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Abstract. A b-coloring of a graph G with k colors is a proper coloring of G using k 
colors in which each color class contains a color dominating vertex, that is, a vertex 
which has at least one neighbor in each of the other color classes. The largest integer 
k(>0) for which G has a b-coloring using k colors is the b-chromatic number b(G) of 
G. In this paper, we obtain the b-chromatic number of the square of Cartesian 
product of two cycles. Further, we obtained the b-coloring number of Cn

k�K2 and 
Cn

k�K3 and prove that these graphs are b-continuous for some particular values of n. 
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1. Introduction 

All graphs in this paper are finite, simple and undirected graphs.  A k-vertex 
coloring of a graph G is an assignment of k colors 1, 2, ..., k, to the vertices. The 
coloring is proper if no two distinct adjacent vertices share the same color. A graph 
G is k-colorable if G has a proper k-vertex coloring. The chromatic number χ(G) is 
the minimum number k such that G is k-colorable. Color of a vertex v is denoted by 
c(v).  

A b-coloring is a coloring of the vertices of a graph such that each color class 
contains a vertex that has a neighbor in all other color classes. In other words, each 
color class contains a color dominating vertex (a vertex which has a neighbor in all 
the other color classes). The b-chromatic number b(G) is the largest integer k such 
that G admits a b-coloring with k colors. The b-spectrum Sb(G) of G is defined by 
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Sb(G) = { k∈N : χ(G) ≤ k ≤ b(G) and G is b-colorable with k colors }. It is known 

that χ(G) ≤ b(G) ≤ ∆+1. 
A graph G is b-continuous if Sb(G) = [χ(G), b(G)]. R.W. Irving and D.F. 

Manlove [5] have shown that the problem of determining the b-chromatic number is 
NP-hard for general graphs, but polynomial-time solvable for trees. Also they 
proved that some graphs admits b-coloring but not b-continuous. Further they 
proved that the 3-dimensional cube Q3 is not b-continuous [5]. T. Faik proved that 
some classes of graphs are known to be b-continuous [3]. 

A graph G1 is called covering of G with projection f : G1→ G if there is a 
surjection f:V(G1)  →V(G) such that f |N(v1) : N(v1)→N(v) is a bijection  for any 
vertex v∈V(G) and v1∈f-1(v) [6].  

 The Cartesian product G�H of two graphs G and H, is the graph with vertex 
set V(G�H) = V(G) × V(H) and edge set E(G�H) = {((x1, y1), (x2, y2)) : (x1, 
x2)∈E(G) with y1=y2 or (y1, y2)∈E(H) with x1=x2 }. [4]. The square G2 of a graph G 
is defined on the vertex set of G in such a way that distinct vertices with distance at 
most 2 in G are joined by an edge. 

In this section, we obtain the b-chromatic number of the square of Cartesian 
product Cm�Cn of two cycles when m and n are multiples of 13. A graph is a power 
of cycle, denoted Cn

k, if V(Cn
k) = {v0 (= vn), v1, v2, . .. , vn-1} and E(Cn

k) = E1∪E2∪ 
… ∪Ek, where Ei={(vj, v(j+i)(mod n)) : 0 ≤ j ≤ n-1} [5]. Note that Cn

k is a 2k-regular 
graph and that k ≥ 1. 

In this paper we study the b-chromatic number of the square of Cartesian 
product Cm�Cn of two cycles when m and n are multiples of 13. In such cases, we 
give the color classes.  
 
2. Square of Cartesian product of two cycles  

In this section, we prove that the square of the graph Cm�Cn is b-continuous 
when m and n are integers multiples of 13. 

 
Lemma 2.1 Let G be the square of the graph C13�C13 Then G is b- colorable with 
13- colors and b(G) = 13.  
 
