2)⇒ (3) 
Let A be *b-open and D(c,*b)-set 
Then )(* AbIntA = and )(*)( AbIntAInt =       (1) 
Since Every *b-open set is b-open. 
⇒ A is b-open. 
⇒ )(AbIntA =         (2) 
From (1)  and  (2) 

)(*)( AbIntAbIntA ==        (3) 
From (1)  and  (3) 

)()( AbIntAInt =  
⇒ A is a D(c,b)-set. 
To prove: (3)⇒ (1) 
Let A be b-open and D(c,b)-set 
To prove: A is open  
Since )(AbIntA = and )()( AbIntAInt =  
⇒ A is open. 
 
Theorem 3.13. For a subset A of an extremally disconnected  space ),( τX , the 
following are equivalent: 
1. A is open 
2. A is **b-open and locally closed 
3. A is b**-open and locally closed 
Proof. 
Let A be a subset of an extremally disconnected space ),( τX . 
Then ))(())(( AClIntAIntCl =  
To prove: (1)⇒ (2) 
From theorem  2.9 [10], 
To prove: (2)⇒ (3) 
Let A be **b-open  and locally closed 
Since Every **b-open set is b**-open. 
⇒ A is b**-open and locally closed  
To prove: (3)⇒ (1) 
From theorem  2.1[6], 
 
Theorem 3.14. For a subset A of a space ),( τX , the following are equivalent: 
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1. A is open 
2. A is **b-open and D(c,**b)-set 
3. A is b**-open and D(c,b**)-set 
Proof. 
To prove: (1)⇒ (2). 
Let A be open 
To prove: A is **b-open 
From theorem  2.9[10] , 
To prove: A is a D(c,**b)-set 
Since A is open and Every open set is **b-open. 
Then )(**)( AbIntAIntA ==  
⇒ A is a D(c,**b)-set.  
To prove: (2)⇒ (3) 
Let A be **b-open and D(c,**b)-set 
Then )(** AbIntA = and )(**)( AbIntAInt =      
 (1) 
Since Every **b-open set is b**-open. 
⇒ A is b**-open. 
⇒ )(** AIntbA =         (2) 
From (1)  and  (2) 

)(**)(** AbIntAIntbA ==        (3) 
From (1)  and  (3) 

)(**)( AIntbAInt =  
⇒ A is a D(c,b**)-set. 
To prove: (3)⇒ (1) 
Let A be b**-open and D(c,b**)-set 
To prove: A is open  
Since )(** AIntbA = and )(**)( AIntbAInt =  
⇒ A is open. 
 
4. Applications of *b-continuous and **b-continuous functions 
Definition 4.1.  
A function YXf →: is called: 

1. **b-continuous  if )(1 Vf − is **b-open in X for each open set V of Y . 

2. t*-continuous  if )(1 Vf − is t*-set  in X for each open set V of Y . 

3. B*- continuous  if )(1 Vf − is B*-set  in X for each open set V of Y . 

4. locally  **b-closed continuous  if )(1 Vf − is locally  **b-closed  in X for each  
    open set V of Y . 
5. D(c,**b)-continuous  if )(1 Vf − is D(c,**b)-set in X for each open set V of Y . 
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Example 4.2. 
Let },,,{ dcbaX =  

        }},,{{},,,{},,{},{},{,,{ dcbdcadcdcX φτ =  

        }{},{},,{},,,{},,,{,,{ abbacbadbaX φς = } 
1.The collection  of  **b-open sets =     

                         }},,{},,,{},,{},{},{,,{ dcbdcadcdcX φ  
    Define a function XXf →: such that cdfdcfabfbaf ==== )(,)(,)(,)(  
    Then f is **b-continuous. 
2.The collection  of  t*- sets =     
                         

}},,{},,,{},,,{},,{},,{},,{},,{},,{},{},{},{,,{ dcbdbacbadcdbcbdacadcbX φ  
    Define a function such tha cdfacfdbfbaf ==== )(,)(,)(,)(  
     Then f is  t*-continuous. 
3.The collection  of  B*-sets =                              
              

}},,{},,,{},,,{},,,{},,{},,{},,{},,{},,{},{},{},{,,{ dcbdcadbacbadcdbcbdacadcbX φ
 
    Define a function such tha cdfacfdbfbaf ==== )(,)(,)(,)(  
    Then f is  B*-continuous. 
4. The collection  of  locally  **b-closed sets =     

               },,{},,{},,{},,{},,{},{},{},{},{,,{ dbcbdacabadcbaX φ                                                            
                                                              }},,{},,,{},,,{},,,{},,{ dcbdcadbacbadc  
    Define a function such tha ddfbcfabfcaf ==== )(,)(,)(,)(  
    Then f is  locally **b-closed continuous. 
5. The collection  of  D(c,**b)-sets =     

             },,{},,{},,{},,{},,{},{},{},{},{,,{ dbcbdacabadcbaX φ  
                                                                                   

                                                             }},,{},,,{},,,{},,,{},,{ dcbdcadbacbadc  
    Define a function such that ddfcfabfcaf ==== )()(,)(,)(  
    Then f is  D(c,**b)-continuous. 
 
Theorem 4.3. Let  YXf →: be a function and let X be an extremally 
disconnected space. Then the following are equivalent: 
1. f is continuous 
2. f is  *b-continuous and locally closed  continuous  
3. f is  b-continuous and locally closed  continuous 
Proof. 

XXf →:

XXf →:

XXf →:

XXf →:
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It follows from theorem  3.11. 
 
Theorem 4.4. Let  YXf →: be a function. Then the following are equivalent: 
1. f is continuous 
2. f is  *b-continuous and D(c,*b)-continuous  
3. f is  b-continuous and D(c,b)-continuous 
Proof. 
It follows from theorem  3.12. 
 
Theorem 4.5. Let  YXf →: be a function and let X be an extremally 
disconnected space. Then the following are equivalent: 
1. f is continuous 
2. f is  **b-continuous and locally closed  continuous  
3. f is  b**-continuous and locally closed  continuous 
Proof. It follows from theorem  3.13 . 
 
Theorem 4.6. Let  YXf →: be a function. Then the following are equivalent: 
1. f is continuous 
2. f is  **b-continuous and D(c,**b)-continuous  
3. . f is  b**-continuous and D(c,b**)-continuous 
Proof. It follows from theorem  3.14. 
 
Theorem 4.7. Let  YXf →: be a function. Then 
1. f is continuous  iff f is pre continuous and B-continuous 
2. f is  completely continuous  iff f is pre continuous and t-continuous  
3. . f is  t*-continuous  iff f is semi continuous 
Proof. 
1.It follows from theorem  3.6. 
2.It follows from theorem  3.7. 
3.It follows from theorem  3.3(2). 
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