Annals of Pure and Applied Mathematics Vol. 1, No. 1, 2012, 84-90 ISSN: 2279-087X (P), 2279-0888(online) Published on 20 September 2012 www.researchmathsci.org

Annals of **Pure and Applied Mathematics**

An Equation Related to Centralizers in Semiprime Gamma Rings

M.F.Hoque* and A.C.Paul**

*Department of Mathematics Pabna Science and Technology University Pabna-6600, Bangladesh E-mail:fazlul_math@yahoo.co.in

> **Department of Mathematics Rajshahi University Rajshahi-6205,Bangladesh acpaulrubd_math@yahoo.com

Received 1 September 2012; accepted 12 September 2012

Abstract. Let M be a 2-torsion free semiprime Γ -ring satisfying a certain assumption and let $T: M \to M$ be an additive mapping such that $2T(a\alpha b\beta a) = T(a)\alpha b\beta a + a\alpha b\beta T(a)$

holds for all pairs $a, b \in M$, and $\alpha, \beta \in \Gamma$. Then we prove that T is a centralizer.

AMS Mathematics Subject Classification (2010): 16N60, 16W25,16U80

Keywords: Semiprime Γ -ring, left centralizer, centralizer, Jordan centralizer.

1. Introduction

Let M and Γ be additive abelian groups. If there exists a mapping $(x, \alpha, y) \rightarrow x \alpha y$ of $M \times \Gamma \times M \rightarrow M$, which satisfies the conditions

(i) $x \alpha y \in M$ (ii) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)z = x\alpha z + x\beta z$, $x\alpha(y + z) = x\alpha y + x\alpha z$ (iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$,

then M is called a Γ -ring.

Every ring M is a Γ -ring with $M = \Gamma$. However a Γ -ring need not be a ring. Gamma rings, more general than rings, were introduced by Nobusawa[13].

An Equation Related to Centralizers in Semiprime Gamma Rings

Bernes[1] weakened slightly the conditions in the definition of Γ -ring in the sense of Nobusawa.

Let M be a Γ -ring. Then an additive subgroup U of M is called a left (right) ideal of M if $M\Gamma U \subset U$ ($U\Gamma M \subset U$). If U is both a left and a right ideal, then we say U is an ideal of M. Suppose again that M is a Γ -ring. Then M is said to be a 2-torsion free if 2x=0 implies x=0 for all $x \in M$. An ideal P_1 of a Γ -ring M is said to be prime if for any ideals A and B of M, $A\Gamma B \subseteq P_1$ implies $A \subseteq P_1$ or $B \subseteq P_1$. An ideal P_2 of a Γ -ring M is said to be semiprime if for any ideal U of M, $U\Gamma U \subseteq P_2$ implies $U \subseteq P_2$. A Γ -ring M is said to be prime if $a\Gamma M\Gamma b=(0)$ with $a, b \in M$, implies a=0 or b=0 and semiprime if $a\Gamma M\Gamma a=(0)$ with $a \in M$ implies a=0. Furthermore, M is said to be commutative Γ -ring if $x\alpha y = y\alpha x$ for all $x, y \in M$ and $\alpha \in \Gamma$. Moreover, the set $Z(M) = \{x \in M : x\alpha y = y\alpha x$ for all $\alpha \in \Gamma, y \in M\}$ is called the centre of the Γ ring M.

