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Abstract. In the present paper, we solve numerically Volterra integral equations of 
second kind with regular and singular kernels, by the well known Galerkin weighted 
residual method. For this, we derive a simple and efficient matrix formulation using 
Chebyshev polynomials as trial functions. Numerical examples are considered to 
verify the effectiveness of the proposed derivations and numerical solutions are 
compared with the existing methods available in the literature.  
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1. Introduction 
Many problems of mathematical physics can be started in the form of integral 
equations. These equations also occur as reformulations of other mathematical 
problems such as partial differential equations and ordinary differential equations. 
Therefore, the study of integral equations and methods for solving them are very 
useful in application. In recent years, there has been a growing interest in the 
Volterra integral equations arising in various fields of physics and engineering [1], 
e.g., potential theory and Dirichlet problems, electrostatics, the particle transport 
problems of astrophysics and reactor theory, contact problems, diffusion problems, 
and heat transfer problems.  
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Some valid numerical methods, for solving Volterra equations using various 
polynomials [2], have been developed by many researchers. Very recently, 
Maleknejad et al [3] and Mandal and Bhattacharya [4] used Bernstein polynomials 
in approximation techniques, Shahsavaran [5] solved by Block – Pulse functions and 
Taylor Expansion method. Taylor polynomials were also used by Bellour and 
Rawashdeh [6] and Wang [7] with computer algebra. Bernstein polynomials were 
used for the solution of second order linear and first order non-linear differential 
equations by Bhatti and Bracken [8]. These polynomials have been also used for 
solving Fredholm integral equations of second kind by Shirin and Islam [9]. 
Babolian and Delves [10] describe an augmented Galerkin technique for the 
numerical solution of first kind Fredholm integral equations. In [11] a numerical 
solution of Fredholm integral equations of the first kind via piecewise interpolation 
is proposed. Lewis [12] studied a computational method to solve first kind integral 
equations. 

However, in this paper a very simple and efficient Galerkin weighted 
residual numerical method is proposed with Chebyshev polynomials as trial 
functions. The formulation is derived to solve the linear Volterra integral equations 
of second kind having regular as well as weakly singular kernels, in details, in 
Section 3. In Section 2, we give a short introduction of Chebyshev polynomials. 
Finally, five examples of different kinds of Volterra integral equations are given to 
verify the proposed formulation. The results of each example indicate the 
convergence numerical solutions. Moreover, this method can provide even the exact 
solutions, with a few lower order Chebyshev polynomials, if the equation is simple. 

 
2. Chebyshev Polynomials  
The general form of the Chebyshev polynomials [12] of nth degree is defined by  
 

ܶሺݔሻ ൌ ∑ ሺെ1ሻቂమቃୀ !ሺଶሻ!ሺିଶሻ! ሺ1 െ  െ2݉                                      (1)݊ݔଶሻݔ
 
Using MATLAB code, the first few Chebyshev polynomials from equation (1) are 
given below: ܶሺݔሻ ൌ 1 ,  ଵܶሺݔሻ ൌ ሻݔଶܶሺ   ݔ ൌ 2xଶ െ 1 ଷܶሺݔሻ ൌ ଷݔ4 െ ሻݔସܶሺ ݔ3 ൌ ସݔ8 െ ଶݔ8  1 ହܶሺݔሻ ൌ ହݔ16 െ ଷݔ20  ሻݔܶሺ ݔ5 ൌ ݔ32 െ ସݔ48  ଶݔ18 െ 1 
Now the first six Chebyshev polynomials over the interval ሾെ1, 1ሿ  are shown in Fig. 
1. 
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Figure 1. Graph of first 6 Chebyshev polynomials over the interval [-1, 1] 
 

3. Formulation of Integral Equation in Matrix Form 
We consider the Volterra integral equation (VIE) of the first kind [6] given by  න ݇ሺݔ, ݐሻ݀ݐሻ߮ሺݐ ൌ ݂ሺݔሻ,௫

