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Abstract. In this paper, we solve numerically a second order linear boundary value
problem, by the technique of Galerkin method. For this, we derive a simple and
efficient matrix formulation using Hermite polynomials as trial functions. The
proposed method is tested on several numerical examples of second order linear
boundary value problems with Neumann and Cauchy types boundary conditions.
The approximate solutions of some examples coincide with the exact solutions on
using a very few Hermite polynomials. The approximate results, obtained by the
propose method, confirm the convergence of numerical solutions and are compared
with the existing methods available in the literature.
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1. Introduction

There are many linear and nonlinear problems in science and engineering, namely
second order differential equations with various types of boundary conditions, are
solved either analytically or numerically. Numerical simulation in engineering
science and in applied mathematics has become a powerful tool to model the
physical phenomena, particularly when analytical solutions are not available then
very difficult to obtain. In the literature of numerical analysis solving second order
boundary value problem (BVP) of differential equations, many authors have
attempted to obtain higher accuracy rapidly by using a numerous methods. Such that
diffusion occurring in the presence of exothermic chemical reaction, heat
conductions associated with radiation effect [1]. Solving such type of boundary
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value problems analytically is possible only in very rare cases. Study in this field is
very interesting. Various methods are available in the literature concerning their
numerical solutions [2-4]. Khan in [5] obtained a parametric cubic spline solution of
two point boundary value problems, in [6] Feng and Li solved a second-order
Neumann boundary value problem with singular nonlinearity for exact three positive
solutions, in [7] Lima and Carpentier obtained a Numerical solution of a singular
boundary-value problem in non-Newtonian fluid mechanics, in [8] Rashidinia and
Jalilian introduced a spline solution of two point boundary value problems, in [9]
Viswanadham et al. obtained a numerical solution of a fourth order boundary value
problems by Galerkin method with Quintic B-splines basis, in [10] Das et al.
produced a method for solutions of nonlinear second order multi-point boundary
value problems and recently in [11] Bhatti and Bracken solved linear and non-linear
differential equation numerically by Galerkin method in a Bernstein polynomials
basis.

However, in this paper a very simple and efficient Galerkin numerical
method is proposed with Hermite polynomials as trial functions. The formulation is
derived to solve second order boundary value problem with two different cases of
boundary conditions, in details, in Section 3. In Section 2, we give a short
introduction of Hermite polynomials. Finally, two examples of Neumann boundary
value problems and one example of Cauchy boundary value problems are given to
verify the proposed formulation. The results of each example indicate the
convergence numerical solutions. Moreover, this method can provide even the exact
solutions, with a few lower order Hermite polynomials, if the equation is simple.

2. Hermite Polynomials
The general form of the Hermite polynomials of nth degree is defined by

dn
Hp(x) = (—D”exzm(e—xz) ,

N=0,1,2,3, e eer o
Using MATLAB code, the first few Hermite polynomials are given below:

Hy(x) =1

Hy(x) = 2x

Hy(x) = — 2+ 4x?

Hy(x) = —(12x — 8x3)

H,(x) = (12 — 48x% + 16x%)

Hs(x) = (120x — 160x3 + 32x°)

Hg(x) = —(120 — 720x% + 480x* — 64x°)
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Now the first six Hermite polynomials over the interval [—1, 1] are shown in

Figure 1.
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Figure 1. Graph of first 6 Hermite polynomials over the interval [-1, 1]

3. Formulation of Boundary Value Problems in Matrix Form
We consider a general second order linear boundary value problem are given by

d?u du
az(x)ﬁ + al(x)a +ag(u=gkx) ;

a<x<b 2

subject to the boundary conditions

u(a) =y, u'(b) =72

where a,(x), a;(x), ay(x) and g(x) are given functions and y,,y, are given
constants and u(x) is the unknown function or exact solution of (2), which is to be
determined.

