Annals of Pure and Applied Mathematics

Vol. 20, No. 1, 2019, 21-24

ISSN: 2279-087X (P), 2279-0888(online)

Published on 6 August 2019 www.researchmathsci.org

DOI: http://dx.doi.org/10.22457/apam.625v20n1a4

Chebychev Subspaces of Orlicz Function Space

G. Ghawadrah

Department of Mathematics, An-Najah National University Nablus, Palestine. E-mail: g.ghawadrah@najah.edu

Received 7 July 2019; accepted 31 July 2019

Abstract. In this paper it is proved that G is a Chebychev subspace of a Banach space X if and only if $L^{\phi}(\mu, G)$ is a Chebyshev subspace of $L^{\phi}(\mu, X)$, where $L^{\phi}(\mu, X)$ is an Orlicz function space with Luxemburg norm.

Keywords: Proximinally additive, Chebychev space, Orlicz space.

AMS Mathematics Subject Classification (2010): 46E30

1. Introduction

Let ϕ be an Orlicz function on $[0,\infty)$ (i.e. a continuous, strictly increasing convex function satisfying $\phi(0)=0$ and $\lim_{t\to\infty}\phi(t)=\infty$). Let (Ω,μ) be a finite measure, for a real Banach space X, The orlicz space $L^\phi(\mu,X)$ is a space of all measurable functions $f\colon\Omega\to X$ such that $\int_\Omega \phi(c^{-1}\|f(t)\|)\ d\mu(t)<\infty$, for some c>0. Define a Luxemburg norm on $L^\phi(\mu,X)$ by $\|f\|_\phi=\inf\left\{c>0:\int_\Omega \phi(c^{-1}\|f(t)\|)\ d\mu(t)\le 1\right\}$, for more see [9].

For the subset G of the normed linear space $(X, \|.\|)$, we define, for $x \in X$, $d(x, G) = \inf\{\|x - g\|: g \in G\}$. If G is a subspace of X, an element $g_0 \in G$ is called a best approximant of x in G if $\|x - g_0\| = d(x, G)$. We shall denote the set of all best approximants of x in G as P(x, G). If for each $x \in X$, the set $P(x, G) \neq \emptyset$, then G is said to be proximinal in X, and if P(x, G) is a singleton for each $x \in X$ than G is called a Chebychev subspace. A subspace G of a Banach space G is said to be proximinally additive if G is closed and G is c

In this paper we prove that: G is a Chebychev subspace of a Banach space X if and only if $L^{\phi}(\mu, G)$ is a Chebyshev subspace of $L^{\phi}(\mu, X)$, where $L^{\phi}(\mu, X)$ is an Orlicz function space with Luxemburg norm. In [3], it was proved the same result for the linear metric space $L^{\phi}(\mu, X)$, with ϕ is a modulus function, and $d(f, g) = \int_{\Omega} \phi(\|f(t) - g(t)\|) d\mu(t)$ is the metric, for more results about this metric space see [2, 3,4,5].

Throughout this paper we take $\Omega = [0,1]$ and ϕ is an Orlicz function with $\phi(0) = 0$, $\phi(1) = 1$.

2. Main results

Lemma 2.1. [3] Suppose that G is a proximinal subspace of a Banach space X and that G is proximinally additive in X. Then G is Chebyshev.

G. Ghawadrah

Theorem 2.2. Let X be a Banach space and G be a closed subspace of X. if G is proximinally additive in X, then $L^{\phi}(\mu, G)$ is proximinally additive in $L^{\phi}(\mu, X)$.

Proof: Suppose $g_1 \in P(f_1, L^{\phi}(\mu, G))$, and $g_2 \in P(f_2, L^{\phi}(\mu, G))$, then by [8, corollary 2.1] we get $g_1(t) \in P(f_1(t), G), g_2(t) \in P(f_2(t), G), \forall t$.

Hence, $\forall t \in \Omega$, $\forall y \in G$

$$d((f_1 + f_2)(t), G) = ||(f_1 + f_2)(t) - (g_1 + g_2)(t)|| \le ||(f_1 + f_2)(t) - y||$$

Thus, $\forall t \in \Omega$, $\forall y \in L^{\phi}(\mu, G) : \|(f_1 + f_2)(t) - (g_1 + g_2)(t)\| \le \|(f_1 + f_2)(t) - h(t)\|$.