 ܽ  ݔ  ܾ                                                                                              ሺ2ሻ 
where ߮ሺݔሻ is the unknown function, to be determined, ݇ሺݔ,  ሻ, the kernel, is aݐ
continuous or discontinuous and square integrable function, ݂ሺݔሻ being the known 
function satisfying ݂ሺܽሻ  ൌ  0. 
Now we use the technique of Galerkin method, [Lewis, 11], to find an approximate 
solution ߮ ሺݔሻ of ሺ2ሻ. For this, we assume that  ߮ ሺݔሻ ൌ  ܽ ܶሺݔሻ 

ୀ                                                                                                              ሺ3ሻ 

where ܶሺݔሻ are Chebyshev polynomials of degree ݅ defined in equation ሺ1ሻ and ܽ 
are unknown parameters, to be determined. Substituting ሺ3ሻ into ሺ2ሻ, we get 
  ܽ

ୀ න ݇ሺݔ, ሻݐ ܶሺݐሻ݀ݐ ൌ ݂ሺݔሻ,                     ܽ   ݔ ܾ                                             ሺ4ሻ௫
  

 
Then the Galerkin equations are obtained by multiplying both sides of ሺ4ሻ by ܶሺݔሻ and then integrating with respect to ݔ from ܽ ݐ ܾ,  we have  
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 ܽ
ୀ න න ,ݔሺܭ ሻݐ ܶሺݐሻ݀ݐ௫

 ൩ ܶሺݔሻ݀ݔ
 ൌ න ݂ሺݔሻ

 ܶሺݔሻ,                                                                                ሺ5ሻ 

                                          j=0, 1, 2, … n. 
Since in each equation, there are two integrals. The inner integrand of the left side is 
a function of  ݔ, and ݐ, and is integrated with respect to ݐ  from ܽ ݔ ݐ. As a result the 
outer integrand becomes a function of ݔ only and integration with respect to ݔ from ܽ ݐ ܾ  yields a constant. Thus for each ݆ ൌ 0, 1, 2, ڮ ڮ , ݊  we have a linear 
equation with ݊  1 unknowns ܽ, ݅ ൌ 0, 1, 2, ڮ ڮ , ݊.  
Finally ሺ5ሻ represents the system of ݊  1 linear equations in ݊  1  unknowns, are 
given by 
  ܽܭ, ൌ ; ܨ ݅, ݆ ൌ 0, 1, 2, … ݊

ୀ  

where ܭ, ൌ න න ,ݔሺܭ ሻݐ ܶሺݐሻ݀ݐ௫
 ൩ ܶሺݔሻ݀ݔ,

 ݅, ݆ ൌ 0, 1, 2, ڮ ڮ , ܨ                                             ݊ ൌ න ݂ሺݔሻ ܶሺݔሻ
 ݆,ݔ݀ ൌ 0, 1, 2, ڮ ڮ , ݊                                                                              

Now the unknown parameters ܽ are determined by solving the system of equations ሺ6ሻ and substituting these values of parameters in ሺ3ሻ, we get the approximate 
solution ߮ ሺݔሻ of the integral equation (2). 
Now, we consider the Volterra integral equation (VIE) of the second kind [6] given 
by ܿሺݔሻ߮ሺݔሻ  ߣ න ݇ሺݔ, ݐሻ݀ݐሻ߮ሺݐ ൌ ݂ሺݔሻ,௫

 ܽ  ݔ  ܾ                                                                                                 ሺ7ሻ 
where ߮ሺݔሻ is the unknown function to be determined, ݇ሺݔ,  ሻ, the kernel, is aݐ
continuous or discontinuous and square integrable function, ݂ሺݔሻ and ܿሺݔሻ being the 
known function and ߣ  is the constant. Then applying the same procedure as 
described above, we obtain   ܽܭ, ൌ ; ܨ  ݅, ݆ ൌ 0, 1, 2, … , ݊

ୀ  
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,ܭ ൌ න ܿሺݔሻ ܶሺݔሻ  ߣ න ,ݔሺܭ ሻݐ ܶሺݐሻ݀ݐ௫
 ൩ ܶሺݔሻ݀ݔ

