Annals of Pure and Applied Mathematics Vol. 1, No. 2, 2012, 168-175 ISSN: 2279-087X (P), 2279-0888(online) Published on 16 November 2012 www.researchmathsci.org

Annals of

Pure and Applied <u>Mathematics</u>

Some Properties of 0-Distributive and 1-Distributive Lattices

Razia Sultana¹, Md. Ayub Ali² and A. S. A. Noor³

¹Department of Mathematics Govt. Titumir College, Dhaka, Bangladesh. Email: <u>raziabd.sultana@gmail.com</u> ²Department of Mathematics Jagannath University, Dhaka, Bangladesh. Email: <u>ayub_ju@yahoo.com</u> ³Department of ECE, East West University, Dhaka, Bangladesh. E mail: <u>noor@ewubd.edu</u>

Received 1 October 2012; accepted 22 October 2012

Abstract. In this paper we have included several properties of 0-distributive and 1distributive lattices. We have provided many characterizations of 1-distributive lattices. We also studied the 1-distributive lattices by using a prime Separation /;[theorem. We prove that a lattice L which is both 0 and 1- distributive, is complemented if and only if its prime ideals are unordered. We also show that a 0distributive complemented 0- distributive lattice is 0-modular if and only if it is weakly complemented. Finally we include some results on semi prime filters.

Keywords: 0-distributive lattice,1-distributive lattice, Annihilator ideal, Dual annihilator ideal.

AMS Mathematics Subject Classifications (2010): 06A12, 06A99, 06B10

1. Introduction

In generalizing the notion of pseudo complemented lattice, J. C. Varlet [5] introduced the notion of 0-distributive lattices. Then [1] have given several characterizations of these lattices. On the other hand, [3] have studied them in meet semi lattices. A lattice L with 0 is called a 0-distributive lattice if for all $a, b, c \in L$ with $a \wedge b = 0 = a \wedge c$ imply $a \wedge (b \vee c) = 0$. Of course every distributive lattice is 0-distributive. 0-distributive lattice L can be characterized by the fact that the set of all elements disjoint to $a \in L$ forms an ideal. So every pseudo complemented

lattice is 0-distributive. Similarly, a lattice L with 1 is called a 1-distributive lattice if for all $a,b,c \in L$ with $a \lor b = 1 = a \lor c$ imply $a \lor (b \land c) = 1$. Thus it can be characterized by the fact that the set of all elements whose join with the element a is equal to 1, forms a filter. Hence every dual pseudo complemented lattice is 1-distributive.

For a non-empty subset I of L, I is called a *down set (up set)* if for $a \in I$ and $x \leq a$ ($x \geq a$) imply $x \in I$. Moreover I is called an *ideal* if it is a down set and $a \lor b \in I$ for all $a, b \in L$. Similarly, F is called a *filter* of L if it is an up set and for $a, b \in F$, $a \land b \in F$. F is called a *maximal filter* if for any filter $M \supseteq F$ implies either M = F or M = L. A proper ideal (down set) I is called a *prime ideal (down set)* if for $a, b \in L, a \land b \in I$ imply either $a \in I$ or $b \in I$. Similarly, a proper filter (up set) Q is called a *prime filter (up set)* if $a \lor b \in Q$ ($a, b \in L$) implies either $a \in Q$ or $b \in Q$. A prime down set. It is very easy to check that F is a filter of L if and only if L-F is a prime ideal.

Using Zorn's lemma, [3] have proved the following result: Lemma 1. Every proper filter of a lattice with 0 is contained in a maximal filter.

Similarly we can prove the following results.

Lemma 2. Every proper ideal of a lattice with 1 is contained in a maximal ideal.

Following well known result is very easy to prove and we prefer to omit the proof.

Lemma 3. A subset I of a lattice L is an ideal if and only if L-I is a prime up set. Moreover, I is a prime ideal if and only if L-I is a prime filter.

Lemma 4. Let *L* be a lattice with, *F* be a filter of *L*. Then an ideal *M* of *L* disjoint from *F* is a maximal ideal disjoint to *F* if and only if for any element $a \notin M$ there exists an element $b \in M$ with $a \lor b \in F$.