If M is a Γ -ring, then $[x, y]_{\alpha} = x\alpha y - y\alpha x$ is known as the commutator of x and y with respect to α , where $x, y \in M$ and $\alpha \in \Gamma$. We make the basic commutator identities:

 $[x\alpha y, z]_{\beta} = [x, z]_{\beta} \alpha y + x[\alpha, \beta]_{z} y + x\alpha [y, z]_{\beta}$

and $[x, y\alpha z]_{\beta} = [x, y]_{\beta}\alpha z + y[\alpha, \beta]_{x}z + y\alpha [x, z]_{\beta}$,

for all $x, y.z \in M$ and $\alpha, \beta \in \Gamma$. We consider the following assumption:

$$\alpha y \beta z = x \beta y \alpha z$$
, for all $x, y, z \in M$, and $\alpha, \beta \in \Gamma$. (A)

According to the assumption (A), the above two identites reduce to

 $[x\alpha y, z]_{\beta} = [x, z]_{\beta} \alpha y + x\alpha [y, z]_{\beta}$

and $[x, y\alpha z]_{\beta} = [x, y]_{\beta} \alpha z + y\alpha [x, z]_{\beta}$, which we extensively used.

An additive mapping $T: M \to M$ is a left(right) centralizer if $T(x \alpha y) = T(x) \alpha y$ ($T(x \alpha y) = x \alpha T(y)$) holds for all $x, y \in M$ and $\alpha \in \Gamma$. A centralizer is an additive mapping which is both a left and a right centralizer. For any fixed $a \in M$ and $\alpha \in \Gamma$, the mapping $T(x) = a \alpha x$ is a left centralizer and $T(x) = x \alpha a$ is a right centralizer. We shall restrict our attention on left centralizer, since all results of right centralizers are the same as left centralizers. An additive mapping $D: M \to M$ is called a derivation if $D(x \alpha y) = D(x) \alpha y + x \alpha D(y)$ holds for all $x, y \in M$, and $\alpha \in \Gamma$ and is called a Jordan derivation if $D(x \alpha x) = D(x) \alpha x + x \alpha D(x)$ for all $x \in M$ and $\alpha \in \Gamma$.

An additive mapping $T: M \to M$ is Jordan left(right) centralizer if $T(x \alpha x) = T(x)\alpha x(T(x \alpha x) = x \alpha T(x))$ for all $x \in M$, and $\alpha \in \Gamma$.

Every left centralizer is a Jordan left centralizer but the converse is not

M.F.Hoque and A.C.Paul

ingeneral true.

An additive mappings $T: M \to M$ is called a Jordan centralizer if $T(x\alpha y + y\alpha x) = T(x)\alpha y + y\alpha T(x)$, for all $x, y \in M$ and $\alpha \in \Gamma$. Every centralizer is a Jordan centralizer but Jordan centralizer is not in general a centralizer.

Bernes[1], Luh [6] and Kyuno[5] studied the structure of Γ -rings and obtained various generalizations of corresponding parts in ring theory.

Borut Zalar [12] worked on centralizers of semiprime rings and proved that Jordan centralizers and centralizers of this rings coincide. Joso Vukman[9,10,11] developed some remarkable results using centralizers on prime and semiprime rings.

Vukman and Irena [8] proved that if R is a 2-tortion free semiprime ring and $T: R \rightarrow R$ is an additive mapping such that 2T(xyx) = T(x)yx + xyx holds for all $x, y \in R$, then T is a centralizer.

Y.Ceven [2] worked on Jordan left derivations on completely prime Γ rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime Γ -ring that makes the Γ -ring commutative with an assumption. With the same assumption, he showed that every Jordan left derivation on a completely prime Γ -ring is a left derivation on it.

In [3], M. F. Hoque and A.C Paul have proved that every Jordan centralizer of a 2-torsion free semiprime Γ -ring is a centralizer. There they also gave an example of a Jordan centralizer which is not a centralizer.

In [4], M. F. Hoque and A.C Paul have proved that if M is a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and if $T: M \to M$ is an additive mapping such that $T(x\alpha y\beta x) = x\alpha T(y)\beta x$ for all $x, y \in M$ and $\alpha, \beta \in \Gamma$, then T is a centralizer. Also, they have proved that T is a centralizer if M contains a multiplicative identity 1.

In this paper, we devolep some results of [8] in Γ -rings by assuming an assumption (A). Let M be a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and let $T: M \to M$ be an additive mapping such that

$$2T(a\alpha b\beta a) = T(a)\alpha b\beta a + a\alpha b\beta T(a)$$
(1)

holds for all pairs $a, b \in M$, and $\alpha, \beta \in \Gamma$. Then T is a centralizer.

