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Abstract. In this paper, we have developed some characterizations of semi-prime 
ideals of gamma rings. At last we have proved that an ideal Q of a Γ -ring M is 
semi-prime if and only if B(Q)=Q. 
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1. Introduction 
The concepts of a Γ-ring was first introduced by Nobusawa [6] in 1964. His concept 
is more general than a ring. Now a day, his Γ-ring is called a Γ-ring in the sense of 
Nobusawa. 

Barnes [3] gave a definition of a Γ-ring which is more general. He introduced 
the notation of Γ-homomorphisms, Prime and Primary ideals, m-systems and the 
radical of an ideal for Γ-rings.  

The general radical theory for rings had been introduced by Kurosh [4] and  
Amitsur [1,2]. They studied the generalizations of a general radical. McCoy [5] 
studied prime and semi-prime ideals and prime radicals of classical rings. In this 
paper, our results are the generalizations of McCoy [5], which is not in Barnes [3].   

 
2. Preliminaries 
2.1 Gamma ring 
Let M and Γ be two additive abelian groups. Suppose that there is a mapping from 
M × Γ × M → M (sending (x, α, y) into xαy) such that 
         (i)       (x + y)αz = xαz + yαz 
                    x(α + β)z = xαz + xβz 
                    xα(y + z) = xαy + xαz 
         (ii)       (xαy)βz = xα(yβz), 
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  where x, y, z∈M and  α, β∈Γ.  Then M is called a Γ-ring in the sense of Barnes 
[3]. 
 
2.2 Ideal of Γ-rings 
A subset A of the Γ-ring M is a left (right) ideal of M if A is an additive subgroup of 
M and MΓA = {cαa | c∈M, α∈Γ, a∈A}(AΓM) is contained in A. If A is both a left 
and a right ideal of M, then we say that A is an ideal or two-sided ideal of M.  

        If A and B are both left (respectively right or two-sided) ideals of M, then A + 
B =    {a + b | a∈A, b∈B} is clearly a left (respectively right or two-sided) ideal, 
called the sum of A and B. We can say every finite sum of left (respectively right or 
two-sided) ideal of a Γ-ring is also a left (respectively right or two-sided) ideal. 

   It is clear that the intersection of any number of left (respectively right or two-
sided) ideal of M is also a left (respectively right or two-sided) ideal of M.  

        If A is a left ideal of M, B is a right ideal of M and S is any non-empty subset 

of M, then the set, AΓS = {∑
=

n

i 1
aiγsi | ai∈A, γ∈Γ, si∈S, n is a positive integer} is a left 

ideal of M and SΓB is a right ideal of M. AΓB is a two-sided ideal of M.  

If a∈M, then the principal ideal generated by a denoted by 〈a〉 is the 
intersection of all ideals containing a and is the set of all finite sum of elements of 
the form na + xαa + aβy + uγaµv, where n is an integer, x, y, u, v are elements of M 
and α, β, γ, µ are elements of Γ. This is the smallest ideal generated by a. Let a∈M. 
The smallest left (right) ideal generated by a is called the principal left (right) 
ideal 〈a| (| a〉).  

 
2.3 Nilpotent element. Let M be a Γ-ring. An element x of M is called nilpotent if 
for some γ∈Γ, there exists a positive integer n = n(γ) such that (xγ)nx = (xγxγ...γxγ)x = 
0. 
 
2.4 Nilpotent ideal. An ideal A of a Γ-ring M is called nilpotent if  
(AΓ)nA = (AΓAΓ.. …. …. …ΓAΓ)A = 0, where n is the least positive integer. 
 
2.5 Radical of a Γ-ring. Let M be a Γ-ring with minimum condition. The two sided 
ideal which is the sum of all nilpotent left ideals of M is called the radical of M and 
is denoted by rad M. 
 
2.6 Quotient Γ-ring.  Let M be a Γ-ring. Let A be an ideal of M. Then the set {m 
+Am∈M}is called the quotient Γ-ring of M by A. It is denoted by A

M , where           

(m1+ A)γ(m2 + A) = m1γm2 + A and (m1 + A) + (m2 + A) = (m1 + m2) +A for all  
m1,m2∈M  and γ∈Γ.  
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2.7 Γ-homomorphism. Let M and N be two Γ-rings. Let ϕ be a map from M to N. 
Then ϕ is a Γ- homomorphism if and only if ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(xγy) = 
ϕ(x)γϕ(y) for all x, y∈M and all γ∈Γ. If ϕ is a Γ homomorphism of M into N, then 
kernel of ϕ, denoted by ker ϕ defined as {x∈Mϕ(x)=0} is an ideal of M.  
 
3. Semi- Prime Ideals of Gamma Rings 
Definition 3.1. An ideal P in a Γ -ring M is said to be a prime ideal if and only if it has the 
following property:  
If A and B are ideals in M such that ΑΓΒ ⊆ P, then A⊆ P or B⊆ P.  
 
