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Abstract. In this article, we discuss the diophantine equation  ∑
�

��

�
���  = 1  in distinct 

positive integers.  Old and new solutions with odd and even integers are exhibited, and 

related problems are mentioned.  In this context, we investigate the equation  ∑
�

��

�
���  = 2.  

We construct and demonstrate solutions with odd and even integers, and also with even 

integers only.  We also consider the equation   ∑
�

��

�
���  = 3,  and exhibit a solution with 

odd and even integers.  All the solutions are derived without the aid of a computer. 
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1.   On distinct unit fractions whose sum equals 1 
Hereafter, all mentioned integers are positive integers.  A fraction  

�

	
  whose numerator is  

a = 1  is called a unit fraction (in short  uf). 
 
       The Diophantine equation in integers 
 

�


�
  +  

�


�
  +  ⋯  +  

�


�
  = 1                 1 < x1 < x2 <  ⋯  < xk                              (1) 

 
has often been mentioned in the literature. Many authors have considered equation  (1).  
Among them are the late Erdős,  Graham,  Sierpiński, Barbeau, Johnson,  Burshtein and 
others. Many questions revolve about equation  (1).  Questions such as: does  (1)  have a 
solution for every  x1,  a solution with odd   xi  only,  with even  xi  only, or when  xi  ∤ xj  
for  i ≠ j,  and also other ones.  We mention that  (1)  is connected to the topic of 
Covering Systems, and analogous questions have been asked by Erdős  on the moduli of 
Covering Systems. 
 
       From  [11]  it is known that  (1)  has a solution for each value  x1.  In  [5],  Burshtein 
proved that exactly five solutions  B1 - B5  of  (1)  exist when  x1 = 3,  all  xi  are odd  and  
k = 9. Sierpiński  [16]  exhibited a solution with  x1 = 3, xi ∈ 3�5�7�, k = 11  and  x11 = 
945.  Burshtein  [8]  improved this solution by providing a solution of the same nature, 



Nechemia Burshtein 

14 
 

but with x11 = 135.  He also showed  [4]  when  xi ∈ 3�5�7�  that  (1)  has exactly  17  
solutions. Two solutions with  x1 = 5,  all  xi  are odd and  k = 21, 23 are demonstrated in  
[7].  Burshtein  [9]  and  Graham  [12]  independently  raised  the  question if  (1)  has  a  
solution  when xi ∤ xj  for  i ≠ j. Burshtein  [8],  the first to provide such a solution to  (1),  
received  a  reward  of   $10  offered  by  Erdős  [9].  More  such  solutions  were  later  
obtained  by  Barbeau,  Burshtein  and  Johnson  in  [1, 2, 3, 6, 7, 15].  The results of 
Burshtein in [3, 6, 8]  are also cited in  [13]. 
 
 
       In our discussion, we shall use the identity 
 

�

�
 =  

�

���
 +  

�

�(���)
 ,                    n  ≥ 1,   m  ≥ 1.                                    (2) 

 
       The simplest and most trivial solution of  (1)  is  
 

�

�
  +  

�

�
  +  

�

�
  =  1. 

 

By  (2),  
�

�
 =  

�

 
  +  

�

��
 ,  and hence the set    E =  { 2,  4,  6,  12 }  is the smallest possible 

set of even integers  xi  when  x1 =  2.  Another solution of  (1)  with   x1 = 4,  xi  are even,  

k = 14  and   ∑
�

��

� 
���  = 1  is given by the set  S. 

 
S =  { 4,  6,  8,  10,  12,  16,  20,  24,  30,  40,  48,  50,  60,  200 }. 

 
The set  S  is constructed as follows. Consider the three sets  U1, U2, U3: 
 

U1  =  {1},           U2  =  {2,  3,  6},           U3  =  {4,  5,  20}, 
 

where    
�

 
  +  

�

!
  +  

�

�"
  =  

�

�
 .  Then 

 
�

�
 (

�

�
  +  

�

�
  + 

�

�
 )  =  

�

 
  +  

�

�
  +  

�

��
  =  

�

�
,                                                                               3 uf. 
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#
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,                                                     4 uf. 
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 + 
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!"
 + 
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�"
 +  

�

�""
 =  

�.!

�"
  =  

�

 
 ,     7 uf. 

 
       The  14  even integers  in  S  have been determined, and the sum of their reciprocals 
is  1. The  LCM of  the  integers in S is  LCM(S) = 2 ∙ 3 ∙ 5�.  Hence, when  x1 = 4,  the 
values k = 14  and  x14 = 200  are the smallest best possible values, and are attained in  S.  
The sets  E  and  S  were cited in  [7]. 
 
 
2. On distinct unit fractions whose sum equals 2 
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In this section, we consider solutions to the equation  ∑
�

��

�
���  = 2.  For a set which 

consists of odd and even integers, we demonstrate solutions when  x1 = 2  and when  x1 = 
3.  For a set consisting of even integers only, a solution with  x1 = 2  is exhibited.   
 
