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Abstract. In this article, we discuss the diophantine eqmat@{-;lxii =1 in distinct
positive integers. Old and new solutions with @hdl even integers are exhibited, and
related problems are mentioned. In this contegtjrwestigate the equatioﬁ{-;lxii =2.
We construct and demonstrate solutions with oddesaoh integers, and also with even
integers only. We also consider the equatiQﬁ‘:lXii = 3, and exhibit a solution with
odd and even integers\ll the solutions are derived without the aid afanputer.
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1. Ondistinct unit fractionswhose sum equals 1
Hereafter, all mentioned integers are positivegats. A fraction% whose numerator is
a=1 is called a unit fraction (in short uf).

The Diophantine equation in integers
i+i+...+i:1 1§<1<X2< cen < Xy (1)

has often been mentioned in the literature. Martii@as have considered equation (1).
Among them are the late Ergl Graham, Sierfiski, Barbeau, Johnson, Burshtein and
others. Many questions revolve about equation Qestions such as: does (1) have a
solution for everyx,;, a solution with oddx only, with evenx only, or whenx; { X

for i #j, and also other ones. We mention that (1) oisnected to the topic of
Covering Systems, and analogous questions haveasied by Erés on the moduli of
Covering Systems.

From [11] itis known that (1) has awt@n for each valuex;. In [5], Burshtein
proved that exactly five solutionB; - Bs of (1) exist whenx, = 3, all x; are odd and
k = 9. Sierphski [16] exhibited a solution with, = 3,% € 395877, k = 11 andxy, =
945. Burshtein [8] improved this solution by yiding a solution of the same nature,
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but with x;; = 135. He also showed [4] wheqne 3%5f7 that (1) has exactly 17
solutions. Two solutions withx; =5, all x; are odd andk = 21, 23 are demonstrated in
[7]. Burshtein [9] and Graham [12] indeperntierraised the questionif (1) has a
solution wherx t x for i #j. Burshtein [8], the first to provide such a simo to (1),
received a reward of $10 offered by &d9]. More such solutions were later
obtained by Barbeau, Burshtein and Johnson[lin2, 3, 6, 7, 15]. The results of
Burshtein in [3, 6, 8] are also cited in [13].

In our discussion, we shall use the identity

_ 1 m

%_—+ n>1 m>1 (2)

n+m nn+m)’

The simplest and most trivial solution df) (is

+- 4> =1

N |-
W
[N

1

By (2), 11y i, and hence the setE = {2, 4, 6, 12} is the smallest possible
3 4 12

set of even integers; when x; = 2. Another solution of (1) withx, = 4, X, are even,
k=14 and 2%31% =1 is given by the seb

S= {4, 6, 8, 10, 12, 16, 20, 24, 30, 48, 50, 60, 200 }.

The setS is constructed as follows. Consider the threg gt U,, Us:

U, = {1}, U, = {2, 3, 6}, Us; = {4, 5, 20},
where = + 2 + — =2 Then

4 5 20 2
l(_+_+l) _l +l +i:l, 3 uf
2 6 4 6 12
1(1+(§+1+1)) :l+i+i+i:z:l, 4 uf
8 3 6 8 16 24 48 8 4
i(l+(%+l+l)+(l+l+i)):i+ i+i+i+i+i+ L:E:l, 7 uf.
10 3 6 4 5 20 10 20 30 40 50 60 200 10 4

The 14 even integers B have been determined, and the sum of their recits
is 1. The LCM of the integers Bis LCM(S =2*-3-52. Hence, whenx;, = 4, the
valuesk = 14 andx;, = 200 are the smallest best possible valuesaemndttained inS.
The setsE and S were cited in [7].

2. On distinct unit fractions whose sum equals 2

14



On Distinct Integers the Sum of Whose Reciprocajisdis 1, 2, 3

In this section, we consider solutions to the eiquatZ{-;l% = 2. For a set which

consists of odd and even integers, we demonstoaians whenx; = 2 and whenx; =
3. For a set consisting of even integers onlyglation with x; = 2 is exhibited.