Proof. Suppose *M* is maximal and disjoint to *F* and $a \notin M$. Suppose $a \lor b \notin F$ for all $b \in M$. Consider $M_1 = \{y \in S \mid y \le a \lor b, for some \ b \in M\}$. Clearly M_1 is an ideal disjoint to F and . for every $b \in M$ we have $b \le a \lor b$ implies $b \in M_1$. Thus $M \subseteq M_1$. Now $a \notin M$ but $a \in M_1$ imply $M \subset M_1$, which contradicts the maximality of *M*. Hence there must exist some $b \in M$ such that $a \lor b \in F$.

Conversely, if the ideal M is not a maximal ideal disjoint from F, then there exists a maximal ideal N such that $M \subset N$ and $N \cap F = \phi$. For any element $a \in N - M$ there exists an element $b \in M$ such that $a \lor b \in F$. Hence $a, b \in N$

Razia Sultana, Md. Ayub Ali and A. S. A. Noor

implies $a \lor b \in N$ and so $F \cap N \neq \phi$, which is a contradiction. Thus M must be a maximal ideal disjoint to F.

In a lattice *L* with 0, we define $A^{\perp} = \{x \in L \mid x \land a = 0 \text{ for all } a \in A\}$. This is clearly a down set. Following result gives some characterizations of 0-distributive lattices which is due to [1, 3, 5].

Theorem 5. Let L be a lattice with 0. Then the following conditions are equivalent.

- *(i) L* is 0-distributive.
- (ii) For all $a \in L$, $\{a\}^{\perp}$ is an ideal.
- (iii) For $A \subseteq L, A^{\perp}$ is an ideal.
- *(iv) Every maximal filter is prime .*
- (v) every minimal prime down set of L is a minimal prime ideal.
- (vi) Every proper filter of L is disjoint from a minimal prime ideal.
- (vii) Each non-zero element $a \in L$ is contained in a prime filter.
- (viii) I(L), the lattice of all ideals of L is pseudo complemented.
- (ix) I(L) is 0-distributive.

If $\{a\}^{\perp}$ is an ideal, then we denote it by $(a]^*$. Similarly if A^{\perp} is an ideal,

then we denote it by A^* .

Now suppose L is a lattice with 1. For a subset A of L, we

define $A^{\perp^{d}} = \{x \in L \mid x \lor a = 1 \text{ for all } a \in A\}$. If L is distributive, then $A^{\perp^{d}}$ is a filter. For $a \in L$, $\{a\}^{\perp^{d}} = \{x \in L : x \lor a = 1\}$. Moreover, $A^{\perp^{d}} = \bigcap_{a \in A} \{a\}^{\perp^{d}}$. Now we include some characterizations of a 1-distributive lattices which are simply dual to Theorem 5.

Theorem 6. Let *L* be a lattice with 1. Then the following conditions are equivalent. (i) *L* is 1-distributive.

- (ii) A^{\perp^d} is a *filter* for all $A \subseteq L$.
- (iii) $\{a\}^{\perp^d}$ is a *filter* for $a \in L$.
- (iv) Every maximal ideal is prime.
- (v) F(L), the lattice of all filters is pseudo complemented.
- (vi) F(L) is 0-distributive.

Now we include few more characterizations of 1-distributive lattices.

Theorem 7. Let *L* be a lattice with 1. Then the following conditions are equivalent.

- (i) *L* is 1-distributive.
- (ii) Every maximal ideal is prime
- (iii) Every minimal prime up set of L is a minimal prime filter.

(iv) Every proper ideal of L is disjoint from a minimal prime filter. (v) Each $a \neq 1$ of L is contained in a prime ideal.

Proof. (i) \Rightarrow (ii) follows from theorem 6.

(ii) \Rightarrow (iii). Let F be a minimal prime up set. Then by lemma 3, L - F is a maximal ideal. Thus by (ii), L - F is a prime (maximal) ideal. Hence by lemma 3, F is a minimal prime filter.

(iii) \Rightarrow (iv). Let *I* be a proper ideal of *L*. Then by corollary 2, *I* is contained in a maximal ideal *M*. But by lemma 3, L - M is a minimal prime up set. Hence by (iii) L - M is a minimal prime filter disjoint from *I*.