2. The Centralizers of Semiprime Gamma Rings

For proving our main results, we need the following Lemmas:

Lemma 2.1. Suppose M is a semiprime Γ -ring satisfying the assumption (A). Suppose that the relation $x \alpha \alpha \beta y + y \alpha \alpha \beta z = 0$ holds for all $a \in M$, some $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Then $(x + z)\alpha \alpha \beta y = 0$ is satisfied for all $a \in M$ and $\alpha, \beta \in \Gamma$.

Proof. The proof of this lemma can be founded in ([4],Lemma 2.1).

An Equation Related to Centralizers in Semiprime Gamma Rings

Lemma 2.2. Let M be a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and let $T: M \to M$ be an additive mapping. Suppose that $2T(a\alpha b\beta a) = T(a)\alpha b\beta a + a\alpha b\beta T(a)$ holds for all pairs $a, b \in M$ and $\alpha, \beta \in \Gamma$. Then $2T(a\gamma a) = T(a)\gamma a + a\gamma T(a)$. **Proof.** Putting a + c for a in (1)(linearization), we have $2T(a\alpha b\beta c + c\alpha b\beta a) = T(a)\alpha b\beta c + T(c)\alpha b\beta a + c\alpha b\beta T(a) + a\alpha b\beta T(c)$ (2)Putting $c = a\gamma a$ in (2), we have $2T(a\alpha b\beta a\gamma a + a\gamma a\alpha b\beta a)$ $= T(a)\alpha b\beta a\gamma a + T(a\gamma a)\alpha b\beta a + a\gamma a\alpha b\beta T(a) + a\alpha b\beta T(a\gamma a)$ (3)Replacing b by $a\gamma b + b\gamma a$ in (1), we have $2T(a\alpha a\gamma b\beta a + a\alpha b\gamma a\beta a)$ $= T(a)\alpha a \gamma b \beta a + T(a)\alpha b \gamma a \beta a + a \alpha a \gamma b \beta T(a) + a \alpha b \gamma a \beta T(a)$ (4)Subtracting (4) from (3), using assumption (A), gives $(T(a\gamma a) - T(a)\gamma a)\alpha b\beta a + a\alpha b\beta (T(a\gamma a) - a\gamma T(a)) = 0$ Taking $x = T(a\gamma a) - T(a)\gamma a$, y = a, c = b and $z = T(a\gamma a) - a\gamma T(a)$. Then the above relation becomes $x\alpha c\beta v + v\alpha c\beta z = 0$. Thus using Lemma 2.1, we get $(x+z)\alpha c\beta y = 0$. Hence $(2T(a\gamma a) - T(a)\gamma a - a\gamma T(a))\alpha b\beta a = 0$. If we take $A(a) = 2T(a\gamma a) - T(a)\gamma a - a\gamma T(a)$, then the above relation becomes $A(a)\alpha b\beta a = 0$ Using the assumption (A), We obtain $A(a)\beta b\alpha a = 0$ (5) Replacing b by $a\alpha b\gamma A(a)$ in (5), we have $A(a)\beta a\alpha b\gamma A(a)\alpha a = 0$ Again using the assumption (A), we have $A(a)\alpha a\beta b\gamma A(a)\alpha a = 0$ By the semiprimeness of M, we have $A(a)\alpha a = 0$ (6) Similarly, if we multiplying (5) from the left by $a\alpha$ and from the right side by $\gamma A(a)$, we obtain $a \alpha A(a) \beta b \alpha a \gamma A(a) = 0$ Using the assumption (A), $a\alpha A(a)\beta b\gamma a\alpha A(a) = 0$ and by the semiprimeness, we obtain $a\alpha A(a) = 0$ (7)Replacing a by a+b in (6)(linearization), we have $A(a)\alpha b + A(b)\alpha a + B(a,b)\alpha a + B(a,b)\alpha b = 0,$ where $B(a,b) = 2T(a\gamma b + b\gamma a) - T(a)\gamma b - T(b)\gamma a - a\gamma T(b) - b\gamma T(a)$ Replacing a by -a in the above relation and comparing these relation, and by using the 2-tortion freeness of M, we arrive at

