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Abstract. New degree based graph indices called Kulli-Basava indices were introduced 
and studied their mathematical and chemical properties which have good response with 
mean isomer degeneracy. In this study, we introduce the sum connectivity Kulli-Basava 
index, product connectivity Kulli-Basava index, atom bond connectivity Kulli-Basava 
index and geometric-arithmetic Kulli-Basava index of a graph and compute exact 
formulas for some special graphs. 
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1. Introduction 
Let G be a finite, simple connected graph with vertex set V(G) and edge set E(G). The 
degree of dG(v) of a vertex v is the number of vertices adjacent to v. The degree of an 
edge e = uv in G is defined by dG(e) = dG(u) + dG(v) – 2. The open neighborhood NG(v) of 
a vertex v is the set of all vertices adjacent to v. The edge neighborhood of a vertex v is 
the set of all edges incident to v and it is denoted by Ne(v). Let Se(v) denote the sum of the 
degrees of all edges incident to a vertex v. We refer to [1] for undefined term and 
notation. 
 A topological index is a numerical parameter mathematically derived from the 
graph structure. Several topological indices have been considered in Theoretical 
Chemistry, see [2, 3]. 
 The first and second Kulli-Basava indices were introduced in [4], defined as 
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 The first and second hyper Kulli-Basava indices were introduced by Kulli [5], 
defined as  
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 We introduce the sum connectivity Kulli-Basava index, product connectivity 
Kulli-Basava index, atom bond connectivity Kulli-Basava index, geometric-arithmetic 
Kulli-Basava index and reciprocal Kulli-Basava index of a graph, defined as 
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             Recently, some connectivity indices were studied [6,7,8,9,10]. In this paper, 

some connectivity Kulli-Basava indices for some graphs were computed. 

 
2. Regular graphs 
A graph G is r-regular if the degree of every vertex of G is r. 
 
Theorem 1. Let G be an r-regular graph with n vertices and m edges. Then  
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Proof: Let G be an r-regular graph with n vertices and m edges. Then Se(u)=2r(r – 1) for 
any vertex u∈V(G). Therefore 
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Corollary 1.1. If Cn is a cycle with n vertices, then 
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Corollary 1.2. If Kn is a complete graph with n vertices, then 
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3. Results for wheel graphs 
A wheel Wn is the join of Cn and K1. Clearly Wn has n+1 vertices and 2n edges. A wheel 
Wn is shown in Figure 1. The vertices Cn are called rim vertices and the vertex of K1 is 
called apex. 

 
Figure 1: Wheel Wn 

 
Lemma 2. Let Wn be a wheel with 2n edges, n≥3. Then 
 E1={uv ∈ E(Wn)| Se(u) = n(n+1), Se(v) = n+9},  |E1| = n. 
 E2={uv ∈ E(Wn)| Se(u) = Se(v) = n+9},  |E2| = n. 
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Theorem 3. Let Wn be a wheel with n+1 vertices and 2n edges, n ≥ 3. Then  
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Proof: Let Wn be a wheel with n+1 vertices and 2n edges. By using definitions and 
Lemma 2, we obtain 
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4. Results for gear graphs 
A gear graph is obtained from Wn by adding a vertex between each pair of adjacent rim 
vertices and it is denoted by Gn. Clearly Gn has 2n+1 vertices and 3n edges. A graph Gn is 
shown in Figure 2. 

 
Figure 2: A gear graph Gn 

 
Lemma 4. Let Gn be a gear graph with 2n+1 vertices and 3n edges. Then Gn has two 
types of edges as follows: 
 E1={uv ∈ E(Gn)| Se(u) = n (n+1), Se(v) = n+7},  | E1 | = n. 
 E2={uv ∈ E(Gn)| Se(u) = n+7 , Se(v) = 6},  | E2 | = 2n. 
 
Theorem 5. Let Gn be a gear graph with 2n + 1 vertices 3n edges. Then  
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Proof: Let Gn be a gear graph with 2n+1 vertices and 3n edges. By using definitions and 
Lemma 4, we obtain 
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5. Results for helm graphs 
A helm graph Hn is a graph obtained from Wn by attaching an end edge to each rim 
vertex. Clearly Hn has 2n+1 vertices and 3n edges. A graph Hn is depicted in Figure 3. 

 
Figure 3: A graph Hn 

 
Lemma 6. If Hn is a helm graph with 2n+1 vertices and 3n edges, then Hn has three types 
of edges as 
 E1={uv ∈ E(Hn)| Se(u) = n(n+2), Se(v) = n + 17}  | E1 | = n. 
 E2={uv ∈ E(Hn)| Se(u) = Se(v) = n + 17},  | E2 | = n. 
 E3={uv ∈ E(Hn)| Se(u) = n +17, Se(v) = 3}  | E3 | = n. 
 
Theorem 7. If Hn is a helm graph with 2n+1 vertices and 3n edges, then  
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Proof: Let Hn be a helm graph with 2n+1 vertices and 3n edges. Then by using 
definitions and Lemma 6, we deduce  
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