Theorem 2.1. If x, = 2, then there exist at least two s&s N of odd and even

integers such thak =12 andy}2, i =2.

Proof: Consider the following six sums

1,1,1 _1 1,1 _1 1 1 1_1 1,1 _1
=1, S+=+=== S4+—== —+—== S +—== —+—==
6 8 6 8 6 0 6

+ b}
4 5 20 2 7 42

+

N |-
[SSHIEE
[N

obtained by using identity (2).
The above odd and even denominators then yielththeets of integers, N

={2, 3, 4,5, 6,8, 9, 10, 15, 18,24},

N {2 3, 4,5 6,7, 8 9, 18, 20, 22},

where x; =2, k=12, %12, — =2, LCM(K)
5.7 = 2520.

23.32.5 = 360, LCMN) =23-32.

This completes our proof. O

Remark 2.1. The setN clearly implies that the sum 2 cannot be addewith 9 uf
composed of the first 9 consecutive integers Therefore, in any solution 02{21% =

2 it follows thatk > 9. Whenx; = 2, and without a formal proof, we may presuired t
_1 i # 2. If our presumption is indeed true, it wilethfollow that k = 12 is the

mlnlmal value for YK 1 =2 as inK, N. Moreover, one could easily verify that the

sum 2 can be obtalned only when the nunidga) of distinct primes in LCM{) of
any setV satisfiesM(p) > 3. The minimal valueM(p) = 3 is actually attained in
LCM(K) of the setK.

Theorem 2.2. If x4 = 3 then there exist at least five sets of aultl @/en integers such
that k =23 and}?3, —=2.

l 1X
Proof: The construction of the first such ddt is as follows. Consider the two sets

B, = {3, 5 7,9, 11, 15, 21, 231, 315}, k=9, XY 1X =1,

and the previously mentioned s8t
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S = {4, 6, 8, 10, 12, 16, 20, 24, 30, 48, 50, 60, 200}, k=14, ¥4, 1—1.

The two sets differ in their nature. The first sensists of only odd integers, whereas the
second set consists of even integers only. Therefoe combined seti of B; and S
whose integers are arranged in ascending order

H={3,456, 7,8,9, 10,11, 12, 15, 16, 20, 24, 30, 40, 48, 50, 60, 200, 231, 315}
satisfies the conditiong, = 3, k=23 and 223 L-o

Four more distinct setB, - B5 exist, each of which is composed of odd integers

only, wherex; =3, k=9 andZ — =1. Hence, the union of each of the sBfs- Bs
with the set S vyields a set of the same natureHys in which x;, = 3, k=23 and
21231 ~ =2,

Xi

The assertion then follows. o

Theorem 23. If x, =2, then there exists a séf all of whose integers are
evenk =46 and ;‘21% =2.

Proof: We mention again the former two s&sand B;.
The setSof even integers is

S = {4,6, 8, 10, 12, 16, 20, 24, 30, 40, 48,60, 200 }, k = 14, 2341; =
In the set
B, = {3, 5 7,9, 11, 15, 21, 231, 315}, k=09, ?=1%=1,

we multiply eachx, by 2. Theny, = 2;, and we obtain a new f@tof even integers

Q = {6, 10, 14, 18, 22, 30, 42, 462, 630} k=09, ‘3:1%:%.
The two setsQ, S have three overlaps, namely the integé, 10, 30. The
sum% + % + % = % Using the primes 13, 17, 19, and utilizingriity (2), we

construct the following three setdl;, M,, M3 of even integers, each of which occurs
once and only once.

The respective three séiy, M,, M3 are:

M, = {26, 28, 66, 130, 364, 4290}, k=6, 6 L =21,
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M, = {34, 36, 44, 86, 176, 612, 1496, 299310}, k=9, o 1L -1

=1% " 10
M. = {32, 38, 76, 96, 98, 152, 608, 372420, 18620}, k=10, T~ = L.