Proof.  Let the vertex set of G be V={(i,j) : 1≤ i ≤13, 1 ≤ j ≤13}. Since b(G) = ∆+1 
and  ∆(G) = 12, we have b(G) = 13. It remains to show that G is b-colorable with 13 
colors. Let us color the vertices of G us follows:  
c((1, 1)) = 4, c((1, 2)) = 11, c((1, 3)) = 2, c((1, 4)) = 10, c((1, 5)) = 12, c((1, 6)) = 5, 
c((1, 7)) = 13, c((1,8)) = 3, c((1, 9)) = 8, c((1, 10)) = 9, c((1, 11)) = 1, c((1, 12)) = 6, 
c((1,13)) = 7, 
c((2, 1)) = 5, c((2, 2)) = 13, c((2, 3)) = 3, c((2, 4)) = 8, c((2, 5)) = 9, c((2, 6)) = 1, 
c((2, 7)) = 6, c((2,8)) = 7, c((2,9)) = 4, c((2,10)) = 11, c((2, 11)) = 2, c((2, 12)) = 10, 
c((2, 13)) = 12,  
c((3, 1)) = 1, c((3, 2)) = 6, c((3, 3)) = 7, c((3, 4)) = 4, c((3, 5)) = 11, c((3, 6)) = 2, 
c((3,7)) = 10, c((3,8)) = 12, c((3,9)) = 5, c((3,10)) = 13, c((3,11)) = 3, c((3, 12)) = 8, 
c((3, 13)) = 9,  
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c((4, 1)) = 2, c((4, 2)) = 10, c((4, 3)) = 12, c((4, 4)) = 5, c((4, 5)) = 13, c((4, 6)) = 3, 
c((4, 7)) = 8, c((4, 8)) = 9, c((4, 9)) = 1, c((4, 10)) = 6, c((4, 11)) = 7, c((4, 12)) = 4, 
c((4, 13)) = 11,  
c((5, 1)) = 3, c((5, 2)) = 8, c((5, 3)) = 9, c((5, 4)) = 1, c((5, 5)) = 6, c((5, 6)) = 7, 
c((5, 7)) = 4, c((5,8)) = 11, c((5,9)) = 2, c((5,10)) = 10, c((5,11)) = 12, c((5,12)) = 5, 
c((5, 13)) = 13, 
c((6, 1)) = 7, c((6, 2)) = 4, c((6, 3)) = 11, c((6, 4)) = 2, c((6, 5)) = 10, c((6, 6)) = 12, 
c((6, 7)) = 5, c((6, 8)) = 13, c((6, 9)) = 3, c((6, 10)) = 8, c((6,11)) = 9, c((6, 12)) = 1, 
c((6, 13)) = 6,  
c((7, 1)) = 12, c((7,2)) = 5, c((7, 3)) = 13, c((7, 4)) = 3, c((7, 5)) = 8, c((7, 6)) = 9, 
c((7, 7)) = 1, c((7, 8)) = 6, c((7, 9)) = 7, c((7,10)) = 4, c((7, 11)) = 11, c((7,12)) = 2, 
c((7, 13)) = 10,  
c((8, 1)) = 9, c((8, 2)) = 1, c((8, 3)) = 6, c((8, 4)) = 7, c((8, 5)) = 4, c((8, 6)) = 11, 
c((8,7)) = 2, c((8,8)) = 10, c((8,9)) = 12, c((8,10)) = 5, c((8,11)) = 13, c((8, 12)) = 3, 
c((8, 13)) = 8,  
c((9, 1)) = 11, c((9,2)) = 2, c((9, 3)) = 10, c((9, 4)) = 12, c((9, 5)) = 5, c((9, 6)) = 13, 
c((9, 7)) = 3, c((9, 8)) = 8, c((9, 9)) = 9, c((9, 10)) = 1, c((9, 11)) = 6, c((9, 12)) = 7, 
c((9, 13)) = 4,  
c((10,1)) = 13, c((10,2)) = 3, c((10,3)) = 8, c((10,4)) = 9, c((10,5)) = 1, c((10,6))= 6, 
c((10, 7)) = 7, c((10, 8)) = 4, c((10, 9)) = 11, c((10, 10)) = 2, c((10, 11)) = 10,  
c((10, 12)) = 12, c((10, 13)) = 5,  
c((11,1)) = 6, c((11,2)) = 7, c((11,3)) = 4, c((11,4)) = 11, c((11,5)) = 2, 
c((11, 6))= 10, c((11, 7)) = 12, c((11, 8)) = 5, c((11, 9)) = 13, c((11, 10)) = 3,  
c((11, 11)) = 8, c((11, 12)) = 9, c((11, 13)) = 1,  
c((12, 1)) = 10, c((12, 2)) = 12, c((12, 3)) = 5, c((12, 4)) = 13, c((12, 5)) = 3,  
c((12, 6)) = 8, c((12, 7)) = 9, c((12,8)) = 1, c((12, 9)) = 6, c((12, 10)) = 7,  
c((12, 11)) = 4, c((12,12)) = 11, c((12, 13)) = 2,  
c((13, 1)) = 8, c((13, 2)) = 9, c((13, 3)) = 1, c((13, 4)) = 6, c((13, 5)) = 7, 
c((13, 6)) = 4, c((13, 7)) = 11, c((13, 8)) = 2, c((13, 9)) = 10, c((13, 10)) = 12, 
c((13,11)) = 5, c((13, 12)) = 13, c((13, 13)) = 3. 
Note that in the above coloring all the vertices are colorful. □ 
 