  , ݅, ݆ ൌ 0, 1, … , ݊ 

where 
ܨ  ൌ  ݂ሺݔሻ ܶሺݔሻ ,ݔ݀ ݆ ൌ 0, 1, 2, … , ݊                                                        (8)                                                                                       
Now the unknown parameters ܽ are determined by solving the system of equations ሺ8ሻ and substituting these values of parameters in ሺ3ሻ, we get the approximate 
solution ߮ ሺݔሻ of the integral equation (7). The maximum absolute error for this 
formulation is defined by  
Maximum absolute error ൌ ሻݔሺ߮| ݔܽܯ െ ߮ሺݔሻ| 
4. Numerical Examples 

In this paper, we illustrate the above mentioned methods with the help of five 
numerical examples, which include second kind with regular kernels and weakly 
singular kernels, available in the existing literature [1- 5]. The computations, 
associated with the examples, are performed by MATLAB [13, 14]. The 
convergence of each linear Volterra integral equations is calculated by  

δϕϕ p)(~)(~
1 xxE nn −= +  

where )(~ xnϕ  denotes the approximate solution by the proposed method using nth 
degree polynomial approximation andδ  varies from 610−  for 10≥n . 
 
Example 1. Consider the Volterra integral equations of second kind 

     dttxtxx
x

)()()(
0

ϕϕ ∫ −+=                10 ≤≤ x                                             (9) 

The exact solution is ߮ሺݔሻ ൌ sin Results have been shown in Table 1 for .ݔ
10,3,1=n . Also Fig. 1 shows the exact and approximate solution for

103,1 andn = . The maximum absolute errors obtain in the order of 1310−  
for ݊ ൌ 10. 
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Figure 2. Exact solution and Numerical solution of example 1 for 10,3,1=n . 

 
Example 2. Consider the Volterra integral equations of second kind  

               dttex
x

x )()(
0

ϕϕ ∫+=                   10 ≤≤x                                           (10)                                 

The exact solution is )1()( xex x +=ϕ . Results have been shown in Table 1 for
3,2,1=n . Also Fig. 2 shows the exact and approximate solution for

32,1 andn = . The maximum absolute errors obtain in the order of 410−  for 

2=n  

 
Figure 3. Exact solution and Numerical solution of example 2 for 3,2,1=n  
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Table 1. Computed Absolute Error of examples 1 and 2. 

 Example 1 for n=10 Example 2 for n=3 ࢞ Exact 
Solutions 

Approx. 
Solutions 

Absolute 
Error 

Exact 
Solutions 

Approx. 
Solutions 

Absolute 
Error 

0.0 0.0000000   0.0000000   Inf-0.0000000 1.0000000  0.9945330 5.4670224E-003 

0.1 0.0998334   0.0998334 2.0508063E-012 1.2156880  1.2167930 9.0893339E-004 

0.2 0.1986693   0.1986693 8.3558996E-013 1.4656833  1.4679684 1.5590778E-003 

0.3 0.2955202   0.2955202 2.0756558E-013 1.7548164  1.7556648 4.8342409E-004 

0.4 0.3894183   0.3894183   2.4960310E-013 2.0885546  2.0874875 5.1090843E-004 

0.5 0.4794255   0.4794255   3.6565473E-013 2.4730819  2.4710422 8.2478268E-004 

0.6 0.5646425   0.5646425   1.5317015E-013 2.9153901  2.9139342 4.9939072E-004 

0.7 0.6442177   0.6442177   1.1908461E-013 3.4233796  3.4237690 1.1375748E-004 

0.8 0.7173561   0.7173561   2.5211375E-013 4.0059737  4.0081523 5.4383673E-004 

0.9 0.7833269   0.7833269   2.8431391E-013 4.6732459  4.6746893 3.0887023E-004 

1.0 0.8414710   0.8414710   8.8095244E-013 5.4365637  5.4309857 1.0260007E-003 

 
Example 3. Consider the Volterra integral equations of second kind 

xxdtttxx 3)(3)( =∫ −+ ϕϕ                               10 ≤≤ x                            (11) 