Theorem  2.1.   If x1 = 2, then  there  exist  at  least two sets  K,  N  of odd and even 

integers such that  k  = 12  and  ∑
�

��

��
���  = 2.     

 
Proof:   Consider the following six sums  
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�
 + 

�

�
 + 

�

�
 = 1,       
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�

�
 ,      
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�
 ,      
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#
 + 

�

� 
 = 

�

�
 ,       

�

(
 + 

�

�#
 = 

�

�
 ,      

�

�"
 + 

�

�!
 = 

�

�
 

 
obtained by using identity (2).   
The above odd and even denominators then yield the two sets of integers K,  N 
 

K  =  { 2,  3,  4,  5,  6,  8,  9,  10,  15,  18,  20,  24 }, 
 

                         N  =  { 2,  3,  4,  5,  6,  7,  8,  9,  18,  20,  24,  42 }, 
 

where   x1 = 2,  k = 12,  ∑
�

��

��
���  = 2,  LCM(K)  =  2� ∙ 3� ∙ 5  =  360,  LCM(N)  = 2� ∙ 3� ∙

5 ∙ 7  =  2520. 
 
       This completes our proof.                                                                                      □ 
 
Remark  2.1.   The set  N  clearly implies that the sum  2  cannot be achieved with  9  uf  

composed of the first  9  consecutive integers  xi.  Therefore, in any solution of  ∑
�

��

�
���  = 

2  it follows that  k > 9.  When  x1 = 2,  and without a formal proof, we may presume that   
∑  

�

��
 ��

���  ≠  2.  If our presumption is indeed true, it will then follow that  k = 12  is the 

minimal value for  ∑
�

��

�
���  = 2  as in  K,  N. Moreover, one could easily verify that the 

sum  2  can be obtained only when the number M(p)  of distinct primes in  LCM(V)  of 
any set  V  satisfies M(p)  ≥  3.  The minimal value  M(p)  =  3  is actually attained in  
LCM(K)  of the set  K.   
 
Theorem  2.2.   If  x1 = 3,  then there exist at least five sets of odd and even integers such 

that  k = 23  and  ∑
�

��

��
���  = 2. 

 
Proof:   The construction of the first such set  H  is as follows.  Consider the two sets   
 

B1  =  { 3,  5,  7,  9,  11,  15,  21,  231,  315 },                                      k = 9,     ∑
�

��

(
���  = 1, 

 
and the previously mentioned set  S 
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S  =  { 4,  6,  8,  10,  12,  16,  20,  24,  30,  40,  48,  50,  60,  200 },     k = 14,   ∑
�

��

� 
���  = 1. 

 
The two sets differ in their nature. The first set consists of only odd integers, whereas the 
second set consists of even integers only.  Therefore, the combined set  H  of  B1  and  S  
whose integers are  arranged in ascending order  
 
H  = {3, 4, 5, 6,  7, 8, 9, 10, 11, 12, 15, 16, 20, 21, 24, 30, 40, 48, 50, 60, 200,  231,  315}   
 

satisfies the conditions  x1 = 3,  k = 23   and   ∑
�

��

��
���  = 2.   

 
       Four more distinct  sets  B2  - B5  exist,  each of which is composed of odd integers 

only, where  x1 = 3,  k = 9  and  ∑
�

��

(
���  = 1.  Hence, the union of each of the sets  B2  - B5  

with the set  S  yields a set of the same nature as H,  in which  x1 = 3,  k = 23   and   
∑

�

��

��
���  = 2.   

 
       The assertion then follows.                                                                                □ 
 
Theorem  2.3.   If   x1 = 2,  then  there  exists  a  set   T   all  of  whose  integers  are  

even, k = 46  and   ∑
�

��

 �
���   = 2. 

 
Proof:   We mention again the former two sets  S  and  B1. 
The set S of even integers is 
 

S  =  {4, 6,  8,  10,  12, 16, 20, 24, 30, 40, 48, 50, 60, 200 },   k = 14,             ∑
�

��

� 
���  = 1.  

In the set 
 

B1  =  { 3,  5,  7,  9,  11,  15,  21,  231,  315 },                         k = 9,               ∑
�

��

(
���  = 1, 

 
we multiply each  xi  by  2.  Then  yi  =  2xi,  and we obtain a new set Q of even integers   
 

Q  =  { 6,  10,  14,  18,  22,  30,  42,  462,  630 },                    k = 9,                ∑
�

)�

(
���  = 

�

�
. 

The   two   sets   Q,  S   have   three   overlaps,   namely   the   integers   6, 10, 30.   The 

sum  
�

�
  +  

�

�"
  +  

�

�"
   =  

�

�"
 .  Using the primes  13, 17, 19,  and utilizing identity  (2),  we 

construct the following three sets   M1,  M2,  M3   of even integers, each of which occurs 
once and only once.  
 
       The respective three sets  M1,  M2,  M3  are: 
 

M1  =  { 26,  28,  66,  130,  364,  4290 },                                       k = 6,        ∑
�

��

�
���   =  

�

�"
 .                                           
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M2  =  {34,  36,  44,  86,  176,  612,  1496,  2992,  7310},            k = 9,        ∑
�

��

(
���   =  

�

�" 
. 