Since ϕ is increasing, then $\forall h \in L^{\overline{\phi}}(\mu, G)$ we have that

$$\int_0^1 \phi(c^{-1} \| (f_1 + f_2)(t) - (g_1 + g_2)(t) \|) d\mu(t) \le \int_0^1 \phi(c^{-1} \| (f_1 + f_2)(t) - h(t) \| d\mu(t))$$
 Thus,

$$\inf\{c > 0: \int_{0}^{1} \phi(c^{-1} \| (f_1 + f_2)(t) - (g_1 + g_2)(t) \|) d\mu(t) \}$$

$$\leq \inf\{c > 0: \int_{0}^{1} \phi(c^{-1} \| (f_1 + f_2)(t)h(t) \| d\mu(t)) \}$$

Therefore, $\forall h \in L^{\phi}(\mu, G), \|(f_1 + f_2) - (g_1 + g_2)\|_{\phi} \le \|(f_1 + f_2) - \Box\|_{\phi}$ And so, $g_1 + g_2 \in P(f_1 + f_2, L^{\phi}(\mu, G))$. Thus, $L^{\phi}(\mu, G)$ is proximinally additive.

Theorem 2.3. Let X be a Banach space and G be a closed subspace of X. If $L^{\phi}(\mu, G)$ is proximinally additive in $L^{\phi}(\mu, X)$, then G is proximinally additive in X.

Proof: Suppose $L^{\phi}(\mu, G)$ is proximinally additive in $L^{\phi}(\mu, X)$, and let $z_i \in P(x_i, G)$ for i = 1, 2; we want to show $z_1 + z_2 \in P(x_1 + x_2, G)$.

Now let $f_i(t) = x_i$ and $g_i(t) = z_i, \forall t$ and for i = 1, 2.

It is clear such that $f_i, g_i \in L^{\phi}(\mu, X)$, and $g_i \in L^{\phi}(\mu, G)$, i = 1, 2, ...

First, we show that $g_i \in P(f_i, L^{\phi}(\mu, G)), i = 1, 2$.

Now, for i = 1, 2, we have

$$z_i \in P(x_i, G) \Longrightarrow ||x_i - z_i|| \le ||x_i - y||, \forall y \in G$$

$$\Rightarrow \|f_i(t) - g_i(t)\| \le \|f_i(t) - y\|, \forall y \in G, \forall t$$

$$\Rightarrow \| f_i(t) - g_i(t) \| \le \| f_i(t) - h(t) \|, \forall t, \forall h \in L^{\varphi}(\mu, G)$$

 \Rightarrow $||f_i(t) - g_i(t)|| \le ||f_i(t) - h(t)||, \forall t, \forall h \in L^{\phi}(\mu, G)$ Since ϕ is strictly increasing, then $\forall h \in L^{\phi}(\mu, G)$ we have that

$$\int_0^1 \phi(c^{-1} \| f_i(t) - g_i(t) \|) d\mu(t) \le \int_0^1 \phi(c^{-1} \| f_i(t) - h(t) \| d\mu(t))$$
Hence, $\forall h \in L^{\phi}(\mu, G)$:

$$\inf\{c > 0: \int_{0}^{1} \phi(c^{-1} || f_{i}(t) - g_{i}(t) ||) d\mu(t) \le 1\}$$

$$\le \inf\{c > 0: \int_{0}^{1} \phi(c^{-1} || f_{i}(t) - h(t) ||) d\mu(t) \le 1\}$$

Thus, $||f_i - g_i||_{\phi} \le ||f_i - h||$, $i = 1, 2, \forall h \in L^{\phi}(\mu, G)$.

So we get that $g_i \in P(f_i, L^{\phi}(\mu, G)), i = 1, 2.$

Since $L^{\phi}(\mu, G)$ is proximinally additive in $L^{\phi}(\mu, X)$, then

$$g_1 + g_2 \in P(f_1 + f_2, L^{\phi}(\mu, G)).$$

Chebychev Subspaces of Orlicz Function Space

By corollary 2.1 of [8], we have that

$$g_1(t) + g_2(t) \in P(f_1(t) + f_2(t), G).$$

Hence, $z_1 + z_2 \in P(x_1 + x_2, G)$. Therefore G is proximinally additive in X.

