Annals of Pure and Applied Mathematics Vol. 1, No. 1, 2012, 44-56 ISSN: 2279-087X (P), 2279-0888(online) Published on 5 September 2012 www.researchmathsci.org Annals of Pure and Applied <u>Mathematics</u>

Applications of *b-open Sets and **b-open Sets in Topological Spaces

T. Indira¹ and K. Rekha²

¹Department of mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli-620 002, Tamilnadu, India. Email: <u>drtindira.chandru@gmail.com</u> ² Department of mathematics, Bishop Heber College, Tiruchirappalli-620 017,

Tamilnadu, India. Email: <u>rekha_bhc@yahoo.co.in</u>

Received 18 August 2012; accepted 28 August 2012

Abstract. In this paper, we introduce D(c,*b)-set,D(c,**b)-set, **b-continuous, locally **b-closed continuous, D(c,*b)-continuous, D(c,**b)-continuous functions and discuss some properties of the above sets and continuous functions.

AMS Mathematics Subject Classification (2010): 54A05, 54D05

Keywords: *b-open sets, **b-open sets, t-sets, t*-sets, B-sets, B*-sets.

1. Introduction

Levine [1963] introduced the notion of semi-open sets and semi-continuity in topological spaces. Andrijevic [1996] introduced a class of generalized open sets in topological spaces. Mashhour [1982] introduced pre open sets in topological spaces. The class of b-open sets is contained in the class of semi-open and pre-open sets. Tong [1989] introduced the concept of t-set and B-set in topological spaces. The class of *b-open set is both semi-open and pre open. Indira, Rekha [2012] introduced the concept of *b-open set, **b-open set, t*-set, B*-set, locally *b-closed set, locally **b-closed set, *b-continuous in topological spaces. In this paper we discuss properties of the above sets and continuous functions. All through this paper (X, τ) and (Y, σ) stand for topological spaces with

no separation assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.

2. Preliminaries

Definition 2.1. A subset A of a space X is said to be : 1. Semi-open [14] if $A \subseteq Cl(Int(A))$ 2. Pre open[15] if $A \subseteq Int(Cl(A))$ 3. α -open [16] if $A \subseteq Int(Cl(Int(A)))$ 4. β -open [1,4] if $A \subseteq Cl(Int(Cl(A)))$ 5. b-open [3] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$ 6. *b-open [10] if $A \subseteq Cl(Int(A)) \cap Int(Cl(A))$ 7. b**-open [6] if $A \subset Int(Cl(Int(A))) \cup Cl(Int(Cl(A)))$

8. **b-open [10] if $A \subset Int(Cl(Int(A))) \cap Cl(Int(Cl(A)))$

Definition 2.2. A subset A of a space X is called:

1. t-set [21] if Int(A) = Int(Cl(A))2. t*-set [10] if Cl(A) = Cl(Int(A))3. B-set [21] if $A = U \cap V$, where $U \in \tau$ and V is a t-set. 4. B*-set [10] if $A = U \cap V$, where $U \in \tau$ and V is a t*-set. 5. locally closed [5] if $A = U \cap V$, where $U \in \tau$ and V is a closed set. 6. locally b-closed [6] if $A = U \cap V$, where $U \in \tau$ and V is a b-closed set. 7. locally *b-closed [10,13] if $A = U \cap V$, where $U \in \tau$ and V is a *b-closed set. 8. locally b*-closed [6] if $A = U \cap V$, where $U \in \tau$ and V is a *b-closed set. 9. locally *b-closed [6] if $A = U \cap V$, where $U \in \tau$ and V is a **b-closed set. 10. D(c,b) -set [21] if Int(A) = bInt(A)11. D(c,b**) -set [6] if Int(A) = b **Int(A)

Definition 2.3. A function $f : X \to Y$ is called [1,2,12,13,14,15,16,22]:

1. semi continuous if $f^{-1}(V)$ is semi open in X for each open set V of Y.