 $A(a)\alpha b + B(a,b)\alpha a = 0 \tag{8}$

Right multiplication of the above relation by $\beta A(a)$ along with (7) gives

M.F.Hoque and A.C.Paul

 $A(a)\alpha b\beta A(a) + B(a,b)\alpha a\beta A(a) = 0$ Since $a\beta A(a) = 0$, for all $\beta \in \Gamma$, we have $B(a,b)\alpha a\beta A(a) = 0$ This implies that $A(a)\alpha b\beta A(a) = 0$ By semiprimeness, we have A(a) = 0. Thus we have $2T(a\alpha n) = T(a)m + a\alpha T(a)$.

$$2T(a\gamma a) = T(a)\gamma a + a\gamma T(a)$$
(9)

Lemma 2.3. Let M be a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and let $T: M \to M$ be an additive mapping. Suppose that $2T(a\alpha b\beta a) = T(a)\alpha b\beta a + a\alpha b\beta T(a)$ holds for all pairs $a, b \in M$ and $\alpha, \beta \in \Gamma$. Then

$$[T(a),a]_{\alpha} = 0 \tag{10}$$

Proof. Replacing *a* by a + b in relation (9)(linearization) gives $2T(a\gamma b + b\gamma a) = T(a)\gamma b + T(b)\gamma a + a\gamma T(b) + b\gamma T(a)$ (11)

Replacing b with $2a\alpha b\beta a$ in (11) and use (1), we obtain $4T(a\gamma a\alpha b\beta a + a\alpha b\beta a\gamma a)$

$$= 2T(a)\gamma a\alpha b\beta a + 2T(a\alpha b\beta a)\gamma a + 2a\gamma T(a\alpha b\beta a) + 2a\alpha b\beta a\gamma T(a)$$

$$= 2T(a)\gamma a\alpha b\beta a + T(a)\alpha b\beta a\gamma a + a\alpha b\beta T(a)\gamma a$$

$$+ a\gamma T(a)\alpha b\beta a + a\gamma a\alpha b\beta T(a) + 2a\alpha b\beta a\gamma T(a)$$

$$4T(a\gamma a\alpha b\beta a + a\alpha b\beta a\gamma a) = 2T(a)\gamma a\alpha b\beta a + T(a)\alpha b\beta a\gamma a$$

$$+ a\alpha b\beta T(a)\gamma a + a\gamma T(a)\alpha b\beta a + a\gamma a\alpha b\beta T(a) + 2a\alpha b\beta a\gamma T(a)$$
(12)

Comparing (4) and (12), we arrive at

$$T(a)\alpha b\beta a\gamma a + a\gamma a\alpha b\beta T(a) - a\alpha b\beta T(a)\gamma a - a\gamma T(a)\alpha b\beta a = 0$$
(13)

Putting $b\gamma a$ for b in the above relation, we have

 $T(a)\alpha b\gamma a\beta a\gamma a + a\gamma a\alpha b\gamma a\beta T(a) - a\alpha b\gamma a\beta T(a)\gamma a - a\gamma T(a)\alpha b\gamma a\beta a = 0$ (14) Right multiplication of (13) by γa gives

$$T(a)\alpha b\beta a\gamma a\gamma a + a\gamma a\alpha b\beta T(a)\gamma a - a\alpha b\beta T(a)\gamma a\gamma a - a\gamma T(a)\alpha b\beta a\gamma a = 0$$
(15)
Subtracting (14) from (15) and using assumption (A), we get

$$a\gamma a\gamma b\beta [T(a),a]_{\alpha} - a\gamma b\beta [T(a),a]_{\alpha}\gamma a = 0$$
⁽¹⁶⁾

