Brief Note

A Short Note on Solutions of the Diophantine Equations $6^{x}+11^{y}=z^{2}$ and $6^{x}-11^{y}=z^{2}$ in Positive Integers x, y, z

Nechemia Burshtein

117 Arlozorov Street, Tel - Aviv 6209814, Israel
Email: anb17 @ netvision.net.il
Received 14 September 2019; accepted 12 October 2019
Abstract. In this short note we investigate the solutions of the equations $6^{x}+11^{y}=z^{2}$ and $6^{x}-11^{y}=z^{2}$ when x, y, z are positive integers. It is shown that the first equation has no solutions, whereas the second equation has exactly one solution when $x=2$, and no solutions for each and every value $2<x \leq 16$.
Keywords: Diophantine equations
AMS Mathematics Subject Classification (2010): 11D61
This note is concerned with the two equations $6^{x}+11^{y}=z^{2}$ and $6^{x}-11^{y}=z^{2}$. In Lemma 1 , we show that the equation $6^{x}+11^{y}=z^{2}$ has no solutions.

Lemma 1. The equation $6^{x}+11^{y}=z^{2}$ has no solutions in positive integers x, y, z.
Proof: For each and every value $x, 6^{x}$ has a last digit which is equal to 6 . For each and every value $y, 11^{y}$ has a last digit which is equal to 1 . The sum $6^{x}+11^{y}$ is odd, and therefore has a last digit which is equal to 7 . Since no odd square z^{2} ends in the digit 7 , it follows that the equation $6^{x}+11^{y}=z^{2}$ has no solutions as asserted.

Corollary 1. In the equation $6^{x}+11^{y}=z^{2}$, suppose that the value 11^{y} is replaced by the value $(10 N+1)^{y}$ where $N \geq 2$ and $y \geq 1$. For each and every of the values N and y, the value $(10 N+1)^{y}$ ends in the digit 1 . By Lemma 1 it then follows that the equation $6^{x}+(10 N+1)^{y}=z^{2}$ has no solutions.

Consider the equation $6^{x}-11^{y}=z^{2}$, where $x \geq 2$ and $y \geq 1$. When $x=2$ and $y=1$, we have

Solution 1.

$$
6^{2}-11^{1}=5^{2} .
$$

Each of the fourteen values x where $3 \leq x \leq 16\left(6^{16}=2821109907456\right)$ has been examined. For each such fixed value x together with all its possible values y, no solutions have been found. Hence, if the equation has a solution, then $x>16$, in which case a computer must be involved since 6^{16} is a 13 digits number.

We presume that for all values $x>16$, the equation $6^{x}-11^{y}=z^{2}$ has no solutions. If our presumption is indeed true, then Solution 1 is the unique solution of the equation $6^{x}-11^{y}=z^{2}$.

REFERENCES

1. N. Burshtein, On solutions to the diophantine equations $5^{x}+103^{y}=z^{2}$ and $5^{x}+11^{y}=$ z^{2} with positive integers x, y, z, Annals of Pure and Applied Mathematics, 19 (1) (2019) $75-77$.
2. N. Burshtein, On solutions of the diophantine equations $p^{3}+q^{3}=z^{2}$ and $p^{3}-q^{3}$ $=z^{2}$ when p, q are primes, Annals of Pure and Applied Mathematics, 18 (1) (2018) 51-57.
3. B. Poonen, Some diophantine equations of the form $x^{n}+y^{n}=z^{m}$, Acta Arith., 86 (1998) 193-205.
4. B. Sroysang, On the diophantine equation $5^{x}+7^{y}=z^{2}$, Int. J. Pure Appl. Math., 89 (2013) $115-118$.