Theorem 2.3. If P is an ideal in a Γ -ring M all of the following conditions are equivalent:  
(i) P is a prime ideal of M.  
(ii) If ,a b∈Μ such that a bΓΜΓ ⊆ P, then a∈P or b∈P.  
(iii)  If <a> and <b> are principal ideals in M such that <a>Γ <b>⊆ P, then a∈P or b∈P.  
(iv)  If U and V are right ideals in M such that UΓ V⊆ P, then U⊆ P or V⊆ P.  
(v)  If U and V are left ideals in M such that UΓ V⊆ P, then U⊆ P or V⊆ P.  
 The proof is given in Barnes [3]. 
 
 If P is an ideal in M, let us denote by C(P), the complement of P in M, that is, C(P) is 
the set of elements of M which are not elements of P. Now each of the equivalent condition of 
the theorem 3.2 can be used to characterize a prime ideal in terms of  some property of C(P). 
In this connection, we shall find condition (ii) of theorem 3.2 to be of special interest.  
 
Definition 3.3. A set N of elements of aΓ -ring M is said to be an n-system if and only if it 
has the following property:  
 If a,b∈N, there exists x∈M such that a x bα β  ∈N, ,α β ∈Γ . 
 For our purpose, the significance of this concept stems from the fact that the equivalence 
of theorem 3.2 (i) and (ii) asserts that an ideal P in aΓ -ring M is a prime ideal in M if and 
only if C(P) is an n-system.  
 It is trivial that M itself is a prime ideal in M. Clearly C(M) is empty, so in order for the 
proceeding statement to be true without exception. We explicitly agree that the empty set is to 
be considered as an n-system.  
 A set of elements of a Γ -ring which is closed under multiplication is often called a 
multiplicative system. It is obvious that any multiplicative system L is also an n-system. For if  
a,b∈L, then a x bα β ∈L, ,α β ∈Γ  for x a=  or .x b=  Hence the concept of n-system is 
a generalization of that of multiplicative system.  
 We now define another concept whose significance will be indicated in the theorem to 
follow.  
Definition 4.3. The prime radical B(A) of the ideal A in aΓ -ring M is the set consisting of 
those elements m of M with the property that every n-system in M which contains m meets A 
(that is, has not-empty intersection with A).  
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 It is not obvious that B(A) is an ideal in M, but the next theorem will show that this is the 
case. However, let us observe that A and B(A) are contained in precisely the same prime ideal 
which contains B(A) necessarily contains A. Suppose that P is a prime ideal in M such that 
A⊂ P and let m∈B(A). If m∉P, C(P) would be an n-system containing m and therefore we 
would have C(P)I A is non-empty. However, since A⊂ P, C(P)I A is empty and this 
contradiction shows that m∈P. Hence B(A) ⊆ P as we wished to show. If m∈M, then the set 

( ){ }1, 2,3.......im m iα =  is a multiplicative system and hence also an n-system.  

Theorem 3.5. If m∈B(A), then there exists a positive integer n such that ( )nm mα ∈Α . 
 The proof is given in W. E. Barnes [3]. 
  
Theorem 3.6. If A is an ideal in the Γ -ring M, then B(A) coincides with the intersection of 
all the prime ideals in M which contain A.  
 The proof is given in W. E. Barnes [3]. 
 Suppose that M is commutative and that m∈M. Let N be any n-system in M which 
contains m. Then there exists x∈M such that m x m m m xα α α α=  ∈N, α ∈Γ . Again 
applying the definition of n-system, there exists y∈M such that 

2( ) ( )m m x y m m m x yα α α α α α α=  ∈N. Continuing in this way, it is clear that for each 
positive integer n there exists t∈M such that ( )nm m tα α  ∈N. Now if A is an ideal in M 
such that ( )nm mα ∈A, then ( )nm m tα α ∈A and NI A is non-empty. This shows that, if 
( )nm mα ∈A, then every n-system containing m meets A and hence that m∈B(A). the 
following result is then a consequence of this observation and Theorem  3.5.  
 
Theorem 3.7. If A is an ideal in the commutative Γ -ring M, then 
B(A) { }( ) , int .nm m m and for some positive eger nα α= ∈Α ∈Γ   

 The proof is given in Barnes [3].  
 