In [1], S. Chandra Kumar and T. Nicholas proved the following theorem. 
 
Lemma 2.2. [1] Let f : G → H be a covering projection from a graph G on to 
another graph H. If the graph H is b-colorable with k colors, then so is G. 

 
Theorem 2.3. Let m and n be integers multiples of 13 and G be the square of the 
graph Cm�Cn. Then G is b-colorable with 13 colors and b(G) = 13.  
 
Proof.  Let V(G) = {(x, y) : 1 ≤ x ≤ m, 1 ≤ y ≤ n} be the vertex set of G. Let H be 
the square of C13�C13.  
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Define f : G → H by f((x, y)) = (x(mod 13), y(mod 13)). Then f is a covering 

projection from G onto H. The rest of the proof follows from Lemma 2.1 and 
Lemma 2.2. □ 
 
3.  b-coloring of Cn

k � K2 and Cn
k � K3 

In this section, by using the covering projection, we prove that the graphs 
Cn

k�K2 and Cn
k � K3 are b-continuous for some values of n. 

 
Lemma 3.1. If 2k + 2 divides n, then b(G) = 2k + 2, where G = Cn

k � K2. 
 
Proof.  Consider the graph H = C2k+2

k � K2. First we show that b(H) = 2k + 2. Let 
V(C2k+2

k) = {0(= 2k + 2),1, 2, . . . ,2k + 1} be the vertex set of C2k+2
k and {0,1} be 

the vertex set of K2. Note that, for any vertex (a, b)∈V(H), |N((a, b))| = 2k + 1 and 
N ((a, b)) = {(a, b⊕2 1), (a ⊕h 1, b), (a⊕h 2, b), . . ., (a⊕h k, b), (a ⊕h (h-1), b),    
(a⊕h (h-2), b),. . . , (a⊕h (h-k), b)}, where ⊕h is the operation, addition modulo       
h = 2k+2.  

Since ∆(H) = 2k + 1, b(H) ≤ 2k + 2. It remains to show that H is b-
colorable with 2k + 2 colors. Let us color the vertices of H with 2k + 2 colors 1, 2,. 
. . , 2k + 2 as follows: 
c((1,0)) = 1, c((2,0)) = 2, …,  c((2k + 2,0)) = c((0,0)) = 2k+2 and c((k+1)+1,1) = 1, 
c((k+1)+2,1) = 2, …,  c((k+1)+k, k) = c(2k +1, k) = k, c(0,1) = k + 1,c(1,1) = k + 2, 
c(2, 1) = k + 3, . .., c(k + 1,1) = 2k + 2. Note that, in the above coloring, each vertex 
is colorful.  

Consider the graph G = Cn
k � K2. Define f : G→ H by f((a, b)) = (a mod 

(2k + 2),  b mod 2). Since 2k + 2 divides n, the function f is a covering projection 
from G onto H. Since H is b-colorable with 2k + 2 colors, by Lemma 2.2, G is also 
b-colorable with 2k + 2 colors.  

Since ∆(G) = 2k + 1, b(G) = 2k + 2. □ 
 
Lemma 3.2. A simple connected graph G with at least 2 vertices is b-colorable with 
d colors, then so is G�K2. 
 