2. pre continuous if $f^{-1}(V)$ is pre open in X for each open set V of Y.

3. α -continuous if $f^{-1}(V)$ is α - open in X for each open set V of Y.

4. β -continuous if $f^{-1}(V)$ is β -open in X for each open set V of Y.

- 5. b-continuous if $f^{-1}(V)$ is b-open in X for each open set V of Y.
- 6. *b-continuous if $f^{-1}(V)$ is *b-open in X for each open set V of Y.
- 7. b**-continuous if $f^{-1}(V)$ is b**-open in X for each open set V of Y.

- 8. t-continuous if $f^{-1}(V)$ is t-set in X for each open set V of Y.
- 9. B-continuous if $f^{-1}(V)$ is B-set in X for each open set V of Y.
- 10. locally closed continuous if $f^{-1}(V)$ is locally closed in X for each open set V of Y.
- 11. locally b-closed continuous if $f^{-1}(V)$ is locally b-closed in X for each open set V of Y.
- 12. locally *b-closed continuous if $f^{-1}(V)$ is locally *b-closed in X for each open set V of Y.
- 13. locally b**-closed continuous if $f^{-1}(V)$ is locally b**-closed in X for each open set V of Y.
- 14. completely continuous if $f^{-1}(V)$ is regular open in X for each open set V of Y
- 15. D(c,b)-continuous if $f^{-1}(V)$ is D(c,b)-set in X for each open set V of Y.
- 16. D(c,*b)-continuous if $f^{-1}(V)$ is D(c,*b)-set in X for each open set V of Y.
- 17. D(c,b**)-continuous if $f^{-1}(V)$ is D(c,b**)-set in X for each open set V of Y. The Figure 1 and Figure 2 give the relations between the above sets.

Figure 1

3. Properties of *b-open sets and **b-open sets
Definition 3.1. A subset A of a space X is called:
1. D(c,*b) -set if Int(A) = *bInt(A)
2. D(c,**b) -set if Int(A) = **bInt(A)

Result 3.2.

Every regular open set is a t-set.
 Every regular closed set is a t*-set.
 Every locally closed set is a B-set.

Theorem 3.3. Let A be a subset of (X, τ) . Then to prove the following:

1. A is a t-set iff it is semi closed.

2. A is a t*-set iff it is semi open.

Figure 2

Proof.

1. Let A be a t-set. Then Int(A) = Int(Cl(A))Therefore $Int(Cl(A)) \subseteq A$ \Rightarrow A is semi closed. Conversly, Assume that A is semi closed Then $Int(Cl(A)) \subseteq A$ $Int(Int(Cl(A))) \subseteq Int(A)$ $Int(Cl(A)) \subseteq Int(A)$ (1) Since $Int(A) \subseteq Int(Cl(A))$ (2)

From (1) and (2) Int(A) = Int(Cl(A)) \Rightarrow A is a t-set.

2 Let A be a t*-set. Then ClA = Cl(Int(A))Therefore $A \subseteq Cl(Int(A))$ \Rightarrow A is semi open. Conversly, Assume that A is semi open Then $A \subseteq Cl(Int(A))$ $Cl(A) \subseteq Cl(Cl(Int(A)))$ $Cl(A) \subseteq Cl(Cl(Int(A)))$ $Cl(A) \subseteq Cl(Int(A)) \subseteq Cl(A)$ (1) Since $Cl(Int(A)) \subseteq Cl(A)$ From (1) and (2) Cl(A) = Cl(Int(A)) \Rightarrow A is a t*-set.

Theorem 3.4.

- 1. If A and B are t-sets, then $A \cap B$ is a t-set.
- 2. If A and B are t*-sets, then $A \cup B$ is a t*-set.

Proof.