The substitution $T(a)\alpha b$ for b in (16), we have

$$a\gamma a\gamma T(a)\alpha b\beta [T(a),a]_{\alpha} - a\gamma T(a)\alpha b\beta [T(a),a]_{\alpha}\gamma a = 0$$
⁽¹⁷⁾

Left multiplication of (16) by $T(a)\alpha$ gives

$$T(a)\alpha a \gamma a \gamma b \beta [T(a), a]_{\alpha} - T(a)\alpha a \gamma b \beta [T(a), a]_{\alpha} \gamma a = 0$$
(18)
Subtracting (17) from (18), we arrive at

$$[T(a), a\gamma a]_{\alpha} \gamma b\beta [T(a), a]_{\alpha} - [T(a), a]_{\alpha} \gamma b\beta [T(a), a]_{\alpha} \gamma a = 0$$

In the above relation let $x = [T(a), a\gamma a]_{\alpha}$, $y = [T(a), a]_{\alpha}$, $z = -[T(a), a]_{\alpha}\gamma a$ and

An Equation Related to Centralizers in Semiprime Gamma Rings

c = b. Then we have $x \gamma c \beta y + y \gamma c \beta z = 0$. Thus from Lemma 2.1, we have $(x+z)\gamma c\beta v = 0$ $\Rightarrow ([T(a), a\gamma a]_{\alpha} - [T(a), a]_{\alpha}\gamma a)\gamma b\beta [T(a), a]_{\alpha} = 0$ This implies that $([T(a), a]_{\alpha} \gamma a + a \gamma [T(a), a]_{\alpha} - [T(a), a]_{\alpha} \gamma a) \gamma b \beta [T(a), a]_{\alpha} = 0$ $\Rightarrow a\gamma[T(a),a]_{\alpha}\gamma b\beta[T(a),a]_{\alpha} = 0$ Putting $b = b \alpha a$ in the above relation, we have $a\gamma[T(a),a]_{\alpha}\gamma b\alpha a\beta[T(a),a]_{\alpha} = 0$ $\Rightarrow a\gamma[T(a), a]_{\alpha} \alpha b\beta a\gamma[T(a), a]_{\alpha} = 0$ using the assumption (A). By the semiprimeness of M, we obtain (19) $a\gamma[T(a),a]_{\alpha}=0$ Putting $a\gamma b$ for b in the relation (13), we obtain $T(a)\alpha a\gamma b\beta a\gamma a + a\gamma a\alpha a\gamma b\beta T(a) - a\alpha a\gamma b\beta T(a)\gamma a - a\gamma T(a)\alpha a\gamma b\beta a = 0$ (20)Left multiplication of (13) by $a\gamma$, we have $a\gamma T(a)\alpha b\beta a\gamma a + a\gamma a\gamma a\alpha b\beta T(a) - a\gamma a\alpha b\beta T(a)\gamma a - a\gamma a\gamma T(a)\alpha b\beta a = 0$ (21)Subtracting (21) from (20), and using assumption (A), we have $[T(a), a]_{\alpha} \gamma b \beta a \gamma a - a \gamma [T(a), a]_{\alpha} \gamma b \beta a = 0$ Using (19) in the above relation, we obtain $[T(a), a]_{\alpha} \gamma b \beta a \gamma a = 0$ (22)Putting $b\alpha T(a)$ for b in (22), we have $[T(a), a]_{\alpha} \gamma b \alpha T(a) \beta a \gamma a = 0$ (23)Right multiplication of (22) by $\alpha T(a)$ gives $[T(a), a]_{\alpha} \gamma b \beta a \gamma a \alpha T(a) = 0$ (24)Subtracting (24) from (23) and using assumption (A), we have $[T(a),a]_{\alpha} \gamma b \beta [T(a),a\gamma a]_{\alpha} = 0$ The above relation can be rewritten and using (19), we have $[T(a),a]_{\alpha} \gamma b \beta [T(a),a]_{\alpha} \gamma a = 0$ Putting $a\alpha b$ for b in the above relation, we obtain $[T(a),a]_{\alpha} \gamma a \alpha b \beta [T(a),a]_{\alpha} \gamma a = 0$ By semiprimeness of M, we have $[T(a),a]_{\alpha}\gamma a = 0$ (25)Replacing a by a+b in (19) and then using (19) gives $a\gamma[T(a),b]_{\alpha} + a\gamma[T(b),a]_{\alpha} + a\gamma[T(b),b]_{\alpha}$ $+b\gamma[T(a),a]_{\alpha}+b\gamma[T(a),b]_{\alpha}+b\gamma[T(b),a]_{\alpha}=0$