Proof.  Let G be a b-colorable graph with d colors. Let the corresponding color 
classes be C1, C2, …, Cd with colors 1, 2,. . . , d respectively. Let v1, v2, …, vd be 
the colorful vertices of colors 1, 2, …, d  respectively. Let us color the vertices of 
G�K2 as follows:  
c((v, 0)) = i if v∈Ci for all 1 ≤ i ≤ d, c((v, 1)) = i + 1 if v∈Ci for all 1≤ i ≤ d-1 and 
c((v, 1)) = 1 if v∈Cd. From the above coloring, it is easy to observe that the vertices 
(v1, 0), (v2, 0), …, (vd, 0) are colorful vertices of colors 1, 2,. . . , d respectively. □ 
 
In [2], S. Chandra Kumar and T. Nicholas have proved the following lemma. 
 



b-coloring in Square of Cartesian Product of Two Cycles 
 

135 
 

Lemma 3.3. [1] Let k + 1 ≤ d ≤ 2k + 1. Then the graph G = Cn
k admits b-coloring 

with d colors. 
 
Theorem 3.4. When 2k+2 divides n, the graph G = Cn

k�K2 is b-continuous. 
 
Proof. Since the vertices (0, 0), (1, 0), …, (k, 0) are mutually pair wise adjacent in  
G,  χ(G) ≥ k+1. By Lemma 3.1, we have b(G) = 2k + 2 and hence Sb(G) ⊆ [k + 1, 
2k + 2]. By Lemma 3.3, Cn

k admits b-coloring with d colors for each d with            
k + 1 ≤ d ≤ 2k + 1. Hence by Lemma 3.2, G admits b-coloring with d colors for 
each d with k + 1 ≤ d ≤ 2k + 1 and hence Sb(G) = [k + 1, 2k + 2]. 
 
Lemma 3.5. If 2k + 3 divides m, p and G = Cp

k�Cm, then b(G) = 2k + 3. 
 
Proof. Consider the graph H = C2k+3

k � C2k+3. First we show that b(H) = 2k + 3. Let 
V (Cg) = {1, 2, …, g} be the vertex set of a cycle Cg. Note that, for any vertex       
(a, b)∈ V(H), |N((a, b))| = 2k+2 and N((a,b)) = {(a⊕n1, b), (a⊕n2,b), …, (a⊕n k, b), 
(a⊕n (n-1), b), (a⊕n (n-2), b), …, (a⊕n (n - k),b), (a, b ⊕11), (a, b ⊕n (n - 1))} , 
where ⊕n is the operation, addition modulo n = 2k + 3. 
Since ∆(H) = 2k + 2, b(H) = 2k + 3. It remains to show that H is b-colorable with 
2k + 3 colors. Let us color the vertices of H with 2k + 3 colors 1, 2, …, 2k + 3 as 
follows: 
c((1, 1)) = c((2, 1⊕n2)) = c((3,1⊕n2(2))) = c((4, 1⊕n2(3))) = . . . = c((2k + 3,       
1⊕n 2(2k + 2))) = 1, 
c((2, 1)) = c((3, 1⊕n2)) = c((4,1⊕n2(2))) = c((5, 1⊕n2(3))) = . . . = c((2k + 3, 
1⊕n2(2k + 1))) = c((1, 1⊕n2(2k + 2))) = 2,  
c((3, 1)) = c((4, 1⊕n2)) = c((5,1⊕n2(2))) = c((6, 1⊕n2(3))) = … = c((2k + 2,        
1⊕n 2(2k-1))) = c((2k +3, 1⊕n2(2k))) = c((1, 1⊕n2(2k+1))) = c((2,1⊕n2(2k+2)))= 3,  
. .., 
c((2k + 3, 1)) = c((1, 1⊕n2)) = c((2, 1⊕n2(2))) = c((3, 1⊕n2(3))) = … = c((2k + 2, 
1⊕n2(2k + 2))) = 2k + 3. 

Note that, in the above coloring, each vertex is colorful and hence b(H) = 
2k + 3. Consider the graph G= Cp

k �Cm. Define f : G→ H be f((a, b)) = (a mod 
(2k+ 3),     b mod (2k+ 3)). Since 2k +3 divides p and m, f is a covering projection 
from G onto H. Since H is b-colorable with 2k + 3 colors, by Lemma 2.2, G is also 
b-colorable with 2k + 3 colors. Since ∆(G) = 2k + 2, b(G) = 2k + 3. □ 
 
Lemma 3.6. A graph G is b-colorable with d (≥ 3) colors, then so is G�K3. 
 