The exact solution is )1(3)( xx ex −−=ϕ . Using the formula derived in the 
previous section and solving the system ሺ8ሻ for ݊  2, we get the approximate 
solution is   )1(3)(~ xx ex −−=ϕ , which is the exact solution. On the contrary, the 

accuracy is found nearly the order of 10ିଷ for 3=n . 
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Figure 4. Exact solution and Numerical solution of example 3 for 3,2=n  

 
Example 4. Consider the weakly singular Volterra integral equations of second kind 

)2/1
6435
40961(7)(2/1)(

1)(
0

xxdtt
tx

x
x

−=∫
−

− ϕϕ  10 ≤≤ x                 (12) 

The exact solution is ߮ሺݔሻ ൌ  . Using the formula derived in the previous sectionݔ
and solving the system ሺ8ሻ for 4≥n , we get the approximate solution is ߮ ሺݔሻ ൌݔ, which is the exact solution. On the contrary, the accuracy is found nearly the 
order of 210−  for 4=n  in [4]. 

 
Figure 5. Exact solution and Numerical solution of example 4 for 4,2=n  
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Table 2. Computed Absolute Error of examples 3 and 4. 
 
 Example 3 for n=2 Example 4 for n=3࢞ Exact 

Solutions 
Approx. 
Solutions 

Absolute 
Error 

Exact 
Solutions 

Approx. 
Solutions 

Absolute 
Error 

0.0 0.0000000   0.0166303   Inf-0.0074113 0.0000000   0.0262542 Inf-0.0074113 
0.1 0.1062132   0.1074453   1.1600483E-002 0.0000001 -0.0088862 8.8863240E+004 
0.2 0.2258127   0.2193524   2.8608994E-002 0.0000128 -0.0067155  5.2565073E+002 
0.3 0.3603635   0.3523517   2.2232608E-002 0.0002187  0.0042983 1.8653831E+001 
0.4 0.5116124   0.5064431 1.0103823E-002 0.0016384  0.0101804   5.2136198E+000 
0.5 0.6815089   0.6816267   1.7285379E-004 0.0078125  0.0114491 4.6548286E-001 
0.6 0.8722292   0.8779024   6.5041788E-003 0.0279936  0.0231158 1.7424592E-001 
0.7 1.0862024   1.0952702   8.3481474E-003 0.0823543  0.0746853 9.3122623E-002 
0.8 1.3261396   1.3337302 5.7238171E-003 0.2097152  0.2101551   2.0977552E-003 
0.9 1.5950668   1.5932823   1.1187893E-003 0.4782969  0.4880164   2.0321071E-002 
1.0 1.8963617   1.8739265 1.1830649E-002 1.0000000  0.9812532   1.8746832E-002 
 
Example 5. Consider the weakly singular Volterra integral equations of second kind 

  2/1
15
162)(2/1)(

1)(
0

xxdtt
tx

x
x

+=∫
−

+ ϕϕ             10 ≤≤ x                (13) 

The exact solution is ߮ሺݔሻ ൌ  ଶ. Using the formula derived in the previous sectionݔ
and solving the system ሺ8ሻ for ݊  2, we get the approximate solution is ߮ ሺݔሻ ൌ  ,ଶݔ
which is the exact solution.  

 
Figure 6. Exact solution and Numerical solution of example 5 for 21 andn =  

5. Conclusions 
In this paper, a very simple and efficient Galerkin weighted residual method based 
on the Chebyshev polynomial basis has been developed to solve second kind and 
also singular Chebyshev integral equations. The numerical results obtained by the 
proposed method are in good agreement with the exact solutions. In this paper, we 
may note that the numerical solutions coincide with the exact solutions even a few 
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of the polynomials are used in the approximation, which are shown in example 1-5. 
We also notice that the accuracy increase with increase the number of polynomials 
in the approximations, which is shown in Table 1 and Table 2. We may realize that 
this method may be applied to solve other integral equations for the desired 
accuracy.  
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