Corollary 2.4. Let X be a Banach space and G be a closed subspace of X. $L^{\phi}(\mu, G)$ is proximinally additive in $L^{\phi}(\mu, X)$ if and only if G is proximinally additive in X.

Theorem 2.5. Let G be a closed subspace of a Banach space X. Then the following are equivalent:

- (i) G is proximinal in X
- (ii) $L^{\phi}(\mu, G)$ is proximinal in $L^{\phi}(\mu, X)$.

Proof: By[1, theorem 3.7] and [8, theorem 2.1] we get that:

G is proximinal $\Leftrightarrow L^{I}(\mu,G)$ is proximinal $\Leftrightarrow L^{\phi}(\mu,G)$ is proximinal.

Theorem 2.6. Let G be a closed subspace of a Banach space X which is proximinally additive in X, then the following are equivalent:

- (i) G is a Chebyshev subspace of X.
- (ii) $L^{\phi}(\mu, G)$ is a Chebyshev subspace of $L^{\phi}(\mu, X)$.

Proof: By theorem (2.5), and corollary $2.4 \blacksquare$

Orlicz spaces generalize $L^p(\mu, X)$ for $1 , in the sense that if <math>\phi(t) = t^p$, then $||f||_{\phi} = ||f||_{p}$ and so $L^{\phi}(\mu, X) = L^{p}(\mu, X)$. Hence, the following theorem from [3] is a direct result of corollary 2.4:

Theorem 2.7. Let G be a closed subspace of a Banach space X. Then the following are equivalent:

- (i) G is proximinally additive in X.
- (ii) $L^p(\mu, G)$ is proximinally additive in $L^p(\mu, X)$, 1 .

3. Conclusion

If G is a closed subspace of a Banach space X, then we get that: G is a Chebychev subspace of a Banach space X if and only if $L^{\phi}(\mu, G)$ is a Chebyshev subspace of $L^{\phi}(\mu, X)$, where $L^{\phi}(\mu, X)$ is an Orlicz function space with Luxemburg norm.

Acknowledgement. The author would like to thank the referee for his/her suggestions.

REFERENCES

- 1. A.A.Hakawati and S.A.Dwaik, On best approximation in $L^1(\mu, X)$ and $L^{\phi}(\mu, X)$, *Annals of Pure and Applied Mathematics*, 12(1) (2016) 1-8.
- 2. A.A.Hakawati and S.A.Dwaik. On best approximation in $L^p(\mu, X)$ and $L^\phi(\mu, X)$, $1 \le p < \infty$, *Journal of Mathematics and Informatics*, 6 (2016) 31-39.
- 1. A.A.Hakawati and G.Ghawadrah, Proximinally additive chebychev spaces in $L^{\phi}(\mu, X)$ and $L^{p}(\mu, X)$, $1 \le p < \infty$, Progress in Nonlinear Dynamics and Chaos, 4(2) (2016) 103-110

G. Ghawadrah

- 2. W.Deeb and R.Khalil, Best approximation in *L* (*X,Y*), *Math. Proc. Cambridge Philos. Soc.*, 104 (1988) 527-531.
- 3. W.Deeb, Multipliers and isometries of Orlicz Spaces, In "Proceedings of the conference on Mathematical Analysis and its Applications, (Kuwait, 1985), Volume 3 of KFAS proc. ser. Pages 159-165. Perganon Oxford 1988.
- 4. I.Singer, *Best Approximation In Normed Linear Spaces By Elements of Linear Subspaces*, Springer-Verlay, NewYork.
- 5. W.Light and W.Cheney, *Approximation Theory in Tensor Product Spaces*, Lecture Notes in Math. 1169, Springer–Verlag Berlin, 9-155, 1985.
- 6. H.Al-Minawi and S.Ayesh, Best approximation in Orlicz spaces, *International Journal of Mathematics and Mathematical Sciences*, 14(2) (1991) 245-252.
- 7. J.Xu, Proximinality in Banach space valued Musielak-Orlicz spaces, *Journal of Inequalities and Applications*, 2014.1 (2014) 146.