Replacing a by -a in the above relation and comparing the relation so obtained with the above relation, we have

M.F.Hoque and A.C.Paul

$$a\gamma[T(a),b]_{\alpha} + a\gamma[T(b),a]_{\alpha} + b\gamma[T(a),a]_{\alpha} = 0$$
⁽²⁶⁾

Left multiplication of (26) by $[T(a), a]_{\alpha}\beta$ and then use (25), we have

 $[T(a),a]_{\alpha}\beta b\gamma[T(a),a]_{\alpha}=0$

By semiprimeness of M, we have

 $[T(a),a]_{\alpha}=0$

Hence the relation (10) follows.

Theorem 2.1. Let M be a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and let $T: M \to M$ be an additive mapping. Suppose that $2T(a\alpha b\beta a) = T(a)\alpha b\beta a + a\alpha b\beta T(a)$ holds for all pairs $a, b \in M$ and $\alpha, \beta \in \Gamma$. Then T is a centralizer.

Proof. The relation (9) in Lemma 2.2 and the relation (10) in Lemma 2.3 give $T(a\alpha a) = T(a)\alpha a$ and $T(a\alpha a) = a\alpha T(a)$

since M is a 2-torsion free. Hence T is a left and also a right Jordan centralizers. By Theorem 2.1 in [7], it follows that T is a left and also a right centralizer which completes the proof of the theorem.

REFERENCES

- 1. W.E.Barnes, On the Γ -rings of Nobusawa, *Pacific J. Math.*, 18 (1966), 411-422.
- 2. Y.Ceven, Jordan left derivations on completely prime gamma rings, C.U. Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi, (2002) Cilt 23 Sayi 2.
- 3. M.F.Hoque and A.C.Paul, On Centralizers of Semiprime Gamma Rings, *International Mathematical Forum*, 6(13) (2011) 627-638.
- 4. M.F.Hoque and A.C.Paul, Centralizers on Semiprime Gamma Rings, *Italian J.* of *Pure and Applied Mathematics*, to appear.
- 5. S.Kyuno, On prime Gamma ring, Pacific J. Math., 75 (1978) 185-190.
- 6. L.Luh, On the theory of simple Gamma rings, *Michigan Math. J.*, 16 (1969) 65-75.
- 7. N. Nobusawa, On the Generalization of the Ring Theory, *Osaka J. Math.*, 1 (1964) 81-89.
- J.Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings, *Aequationes Math.*, 66 (3) (2003) 277-283.
- 9. J.Vukman, Centralizers in prime and semiprime rings, Comment. Math. Univ. Carolinae, 38 (1997) 231-240.
- 10. J.Vukman, An identity related to centralizers in semiprime rings, *Comment. Math. Univ. Carolinae*, 40 (3) (1999) 447-456.
- 11. J.Vukman, Centralizers on semiprime rings, *Comment. Math. Univ. Carolinae*, 42 (2) (2001) 237-245.
- 12. B.Zalar, On centralizers of semiprime rings, *Comment.Math. Univ. Carolinae*, 32 (1991) 609-614.