1. Let A and B be t-set.
Then we have
$$Int(A) = Int(Cl(A))$$
; $Int(B) = Int(Cl(B))$
Since $Int(A \cap B) \subseteq Int(Cl(A \cap B))$
 $\subseteq Int(Cl(A) \cap Cl(B))$
 $= Int(Cl(A)) \cap Int(Cl(B))$
 $= Int(A) \cap Int(B)$
 $= Int(A \cap B)$
 $Int(A \cap B) \subseteq Int(Cl(A \cap B)) \subseteq Int(A \cap B)$
 $\Rightarrow Int(A \cap B) = Int(Cl(A \cap B))$

 $\Rightarrow A \cap B$ is a t-set.

2. Let A and B be t*-set. Then we have Cl(A) = Cl(Int(A)); Cl(B) = Cl(Int(B))Since $Cl(A \cup B) = Cl(A) \cup Cl(B) = Cl(Int(A)) \cup Cl(Int(B))$ $= Cl(Int(A) \cup Int(B))$

$$\subset Cl(Int(A \cup B))$$

$$Cl(A \cup B) \subset Cl(Int(A \cup B))$$
(1)
Since $Int(A \cup B) \subset A \cup B$

$$Cl(Int(A \cup B)) \subset Cl(A \cup B)$$
(2)
From (1) and (2)
$$Cl(A \cup B) = Cl(Int(A \cup B))$$

$$\Rightarrow A \cup B \text{ is a } t^*-\text{set.}$$

Theorem 3.5. A set A is a t-set iff its complement is a t*-set. **Proof.**

Let A be a t-set. Then Int(A) = Int(Cl(A)) $\Leftrightarrow X - Int(A) = X - Int(Cl(A))$ $\Leftrightarrow Cl(X - A) = Cl(Int(X - A))$ $\Leftrightarrow Cl(A^c) = Cl(Int(A^c))$ $\Leftrightarrow A^c$ is a t*-set.

Theorem 3.6. For a subset A of a space (X, τ) , the following are equivalent:

- 1. A is open.
- 2. *A* is pre open and a B-set.

Proof.

To prove: $(1) \Rightarrow (2)$ Let A be open Then A = Int(A) $\Rightarrow Int(A) \subseteq Int(Cl(A))$ $\Rightarrow A \subseteq Int(Cl(A))$ $\Rightarrow A \text{ is pre open}$ Let $U = A \in \tau$ and V = X be a t-set containing A $\Rightarrow A = U \cap V$ $\Rightarrow A \text{ is a B-set}.$ Hence A is pre open and a B-set. To prove: $(2) \Rightarrow (1)$ Let A be pre open and a B-set Since A is a B-set Therefore $A = U \cap V$ where U is open and V is a t-set.

$$\Rightarrow Int(V) = Int(Cl(V))$$
since A is pre open

$$\Rightarrow A \subseteq Int(Cl(A)) = Int(Cl(U \cap V)) = Int(Cl(U)) \cap Int(V)$$

$$\therefore U \cap V \subset Int(Cl(U)) \cap Int(V)$$
Consider $U \cap V = (U \cap V) \cap U$

$$\subset [Int(Cl(U)) \cap Int(V)] \cap U$$

$$= U \cap Int(V)$$

$$\Rightarrow U \cap V \subset U \cap Int(V)$$

$$\Rightarrow V \subset Int(V)$$

$$\Rightarrow A = U \cap V = U \cap Int(V)$$

$$\Rightarrow A = Int(A)$$

$$\Rightarrow A \text{ is open.}$$

Theorem 3.7. For a subset A of a space (X, τ) , the following are equivalent:

1. A is regular open 2. *A* is pre open and a t-set. Proof. To prove: $(1) \Rightarrow (2)$ Let A be regular open. Then A = Int(Cl(A)) \Rightarrow A is pre open Since A = Int(Cl(A)) \Rightarrow Int(A) = Int(Cl(A)) \Rightarrow A is a t-set. To prove: $(2) \Rightarrow (1)$ Let *A* be pre open and a t-set. Then $A \subseteq Int(Cl(A))$ (1) Since *A* is a t-set Then $Int(Cl(A)) \subseteq A$ (2) From (1) and (2)A is regular open.