Omitting the three integers 6, 10, 30 from @&t S, and instead inserting the 25
integers inM;, M,, M; vields a new selG of 36 even integers, the sum of whose
reciprocals equals 1.

G = {4, 8, 12, 16, 20, 24, 26, 28, 32, 36, 38, 40, 44, 48, 50, 60, 66, 76,
86, 96, 98, 130, 152, 176, 200, 364, 60682, 1496, 2992, 3724, 4290,
7310, 9120, 18620 }.

The set T consists of: the integer 2, the 36 integer&i and the 9 integersin
Q. The 46 integers sequenced in ascending ordetigtinct, even, and the sum of their
reciprocals is equal to 2.

T=1{2 4, 6, 8 10, 12, 14, 16, 18, Z», 24, 26, 28, 30, 32, 34, 36, 38, 40,
42, 44, 48, 50, 60, 66, 76, 86, 96, @80, 152, 176, 200, 364, 462, 608,
612, 630, 1496, 2992, 3724, 4290, 7310, 91BB20 }.

The set was achieved without the use ofapeter.
This concludes the proof of Theorem 2.3. o

3. Ondistinct unit fractionswhose sum equals 3
In Theorem 3.1, we demonstrate a set of distirtegiers the sum of whose reciprocals is
equal to 3.

Theorem 3.1. If x; = 2, then there exists a sBt of odd and even integers such that
=69 and Y8, — = 3.

i=1x;

Proof: We shall demonstrate three s&tB, C all of whose integers are distinct. The
union of A, B, C is the setD of 69 integers the sum of whose reciprocalabkq3.

. 1 1 1 1 .
Since- =— +—=+—, it follows that
8 12 30 120 )

1 1 1 1
—t-+- Dttt (=+—=+—) = L
8 M2 30 120

Hence, the seA is

A={2,4,8,12, 30, 120}, ?:1% -1

Without the aid of a computer, Burshteir] EXhibited a solution o 1531% =1 in
whichx are distinct, and;tx for i #j. This solution is the following seB.
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B={6, 10, 14, 15, 21, 22, 26, 33, 34, 3B, 39, 46, 51, 55, 57, 58, 62, 65,
69, 77, 82, 87, 91, 93, 95, 106, 119, 1223, 133, 155, 159, 161, 183,
187, 202, 203, 213, 265, 287, 299, 319, 3853, 497, 505, 583, 671,

1057, 1313, 1963}, y52 2=1,

1= 1X
ThesetB; = {3, 5 7, 9, 11, 15, 21, 231, 3153nd the setB have two
overlaps, the two integers 15, 21. From (2 have
15 16 15-16 21 24 21-24 24 7-24
Substituting for 15, 21 B, the above four integers 16, 240, 24, 168 yidigssetC

C={3, 5 7, 9, 11, 16, 24, 168, 231, 2415}, yirl=

llX

The 69 distinct integers in $2tppear in ascending order, and are the union of the
69 integersinA, B, C.

D={2, 3, 4, 5, 6, 7, 8 9, 10, 11, 1, 115, 16, 21, 22, 24, 26, 30, 33, 34,
35, 38, 39, 46,51, 55, 57, 58, 62, 65 B9, 82, 87, 91, 93, 95, 106, 119,
120, 122, 123, 133, 155, 159, 161, 168,, 183/, 202, 203, 213, 231, 240,
265, 287, 299, 315, 319, 355, 453, 497, 505, 688, 1057, 1313, 1963},

1
Zf)glx —
The proof of Theorem 3.1 is complete. O
Final remark. Suppose that 1x<x< - <X, are integers and > 3 is a fixed
integer. Then, a sufficient condition for a sabatiof ¥'¥_, — = N is that there exisN

sets each of which consists of distinct mtegererwhhe sum of the reciprocals of each
such setis equalto 1, and the existing opsrleetween the sets are corrected by using
identity (2).
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