(iv) \Rightarrow (v). Since $a \neq 1$, so (a] is a proper ideal. So by (iv) there exists a minimal prime filter F disjoint from (a]. Thus (a] is contained in L - I, which is a prime ideal by Lemma 3.

(v) \Rightarrow (i). Let $a, b, c \in L$ with $a \lor b = 1 = a \lor c$. If $a \lor (b \land c) \neq 1$, then there is a prime ideal **P** such that $a \lor (b \land c) \in P$. This implies $a \in P$ and $b \land c \in P$. Since *P* is prime, so $b \in P$ or $c \in P$. Thus either $a \lor b \in P$ or $a \lor c \in P$. This implies $1 \in P$, which is a contradiction. Therefore, $a \lor (b \land c) = 1$, and so *L* is 1-distributive.

Prime separation theorem is a well known result in distributive lattices. Now we give some kind of generalization of that result for 1-distributive lattices in terms of dual annihilators.

Theorem 8. Let *L* be a lattice with 1. *L* is 1-distributive if and only if for any ideal *I* disjoint with $\{x\}^{\perp^d}$ ($x \in L$), there exists a prime ideal containing *I* and disjoint with $\{x\}^{\perp^d}$.

Proof. Let *L* be 1-distributive. Consider the set F of all ideals of *L* containing I and disjoint with $\{x\}^{\perp^d}$. Clearly F is non-empty as $I \in F$. Then using Zorn's lemma, there exists a maximal element *P* in F. Now we claim that $x \in P$. If not, then $P \lor (x] \supset P$. So by the maximality of *P*, $\{P \lor (x]\} \cap \{x\}^{\perp^d} \neq \phi$. Then there exists $t \in P \lor (x]$ and $t \in \{x\}^{\perp^d}$. Then $t \le p \lor x$ for some that $P \cap \{x\}^{\perp^d} = \phi \ p \in P$ and $t \lor x = 1$. Thus, $1 = t \lor x \le p \lor x$, and so $p \lor x = 1$. This implies $p \in \{x\}^{\perp^d}$, which contradicts the fact. Therefore $x \in P$. Finally, let $z \notin P$. Then $\{P \lor (z]\} \cap \{x\}^{\perp^d} \neq \phi$. Let $y \in \{P \lor (z]\} \cap \{x\}^{\perp^d}$. Then $y \lor x = 1$ and $y \le p \lor z$ for some $p \in P$. Thus $1 = y \lor x \le p \lor x \lor z$, which

Razia Sultana, Md. Ayub Ali and A. S. A. Noor

implies $p \lor x \lor z = 1$. Now $x \in P$ implies $p \lor x \in P$, and $z \lor (p \lor x) = 1$. Hence by Lemma 4, P is a maximal ideal of L, and so by Theorem 6, P is prime.

Conversely, let $x \lor y = 1 = x \lor z$. If $x \lor (y \land z) \neq 1$. Then $y \land z \notin \{x\}^{\perp^d}$. Thus $[(y \lor z]) \cap \{x\}^{\perp^d} = \phi$. So, there exists a prime ideal P containing] and disjoint with $\{x\}^{\perp^d}$. As $y, z \in \{x\}^{\perp^d}$, so $y, z \notin P$. Thus $y \land z \notin P$, as P is prime. This implies $[(y \lor z)] \not\subset P$, a contradiction. Hence $x \lor (y \land z) = 1$ and so L is 1-distributive.

Let L be a lattice with 0 and 1. L is called a *Boolean lattice* if it is distributive and complemented. By [2, Theorem 22, p-76], we know that a bounded lattice is Boolean if and only if its prime ideals are unordered. Now we generalize this result for a non distributive bounded lattice.

Theorem 9. Suppose L is a bounded 0-distributive and 1-distributive lattice. Then L is complemented if and only if all the prime ideals of L are unordered.