To use Hermite polynomials over [0,1], we convert each BVP to an
equivalent BVP on [0, 1]. The BVP can be converted to an equivalent problem on
[0, 1] by letting x = (b — a)x + a. Then the Equation (2) is equivalent to the BVP
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d?u du

@ () 7+ @) -+ T ou = §(x),

0<x<1 3)

Subject to the boundary conditions
u@ =y, v=y, (3a)

where
B _ 1
a;(x) = —(b ~ ) az((b —a)x + a), a;(x) = —(b 0 al((b —a)x + a),

ag(x) = ao((b — a)x + a) and g(x) = g((b — A)x + a).
Now we use the technique of Galerkin method [Lewis, 2] to find an approximate
solution i (x) of (3). For this, we assume that

n

1) = ) 6N 0

i=0

where N;(x) are piecewise polynomials, namely —Hermite polynomials of degree i
and c; are unknown parameters, to be determined. Applying Galerkin method with
the basis functions N;(x), we get

fl [a"(x) @ + a; (x) ﬁ + El"(x)ﬁ] N:(x)dx
o | 2 0dx2 T TV dx T 0 J

1
- f GOON;(x) dx (5)
0

Integrating first term by parts on the left hand side of (5), we get after applying the
Neumann conditions prescribed in (3a) as
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Ir diid dii
fo |- S = [mN@] + @@ N6 + GoaN ()| dx

1
= f G)N;(x) dx + @z (0)y,N;(0)
0
— G (Dy2N;(1) ©)

By substituting (4) into (6), we get a system of equation in matrix form as

n
CiKi,j = P:’ ; ] = 0, 1,2, """ ,n (7)
=0

where
1 ) d ’
Kij = f [—Ni(x)a[a‘i(x)lvj(x)] + @ (X)N; (X)N; (x)
0
FTCONCON; ()| dx

1
F = fo GEON; () dx + @ (0)y1N; (0)

— @z (Dy2N;(D)
Now the unknown parameters c; are determined by solving the system of equations
(7) and substituting these values of parameters in (4), we get the approximate
solution #%(x) of the equation (3) for Neumann boundary conditions.
Again, Integrating first term by parts on the left hand side of (5), we get
after applying the Cauchy conditions prescribed in (3a) as

1r dii d dii
fo [_d_za [@CON; ()] + a7 (x)d—ZN,-(x) + aB(x)ﬁl\G(x)] dx

1
= f GOON;(x) dx
0
- a\i(l)YzNj(l) (8)

By substituting (4) into (8), we get a system of equation in matrix form as
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n
CiKi,j = F} 5 ] = 0, 1, 2, """ ,n (9)
=0

i

where

1 d ,
Ky = [ [Mi0 g5 a0 00 + @comicon o
+ @ (x)N; (x)N; (x)] dx

1
= aGomco dx

- a\i(l)YzNj(l)

Now the unknown parameters c; are determined by solving the system of equations
(9) and substituting these values of parameters in (4), we get the approximate
solution #(x) of the equation (3) for Cauchy boundary conditions. Then the absolute
error between exact and approximate solutions is obtained by using the following
formula |u(x)- i (x)|

4. Numerical Examples

In this section, we explain three examples of Neumann boundary value problems
and one example of Cauchy boundary value problems which are available in the
literature. For each example we find the approximate solutions using same number
of piecewise Hermite polynomials. The computations, associated with the examples,
are performed by MATLAB [13, 14].

Example 1. Consider the linear boundary value problem

d2u+
—tu=x
dx?

207X 0<x<10 (10)

Subject to the Neumann boundary conditions

u'(0) =0, u'(10) =0

The exact solution is
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(cos 10 + 99¢719) 1

1
u(x) = — cosx—Esinx+§e‘x(1+x)2

2sin10

Result has been shown for different values of x in Table 1 forn = 12. Also Figure 2
shows the exact and approximate solution. The maximum absolute errors obtained
by the proposed method in the order of 10~1. On the contrary, the accuracy is found

nearly the order of 107> forn = 20 in .