Definition 3.8. An ideal Q in aΓ -ring M is said to be a semi-prime ideal if and only if it has 
the following property:  
If A is an ideal in M such that AΓA⊆Q, then A⊆Q.  
 Several simple facts are almost immediate consequences of this definition. It is clear that 
a prime ideal is semi-prime. Moreover, the intersection of any set of semi-prime ideals is a 
semi-prime ideal.  
 Although Definition 3.8 refers to the square of an ideal A, it follows easily by induction 
that if Q is a semi-prime ideal and (AΓ )nA⊆Q for an arbitrary positive integer n, then 
A⊆Q.  
 The following important result is fairly easy to prove but for the sake of completeness, we 
write out a proof.  
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Theorem 3.9. An ideal Q in a Γ -ring M is a semi-prime ideal in M if and only if Q
Μ  

contains no nonzero nilpotent ideals.  
Proof. Let f be the natural Γ -homomorphism of M on to Q

Μ , with kernel Q. Suppose Q is 

a semi-prime ideal in M and U is a nilpotent ideal in Q
Μ , say ( ) 0nU UΓ = . then 

( )( )1 nf U U− Γ = Q and it follows that ( )( ) ( ) ( )( )1 1 1n nf U f U f U U Q− − −Γ ⊆ Γ =  

and hence U = 0.  
 Conversely suppose that Q

Μ contains no non-zero nilpotent ideals and that A is an ideal 

in M such that AΓ A⊆Q. Then ( ) ( ) ( ) 0.f A f A f A AΓ = Γ =  Hence ( ) 0f A =  and 
A Q⊆ .  

 Although it is possible to prove results about semi-prime ideals that are analogous to all 
of those established for prime ideals proceeding section, we shall present only a few that are 
essential for later applications. First, let us state the following theorem whose proof we omit 
since it can be established by very easy modifications of the proof of theorem 3.2.  
 
Theorem 3.10. If Q is an ideal in a Γ -ring M, all of the following conditions are equivalent.  
(i) Q is a semi-prime ideal  
(ii) If a∈M such that a a QΓΜΓ ⊆ , then a Q∈ .  
(iii)  If <a> is a principal ideal in M such that ,a a Q< > Γ < >⊆  then a Q∈ . 
(iv)  If U is a right ideal in M such that ,U U QΓ ⊆  then .U Q⊆  
(v) If U is a lift ideal in M such that ,U U QΓ ⊆  then U Q⊆ .  
 Let us next make the    following definition which is analogous to the definition of an n-
system. 
 
Definition 3.11. A set T of elements of a Γ -ring is said to be a t-system if and only if it has 
the following property:  
If a∈T, there exist x∈M such that ,a x a Tα α α∈ ∈Γ .  
It is clear that an n-system is also a t-system. Also, the equivalence of conditions (i) and (ii) of 
theorem 3.10 assures us that an ideal Q in M is a semi-prime ideal if and only if C(Q) is a t-
system.  
 The following lemma will play a central role in the proof of the next theorem.  
 
Lemma 3.12. If T is a t-system in the Γ -ring M and there exists an n-system N in M such 
that a∈Ν and N⊆ T.  
Proof. Let N { }1 2 3, , ,......... ,a a a=  where the elements of this sequence are defined 

inductively as follows. First we define 1 .a a=  Since now 1 1 1,a a a∈Ν ΓΜΓ ΤI  is non-
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empty and we choose 2a  as some element of 1 1a aΓΜΓ ΤI . In general, if ia has been 
defined, with ia ∈Τ , we choose 1ia + as an element of .i ia aΓΜΓ ΤI Thus a set N is 
defined such that a∈Ν and N⊆ Τ . To complete the proof, we only need to show that N is 
an n-system. Suppose that ,i ja a ∈Ν  and for convenience, let us assume that i j≤ . Then 

1j j j i ja a a a a+ ∈ ΓΜΓ ⊆ ΓΜΓ  and 1ja + ∈Ν . A similar argument takes care of the case 
in which i>j, so we conclude that N in indeed an n-system. Thus the proof is completed.  
 We can now easily prove the following theorem.  
 
Theorem 3.13. An ideal Q in a Γ -ring M is a semi-prime in M if and only if B(Q) = Q.  
Proof. The “if” part of this theorem is an immediate consequence. of Theorem 3.6 and the fact 
that any intersection of prime ideals is a semi-prime ideal. To prove the “only if” part, suppose 
that Q is a semi-prime ideal in M. certainly Q ⊆ B(Q), so let us assume that Q⊂B(Q) and 
seek a contradiction. Suppose that ( )a B Q∈  with .a Q∉  Hence C(Q) is a t-system and a 
∈C(Q). By the Lemma 3.12, there exists an n-system N such that a∈Ν ⊆ C(Q), Now 
a∈B(Q) and by definition of B(Q), every n-system which contains a meets Q. But 
QI C(Q). is empty and therefore NI Q is empty. This giver the desired contradiction and 
completes the proof of the theorem.  
 In view of theorem 3.6 and the fact that an intersection of prime (or semi-prime) ideals is 
a semi-prime ideal, we have the following immediate corollary to the preceding theorem.  
 
Corollary 3.14. An ideal Q in a Γ -ring M is a semi-prime ideal if and only if Q is an 
intersection of prime ideals in M.  
 If A in an ideal in aΓ -ring M, the intersection of all the semi-prime ideals which contain 
A is the unique smallest semi-prime ideal which contains A. We may also state the following 
consequence of theorems 3.6 and 3.13.  
 
Corollary 3.15. If A is an ideal in the Γ -ring M, then B(A) is the smallest semi-prime ideal 
in M which contains A.  
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