Proof. Suppose *L* is complemented. Suppose the prime ideals are not unordered. Then there exist prime ideals P,Q such that $P \subset Q$. Let $a \in Q - P$. Since *L* is complemented, so there exists $a' \in L$ such that $a \land a' = 0$ and $a \lor a' = 0$. Now $a \land a' = 0 \in P$ and $a \notin P$ imply $a' \in P \subset Q$. This implies $a \lor a' = 1 \in P$, which is a contradiction. Therefore prime ideals are unordered.

Conversely, let the prime ideals are unordered. If L is not complemented then there exists $a \in L$ which has no complement. Set $D = \{x \in L : a \lor x = 1\}$. Since L is 1-distributive, so D is a filter. Set $D_1 = D \lor [a]$. Now $0 \notin D_1$. For if $0 \in D_1$, then $0 \ge d \land a$ for some $d \in D$. This implies d is the complement of a, which gives a contradiction. Then by Corollary 2, there exists a maximal filter $F \supseteq D_1$. Since L is

0-distributive, so by Theorem 5, F is prime. Thus P = L - F is a prime ideal disjoint to D_1 . Note that $l \notin (a] \lor P$. For otherwise, $1 = a \lor p$ or some $p \in P$, contradicting $P \cap D = \varphi$. Since L is 1-distributive, so by Theorem 7 (v), there exists a prime ideal Q containing $(a] \lor P$. It follows that, which is impossible as the prime ideals are unordered.

A lattice L with 0 is called 0-modular if for all $x, y, z \in L$ with $z \le x$ and $y \land z = 0$ imply $x \land (y \lor z) = z$. By [5] we know that a lattice is 0-modular if and only if it does not contain a pentagonal sublattice including 0. Of course every modular lattice with 0 is 0-modular.

A lattice *L* with 0 is called *weakly complemented* if for any pair *a*,*b* of distinct elements of *L* there exists an element $c \in L$ disjoint from one of these elements but not from the other.

We conclude the paper with the following result.

Theorem 10. Let *L* be a complemented and 0-distributive lattice. Then the following conditions are equivalent.

- *i) L* is 0-modular
- *ii) L is unicomplemented*
- *iii) L* is Boolean
- *iv) L is weakly complemented*

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Let L be not unicomplemented. Then there exists $a \in L$ which has two complements b and c. Then $a \wedge b = a \wedge c = 0$ and $a \vee b = a \vee c = 1$. If b and c are not comparable, then $\{0, a, b, c, l\}$ forms a diamond, which implies L is not 0-distributive and this gives a contradiction. Again if b < c, then $\{0, a, b, c, l\}$ forms a pentagonal sublattice which contradicts the 0-modularity of L. Therefore L must be unicomplemented.

(ii) \Rightarrow (iii) holds by [5, Corollary 2.3].

 $(iii) \Rightarrow (i)$ is trivial as every Boolean lattice is distributive, and so it is 0-modular.

(iii) \Leftrightarrow (iv). If L is Boolean, then it is sectionally complemented, and so it is weakly complemented. On the other hand, if L is weakly complemented, then by [5, Corollary 2.2], L is Boolean.

Theorem 11. Let *L* be a 0-distributive lattice and [0, x] is 1-distributive for each $x \in L$. Then the following conditions are equivalent: (i) [0, x] is complemented for each $x \in L$. (ii) $(x] \vee (x]^* = L$ for each $x \in L$. (iii) The prime ideals of [0, x] are unordered. **Proof.** (i) \Rightarrow (ii) Let $x \in L$ choose any $y \in L$

Now, $0 \le y \land x \le y$ since [0, y] is complemented.

So, there exists $t \in [0, y]$ such that $y \land x \land t = 0, (y \land x) \lor t = y$ which implies

 $y \wedge t \wedge x = 0$ and so $t \wedge x = 0$. This implies $t \in (x]^*$.

Thus, $y = (y \land x) \lor t \in (x] \lor (x]^*$.

Hence $(x] \lor (x]^* = L$.

(ii)⇒(iii)

Razia Sultana, Md. Ayub Ali and A. S. A. Noor

Suppose (ii) holds. Let the ideals of [0, x] for some $x \in L$ are not unordered. Then there exists prime ideals P_1, Q_1 of [0, x] such that $P_1 \subset Q_1$ then there exists $y \in Q_1 - P_1$

Since Q_1 is prime, so, $x \notin Q_1$.