Theorem 3.8. For a subset A of a space (X, τ) , the following are equivalent:

1. *A* is regular closed 2. *A* is pre closed and a t*-set. **Proof.** To prove: $(1) \Rightarrow (2)$ Let *A* be regular closed

Then A = Cl(Int(A)) $\Rightarrow A$ is pre closed Since A = Cl(Int(A)) $\Rightarrow Cl(A) = Cl(Int(A))$ $\Rightarrow A$ is a t*-set. To prove: (2) \Rightarrow (1) Let A be pre closed and a t*-set. Then $Cl(Int(A)) \subseteq A$ (1) Since A is a t-set Then $A \subseteq Cl(Int(A))$ (2) From (1) and (2) A is regular closed.

Theorem 3.9.

1. The intersection of a b-open set and a *b-open set is a b-open set.

2. The intersection of a b**-open set and a **b-open set is a b**-open set.

Theorem 3.10.

1. The intersection of a locally b-closed set and a locally *b-closed set is a locally b-closed set.

2. The intersection of a locally b**-closed set and a locally **b-closed set is a locally b**-closed set.

Theorem 3.11. For a subset A of an extremally disconnected space (X, τ) , the following are equivalent:

1. A is open

2. *A* is *b-open and locally closed

3. A is b-open and locally closed

Proof.

Let A be a subset of an extremally disconnected space (X, τ) .

Then Cl(Int(A)) = Int(Cl(A))To prove: (1) \Rightarrow (2) From theorem 2.4[13], To prove: (2) \Rightarrow (3) Let *A* be *b-open and locally closed Since Every *b-open set is b-open. \Rightarrow *A* is b-open and locally closed To prove: (3) \Rightarrow (1) From theorem 2.1[2],

Theorem 3.12. For a subset A of a space (X, τ) , the following are equivalent:

1. A is open 2. *A* is *b-open and D(c,*b)-set 3. A is b-open and D(c,b)-set **Proof.** To prove: $(1) \Rightarrow (2)$ From theorem 2.7[13], To prove: $(2) \Rightarrow (3)$ Let *A* be *b-open and D(c,*b)-set Then A = *bInt(A) and Int(A) = *bInt(A)(1)Since Every *b-open set is b-open. \Rightarrow A is b-open. $\Rightarrow A = bInt(A)$ (2) From (1) and (2)A = bInt(A) = *bInt(A)(3) From (1) and (3)Int(A) = bInt(A) \Rightarrow A is a D(c,b)-set. To prove: $(3) \Rightarrow (1)$ Let A be b-open and D(c,b)-set To prove: A is open Since A = bInt(A) and Int(A) = bInt(A) \Rightarrow A is open.

Theorem 3.13. For a subset A of an extremally disconnected space (X, τ) , the

following are equivalent: 1. *A* is open 2. *A* is **b-open and locally closed 3. *A* is b**-open and locally closed **Proof.** Let *A* be a subset of an extremally disconnected space (X, τ) . Then Cl(Int(A)) = Int(Cl(A))To prove: $(1) \Rightarrow (2)$ From theorem 2.9 [10], To prove: $(2) \Rightarrow (3)$ Let *A* be **b-open and locally closed Since Every **b-open set is b**-open. $\Rightarrow A$ is b**-open and locally closed To prove: $(3) \Rightarrow (1)$ From theorem 2.1[6],

Theorem 3.14. For a subset A of a space (X, τ) , the following are equivalent:

1. A is open 2. A is **b-open and D(c,**b)-set 3. A is b^{**} -open and $D(c,b^{**})$ -set **Proof.** To prove: $(1) \Rightarrow (2)$. Let A be open To prove: *A* is ****b**-open From theorem 2.9[10], To prove: A is a D(c,**b)-set Since *A* is open and Every open set is **b-open. Then A = Int(A) = **bInt(A) \Rightarrow A is a D(c,**b)-set. To prove: $(2) \Rightarrow (3)$ Let A be **b-open and D(c, **b)-set Then A = **bInt(A) and Int(A) = **bInt(A)(1)Since Every **b-open set is b**-open. \Rightarrow A is b**-open. $\Rightarrow A = b * * Int(A)$ (2)From (1) and (2) $A = b^{**}Int(A) = ^{**}bInt(A)$ (3) From (1) and (3)Int(A) = b * *Int(A) \Rightarrow A is a D(c,b**)-set. To prove: $(3) \Rightarrow (1)$ Let A be b^{**} -open and $D(c,b^{**})$ -set To prove: A is open Since $A = b^{**}Int(A)$ and $Int(A) = b^{**}Int(A)$ \Rightarrow A is open.

4. Applications of *b-continuous and **b-continuous functions Definition 4.1.

- A function $f: X \to Y$ is called:
- 1. **b-continuous if $f^{-1}(V)$ is **b-open in X for each open set V of Y.
- 2. t*-continuous if $f^{-1}(V)$ is t*-set in X for each open set V of Y.
- 3. B*- continuous if $f^{-1}(V)$ is B*-set in X for each open set V of Y.
- 4. locally **b-closed continuous if $f^{-1}(V)$ is locally **b-closed in X for each open set V of Y.
- 5. D(c,**b)-continuous if $f^{-1}(V)$ is D(c,**b)-set in X for each open set V of Y.

Example 4.2. Let $X = \{a, b, c, d\}$

 $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{\{b, c, d\}\} \\ \varsigma = \{X, \phi, \{a, b, d\}, \{a, b, c\}, \{a, b\}, \{b\}, \{a\}\} \\ \text{1.The collection of **b-open sets} = \\ \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\} \\ \text{Define a function } f : X \to X \text{ such that } f(a) = b, f(b) = a, f(c) = d, f(d) = c \\ \text{Then } f \text{ is **b-continuous.} \end{cases}$

2. The collection of t^* - sets =

 ${X, \phi, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}}$ Define a function $f: X \to X$ such tha f(a) = b, f(b) = d, f(c) = a, f(d) = cThen f is t*-continuous. 3.The collection of B*-sets =

 $\{X, \phi, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$

Define a function $f: X \to X$ such tha f(a) = b, f(b) = d, f(c) = a, f(d) = cThen f is B*-continuous.

4. The collection of locally **b-closed sets =
{X, Ø, {a}, {b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d},
{c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}
Define a function f: X → X such tha f(a) = c, f(b) = a, f(c) = b, f(d) = d
Then f is locally **b-closed continuous.
5. The collection of D(c,**b)-sets =

 $\{c,d\},\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\}\}$ Define a function $f: X \to X$ such that f(a) = c, f(b) = a, f(c) = f(d) = dThen f is D(c,**b)-continuous.

Theorem 4.3. Let $f: X \to Y$ be a function and let X be an extremally disconnected space. Then the following are equivalent: 1. f is continuous 2. f is *b-continuous and locally closed continuous

3. f is b-continuous and locally closed continuous

Proof.

It follows from theorem 3.11.

Theorem 4.4. Let $f: X \to Y$ be a function. Then the following are equivalent:

1. f is continuous

2. f is *b-continuous and D(c,*b)-continuous

3. f is b-continuous and D(c,b)-continuous

Proof.

It follows from theorem 3.12.

Theorem 4.5. Let $f: X \to Y$ be a function and let X be an extremally disconnected space. Then the following are equivalent:

1. f is continuous

2. f is **b-continuous and locally closed continuous

3. f is b**-continuous and locally closed continuous

Proof. It follows from theorem 3.13.

Theorem 4.6. Let $f: X \to Y$ be a function. Then the following are equivalent:

1. f is continuous

2. f is **b-continuous and D(c,**b)-continuous

3.. f is b**-continuous and D(c,b**)-continuous

Proof. It follows from theorem 3.14.