1.5 _ _ . . ” ”

Exact Solutions
Approximation for n=8
Approximation for n=10

| t/\,& :

-Abs-diff-

Figure 2. Exact solutions and Numerical solutions for Example 1

Example 2. Consider the linear boundary value problem

d*u
—— tu=cosx; 0<x<5
dx

Subject to the Neumann boundary conditions
u'(0) =0, u'(5)=0

The exact solution is
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1
u(x) = 7 (—6c0s%5 + 2 + 10 cot5 + cot5 sin10 + 2cos10) cos x

1
+ 7 (2cos3x + 2x sinx + sinx sin2x)

Result has been shown for different values of x in Table 1 forn = 12. Also Figure 3
shows the exact and approximate solution. The maximum absolute errors obtained
by the proposed method in the order of 1071,

Table 1: Computed Absolute Error of examples 1 and 2.

1.5

Exact Solutions
»  Approximation for n=6

-1.5p <4 Approximation for n=12 %
2k o
2.5 a - A a a a A .
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3. Exact solutions and Numerical solutions for Example 2

Example 1 for n=12 Example 2 for n=12
x Exact Approx. Absolute Exact Approx. Absolute
Solutions Solutions Error Solutions Solutions Error
0.1 | 0.1905656 -0.0993485 | 1.5213348E+00 | -0.2683548 | -0.0878111 | 6.7277990E-01
0.2 | 0.5198704 0.4734712 | 8.9251515E-02 -0.2606393 | 0.2949467 | 2.1316277E+00
0.3 | 0.8471665 1.0871529 | 2.8328132E-01 -0.0595928 | 0.7350613 1.3334725E+01
0.4 | 0.8031348 1.1087492 | 3.8052691E-01 0.1730007 1.0120826 | 4.8501662E+00
0.5 | 0.2928847 0.3830705 3.0792232E-01 0.2634819 | 0.9412174 | 2.5722287E+00
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0.6 | -0.3280263 | -0.5359707 | 6.3392590E-001 | 0.0974091 0.4471576 | 3.5905097E+00

0.7 | -0.5625127 | -0.8776264 | 5.6018947E-001 | -0.3298266 | -0.3948662 | 1.9719354E-01

0.8 | -0.2370441 -0.3694783 | 5.5869004E-001 | -0.9007898 | -1.3663642 | 5.1685119E-01

0.9 | 0.3270311 0.4989862 | 5.2580667E-001 | -1.4078951 | -2.1621571 | 5.3573739E-01

1.0 | 0.6001005 0.9183684 | 5.3035772E-001 | -1.6208290 | -2.4816165 | 5.3107857E-01

Example 3. Consider the linear boundary value problem

d*u

Subject to the Cauchy boundary conditions
u(0) =0, u(2)=0

The exact solution is

0s 2
Result has been shown for different values of x in Table 2 forn = 12. Also Figure
4 shows the exact and Absolute Error. The maximum absolute errors obtained by
the proposed method in the order 10716 in Hermite basis.
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Figure 4. Exact solutions and Numerical solutions for Example 3

Table 1: Computed Absolute Error of Example 3.

Example 3 for n=12

X Exact Absolute x Exact Absolute
Solutions Error Solutions Error
0.1 -0.6774020 0.0000000E+000 0.6 -3.4396880 0.0000000E+000
0.2 |-1.3357715 0.0000000E+000 0.7 -3.7680337 1.1785702E-016
0.3 -1.9568347 2.2694263E-016 0.8 -4.0019733 0.0000000E+000
0.4 | -2.5238052 1.7596018E-016 0.9 -4.1401539 0.0000000E+000
0.5 -3.0220531 1.4694951E-016 1.0 -4.1850399 0.0000000E+000

5. Conclusions

In this paper, we have developed Galerkin method to approximate the solution of
second order Neumann and Cauchy boundary value problems. It is observed that the

approximate results converge monotonically to the exact solutions. We also notice
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that the approximate solutions coincide with the exact solutions even a few of the

polynomials are used in the approximation which are shown in Table 1 and Table 2.
We may realize that this method may be applied to solve other linear differential

equations for the desired accuracy. The objective of this paper is to present a simple

and accurate method to solve second order boundary value problems.
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