By (ii) $(y] \lor (y]^* = L$. Then $x \in (y] \lor (y]^*$. This implies $x \le p \lor q$ for some $p \in (y], q \in (y]^*$ so $q \land y = 0 \in P$. But $y \notin P$. So $q \in P$ as P is prime and so $q \in Q$. Also, $p \le y \in Q$.

Hence $x \le p \lor q$ implies $x \in Q$ which gives a contradiction. So (iii) holds.

(iii) \Rightarrow (i) follows from Theorem 9.

Semi prime filter.

Recently Y. Rav in [4] have given the concept of semi prime filter to generalize the idea of 1-distributive lattices. Let F be a filter of a lattice $L \cdot F$ is called a semi prime filter if for all $x, y, z \in L, x \lor y \in F$ and $x \lor z \in F$ imply $x \lor (y \land z) \in F$. Every filter of a distributive lattice is semi prime. Moreover, every prime filter is semi prime. In any lattice L, L itself is a semi prime filter.

In pentagonal lattice $\{0, a, b, c, 1; a < b, a \land c = b \land c = 0, a \lor c = b \lor c = 1\}$ all the ideals except [b) are semi prime. Again in the diamond lattice $\{0, a, b, c, 1; a \land b = b \land c = a \land c = 0, a \lor b = b \lor c = a \lor c = 1\}$ all the filters except L are not semi prime.

Theorem 12. Let *L* be a lattice with 1. For any $A \subseteq L$, A^{\perp^d} is a semi-prime filter if and only if *L* is 1-distributive.

Proof. By Theorem-6 we need only to prove that in a 1-distributive lattice A^{\perp^d} is semi prime. Let $x \lor y \in A^{\perp^d}$ and $x \lor z \in A^{\perp^d}$. Then $x \lor y \lor a = 1 = x \lor z \lor a \forall a \in A$. Since *L* is 1-distributive, so $(x \lor a) \lor (y \land z) = 1$.

Thus $[x \lor (y \land z)] \lor a = 1$ for each $a \in A$. This implies $x \lor (y \land z) \in A^{\perp^d}$, and so A^{\perp^d} is 1-distributive.

Theorem13. Let *L* be a lattice with *l*. Then any maximal ideal of *L* disjoint from a semi prime filter is prime.

Proof: Let *F* be a semi prime filter of *L*. Suppose *P* is a maximal ideal such that $F \cap P = \phi$. Then L - P is a maximal prime up set containing *F*. Suppose $x, y \in L - P$. Then by Lemma 4, there exist $a, b \in P$ such that $a \lor x \in F, b \lor y \in F$. This implies $a \lor b \lor x \in F$ and $a \lor b \lor y \in F$. Since *F* is

semi prime, so $(a \lor b) \lor (x \land y) \in F \subseteq L - P$. Since L - P is prime and $a \lor b \in P$, so $x \land y \in L - P$.

Therefore, L - P is a filter and so P is a prime ideal.

We conclude the paper with the following separation theorem.

Theorem 14. Let *L* be a lattice with *I* and *I* be a ideal such that $I \cap A^{\perp d} = \phi$ for some non empty subset *A* of *L*. Then *L* is *I*-distributive if and only if there exists a prime ideal *P* containing *I* such that $P \cap A^{\perp d} = \phi$.

REFERENCES

- 1. P. Balasubramani and P. V. Venkatanarasimhan, Characterizations of the 0-Distributiv Lattices, *Indian J. Pure Appl. Math.*, 32(3) (2001) 315-324.
- 2. G. Gratzer, *Lattice Theory: First concepts and distributive lattices*, Freeman, San Francisco, 1971.
- 3. Y. S. Powar and N. K.Thakare, 0-Distributive semilattices, *Canad. Math. Bull.* 21(4) (1978) 469-475.
- 4. Y. Rav, Semi prime ideals in general lattices, *Journal of Pure and Applied Algebra*, 56 (1989) 105-118.
- 5. 5. J. C. Varlet, A generalization of the notion of pseudo-complementedness, *Bull. Soc. Sci. Liege*, 37 (1968) 149-158.