Theorem 4.7. Let $f: X \to Y$ be a function. Then

1. f is continuous iff f is pre continuous and B-continuous

2. f is completely continuous iff f is pre-continuous and t-continuous

3. f is t*-continuous iff f is semi-continuous

Proof.

1.It follows from theorem 3.6.

2.It follows from theorem 3.7.

3. It follows from theorem 3.3(2).

REFERENCES

- 1. M.E. Abd El-Monsef, S.N. El-Deep and R.A. Mahmoud, β -open sets and β continuous mappings, *Bull-Fac. Sci. Assiut. Univ.*, 12 (1983) 77-90.
- 2. Ahmad Al-Omari and Mohd.Salmi Md. Noorani, Decomposition of continuity via b-open set, *Bol. Soc. Paran. Mat.* (3s) 26(1-2) (2008) 53-64.
- 3. D. Andrijivic, On b-open sets, Mat. Vesnik, 48 (1-2) (1996) 59-64.
- 4. D. Andrijivic, Semi pre open sets, Mat. Vesnik, 38(1) (1986) 24-32.

- 5. N. Bourbaki, *General Topology*, Part 1, Addison-Wesley (Reading, Mass, 1966).
- S. Bharathi, K. Bhuvaneshwari, N. Chandramathi, On locally b**-closed sets, International Journal of Mathematical Sciences and Applications, 1(2) (2011) 636-641.
- 7. M. Ganster and I.L. Reilly, A Decomposition of continuity, *Acta Math. Hungar*, 56(3-4) (1990) 229-301.
- 8. 8.T. Hatice, Decomposition of continuity, *Acta Math. Hungar*, 64(3) (1994) 309-313.
- 9. T. Hatice and T. Noiri, Decomposition of continuity and complete continuity, *Acta Math. Hungar*, 113 (4) (2006) 278-281.
- T. Indira and K. Rekha, On locally **b-closed sets, Proceedings of the Heber International Conference on Applications of Mathematics and Statistics (HICAMS) (2012).
- 11. T. Indira and K. Rekha, *b-t-sets in topological spaces, Presented in National seminar on Applications of Mathematics, held at Jamal Mohamed College (Autonomous), Tiruchirappalli-20 during 22nd February (2012). Communicated
- 12. T. Indira and K. Rekha, On Almost *b-continuous functions, *Antarctica Journal of Mathematics*, 9 (2012), accepted for publications.
- 13. T. Indira and K. Rekha, Decomposition of continuity via *b-open set, Communicated (2012).
- 14. N. Levine, Semi open sets and semi-continuity in topological spaces, *Amer Math. Monthly*, 70 (1963) 36-41. MR0166752(29#4025)
- 15. A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-continuous and weak pre continuous mapping, *Proc Math Phys Soc Egypt*, 53 (1982) 47-53.
- 16. A.S. Mashhour, I.A. Hasanein and S.N. El-Deep, α -continuity and α -open mappings, *Acta Math. Hungar*, 41 (1983) 213-218.
- 17. O. Njastad, On some classes of neary open sets, *Pacific J. Math*, 15 (1965) 961-970. MR0195040 (33:3245)
- 18. T. Noiri and R. Sayed, On decomposition of continuity, *Acta Math. Hungar*, 111 (1-2) (2006) 1-8.
- 19. M. Przemski, A decomposition of continuity and α -continuity, Acta Math. Hungar, 61(1-2) (1993) 93-98.
- 20. I.L. Reilly and M.K. Vamanamurthy, On α -continuity in Topological spaces, *Acta Math. Hunger.*, 45 (1-2) (1985) 27-32.
- 21. J. Tong, On decomposition of continuity in Topological spaces, Acta Math. Hungar, 54 (1-2) (1989) 51-55.
- 22. UgurSenguil, On almost b-continuous mappings, Int. J. Contemp. Math. Sciences, 3 (2008) 30 (1469-1480).