Proof.  Let G be a b-colorable graph with d colors. Let the corresponding color 
classes be C1, C2, …, Cd with colors 1, 2, …, d respectively. Let v1, v2, …, vd be the 
colorful vertices of colors 1, 2, …, d respectively. Let V(K3) ={0, 1, 2}. Let us 
color the vertices of G�K3 as follows. c((v, 0)) = i if v∈Ci for all 1 ≤ i ≤ d, c((v,1)) 
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= i + 1 if v∈Ci for all 1 ≤ i ≤ d-1 and c((v, 2)) = i + 2 if v∈Ci for all 1 ≤ i ≤ d-2. 

Further, c((v, 1)) = 1 if v∈Cd, c((v, 2)) = 1 if v∈Cd-1 and c((v, 2)) = 2 if v∈Cd. From 
the above coloring, it is easy to observe that the vertices (v1, 0), (v2, 0), …, (vd, 0) 
are colorful vertices of colors 1, 2, …, d respectively. □ 
 
Lemma 3.7.  Let n=2(2k+3). Then the graph G = Cn

k �K3 is b-colorable with 2k+3 
colors. 
 
Proof.  Let V(Cn

k) = {0(= n), 1, 2, …, n-1} be the vertex set of Cn
k and {0, 1, 2} be 

the vertex set of K3. It remains to show that G is b-colorable with 2k + 3 colors. 
Let V (G) = V1∪ V2∪ V3, where Vi = {(g, i) : g∈V(Cn

k)} for i = 0, 1 and 2. 
Let us color the vertices of G with 2k + 2 colors 1, 2, …, 2k + 2 as follows: 
Let n = i(2k + 2) + j. We first color the vertices of V1. 
Case 1. If 1 ≤ j ≤ k + 1. Then c((g, 0)) = g(mod (2k + 2)) for 1 ≤ g ≤ i(2k + 2) and 
c((g, 0)) = (k + 1) + g for i(2k + 2) ≤ g ≤ n. 
Case 2. If k + 2 ≤ j ≤ 2k + 2. Then c((g, 0)) = g(mod (2k + 2)) for 1 ≤ g ≤ n and 
c((g, 0)) = (k + 1) + g for i(2k + 2) ≤ g ≤ n. 
Now we color the vertices of V2 and V3 as follows: 
c((g,1)) = c((g, 0)) ⊕2k+2 (k + 1) and c((g, 2)) = c((g, 0)) ⊕2k+2 (k + 2). Note that in 
the above coloring, the vertices (k+1, 0), (k+2, 0), …, (2k+2, 0), ((2k+2)+1, 0), 
((2k+2)+2, 0) and ((2k+2)+k, 0) are colorful vertices with colors k + 1, k + 2, …, 
2k + 2, 1, 2, …, k respectively. □ 
 
Theorem 3.8. When 2k + 3 divides n and n ≥ 2(2k + 3), the graph G = Cn

k�K3 is   
b-continuous. 
 
Proof. Since the vertices (0, 0), (1, 0), …, (k, 0) are mutually pair wise adjacent, 
χG) ≥ k+1. As in the proof of Lemma 3.5, we can prove that b(G) = 2k + 3.  
Hence, Sb(G) ⊆ [k+1, 2k+3]. 
By Lemma 3.3 and Lemma 3.6, G is b-colorable with i colors for each i with          
k + 1≤ i ≤ 2k+1. By Lemma 3.6 and Lemma 3.5, G is b-colorable with i colors for   
i = 2k+ 2, 2k + 3. Hence Sb(G) = [k+1, 2k+3] and hence G is b-continuous. □ 
 
 

REFERENCES 
 

1. S. Chandra Kumar, T. Nicholas, b-Continuity in Peterson graph and power of a 
cycle, International Journal of Modern Engineering Research, 

2. Eric Sopena, Jiaojiao Wu, Coloring the square of the Cartesian product of two 
cycles, Discrete Appl. Math., 310 (2010), 2327-2333. 

3. T. Faik, About the b-continuity of graphs, Electronic Notes in Discrete Math., 
17 (2004), 151-156. 



b-coloring in Square of Cartesian Product of Two Cycles 
 

137 
 

4. T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in 
Graphs, (2001), Marcel Dekker. 

5. R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete 
Appl. Math., 91 (1999), 127141. 

6. J. Lee, Independent perfect domination sets in Cayley graphs. J. Graph Theory, 
37(4), (2001), 231-239. 

7. C.N. Campos, C.P. De Mello, A result on the total coloring of powers of cycles. 
Disc. Appl. Math., 155 (2007), 585 – 597. 