 

M3  =  {32,  38,  76,  96,  98,  152,  608,  3724,  9120,  18620},   k = 10,     ∑
�

��

�"
���   =  

�

�"
. 

 
Omitting  the  three integers  6, 10, 30  from  the  set  S,  and  instead  inserting   the  25  
integers  in  M1,  M2,  M3  yields a new set  G  of  36  even integers, the sum of whose 
reciprocals equals 1.   
 
G  =  { 4,  8,  12,  16,  20,  24,  26,  28,  32,  34,  36,  38,  40,  44,  48,  50,  60,  66,  76,  

86,  96,  98,  130,  152,  176,  200,  364,  608,  612,  1496,  2992,  3724,  4290,  
7310,  9120,  18620 }. 

 
       The set   T  consists of:  the integer 2,  the  36  integers in  G,  and the  9  integers in  
Q.  The  46  integers sequenced in ascending order are distinct, even, and the sum of their 
reciprocals is equal to  2. 
 
T  =  { 2,  4,  6,  8,  10,  12,  14,  16,  18,  20,  22,  24,  26,  28,  30,  32,  34,  36,  38,  40,  

42,  44,  48,   50,  60,  66,  76,  86,  96,  98,  130,  152,  176,  200,  364,  462,  608,  
612,  630,  1496,  2992,  3724,  4290,  7310,  9120,  18620 }.  

 
       The set was achieved without the use of a computer. 
 
       This concludes the proof of Theorem  2.3.                                                            □ 
 
3.   On distinct unit fractions whose sum equals 3 
In Theorem 3.1, we demonstrate a set of distinct integers the sum of whose reciprocals is 
equal to  3. 
 
Theorem  3.1.   If x1 = 2, then there exists a set  D  of odd and even integers such that  k 

= 69 and   ∑
�

��

�(
���  = 3.   

 
Proof:   We shall demonstrate three sets A, B, C all of whose integers are distinct.  The 
union of  A, B, C  is  the  set  D  of  69  integers the sum of whose reciprocals equals  3. 
 

       Since  
�

#
 = 

�

��
 + 

�

�"
 + 

�

��"
 ,  it follows that 

�

�
 + 

�

 
 + 

�

#
  =  

�

�
 + 

�

 
 + 

�

#
 + (

�

��
 + 

�

�"
 + 

�

��"
)  =  1. 

Hence,  the set  A  is 
 

A = {2, 4, 8, 12, 30, 120},                                                                                   ∑
�

��

�
���  = 1. 

 

       Without the aid of a computer, Burshtein  [2]  exhibited a solution of  ∑
�

��

!�
���  = 1  in 

which xi  are distinct,  and  xi ∤ xj  for  i ≠ j.  This solution is the following set  B. 
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B = {6,  10,  14,  15,  21,  22,  26,  33,  34,  35,  38,  39,  46,  51,  55,  57,  58,  62,  65,  
69,  77,  82,  87,  91,  93,  95,  106,  119,  122,  123,  133,  155,  159,  161,  183,  
187,  202,  203,  213,  265,  287, 299,  319,  355,  453,  497,  505,  583,  671,  

1057,  1313,  1963},                                                                                  ∑
�

��

!�
���  = 1.   

       The set  B1  =  { 3,  5,  7,  9,  11,  15,  21,  231,  315 },  and the set  B  have two 
overlaps,  the two integers  15,  21.  From  (2)  we have   

�

�!
  =  

�

��
 +  

�

�!⋅��
 ,                     

�

��
  =  

�

� 
  +  

�

��⋅� 
  =  

�

� 
  +  

�

'⋅� 
 .   

Substituting for  15,  21  in  B1  the above four integers  16, 240, 24, 168  yields the set  C 
 

C = {3,  5,  7,  9,  11,  16,  24,  168,  231,  240,  315},                                       ∑
�

��

��
���  = 1.                                          

 
       The  69  distinct integers in set D appear in ascending order, and are the union of the  
69  integers in  A, B, C. 
 
D= {2,  3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  14,  15,  16,  21,  22,  24,  26,  30,  33,  34,  

35,  38,  39,  46, 51,  55,  57,   58, 62,  65.  69,  77,  82,  87,  91,  93,  95,  106,  119,  
120,  122,  123,  133,  155,  159,  161,  168,  183,  187,  202,  203,  213,  231,  240,  
265,  287,  299, 315, 319, 355, 453, 497, 505, 583, 671, 1057, 1313, 1963},  

                                                                                                                             ∑
�

��

�(
���  = 3.  

       The proof of Theorem  3.1  is complete.                                                           □ 
 
Final remark.   Suppose that  1 < x1 < x2 <  ⋯ < xk  are integers and N > 3  is a fixed 

integer.  Then, a sufficient condition for a solution of  ∑
�

��

�
���  = N  is that there exist  N  

sets each of which consists of distinct integers where the sum of the reciprocals of each 
such set is equal to  1,  and  the  existing overlaps between the sets are corrected by using 
identity  (2). 
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