# On Solutions of the Diophantine Equation $11^{x}+23^{y}=z^{2}$ with Consecutive Positive Integers $x, y$ 

Nechemia Burshtein

117 Arlozorov Street, Tel - Aviv 6209814, Israel
Email: anb17@ netvision.net.il
Received 19 October 2019; accepted 30 October 2019


#### Abstract

In this article, we consider the equation $11^{x}+23^{y}=z^{2}$ in which $x, y, z$ are positive integers, and $x, y$ are also consecutives. We examine all the possibilities when $x$ is even, odd, and when $x>y, x<y$. It is established that the equation has a unique solution which is exhibited.


Keywords: Diophantine equations, Sophie Germain primes
AMS Mathematics Subject Classification (2010): 11D61

## 1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation

$$
p^{x}+q^{y}=z^{2}
$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds.

In this article, we investigate the equation $11^{x}+23^{y}=z^{2}$ in which $x, y, z$ are positive integers, and $x, y$ are also consecutives. We establish that the equation has exactly one solution which is demonstrated.
2. The solutions of ${11^{x}+23^{y}=z^{2} \text { with consecutives } x, y}_{x}$

In Theorem 2.1 we determine all the possible solutions of $11^{x}+23^{y}=z^{2}$ when $x, y$ are consecutives.

Theorem 2.1. Let $x, y, z$ be positive integers. Suppose

$$
\begin{equation*}
11^{x}+23^{y}=z^{2} \tag{1}
\end{equation*}
$$

where $x, y$ are consecutive integers. Let $n$ be an integer.
(a) If $x=2 n+2, y=2 n+3, \quad n \geq 0$, then $11^{x}+23^{y}=z^{2}$ has no solutions.
(b) If $x=2 n+2, y=2 n+1, \quad n \geq 0$, then $11^{x}+23^{y}=z^{2}$ has a unique solution.
(c) If $x=2 n+1, y=2 n+2, \quad n \geq 0$, then $11^{x}+23^{y}=z^{2}$ has no solutions.
(d) If $x=2 n+1, y=2 n, \quad n \geq 1$, then $11^{x}+23^{y}=z^{2}$ has no solutions.

## Nechemia Burshtein

Proof: Although similarities exist in all four cases, we shall nevertheless consider the four cases separately so that each case is self-contained.
(a) Suppose

$$
\begin{equation*}
11^{2 n+2}+23^{2 n+3}=z^{2}, \quad n \geq 0, \quad z^{2} \text { is even. } \tag{2}
\end{equation*}
$$

When $n=0$, we obtain from (2) that $11^{2}+23^{3}=12288 \neq z^{2}$, and the equation has no solution since an even square $z^{2}$ does not end in the digit 8 .

Let $n \geq 1$. We shall assume that for some value $n$, the equation has a solution and reach a contradiction.

From (2) we obtain

$$
23^{2 n+3}=z^{2}-11^{2 n+2}=z^{2}-11^{2(n+1)}=\left(z-11^{n+1}\right)\left(z+11^{n+1}\right) .
$$

Denote

$$
z-11^{n+1}=23^{G}, \quad z+11^{n+1}=23^{H}, \quad G<H, \quad G+H=2 n+3
$$

where $G, H$ are integers. Then $23^{H}-23^{G}$ results in

$$
\begin{equation*}
2 \cdot 11^{n+1}=23^{G}\left(23^{H-G}-1\right) . \tag{3}
\end{equation*}
$$

If $G>0$, the power $23^{G}$ does not divide the left side of (3), and hence $G=0$. When $G=0$, then $H=2 n+3$ implying

$$
\begin{equation*}
2 \cdot 11^{n+1}=23^{2 n+3}-1 . \tag{4}
\end{equation*}
$$

For all values $n \geq 1$, it follows from (4) that

$$
2 \cdot 11^{n+1}+1<11 \cdot 11^{n+1}+1=11^{n+2}+1<23^{n+2} \cdot 23^{n+1}=23^{2 n+3}
$$ and hence $2 \cdot 11^{n+1} \neq 23^{2 n+3}-1$.

Our assumption that for some value $n \geq 1$, the equation $11^{2 n+2}+23^{2 n+3}=z^{2}$ has a solution is therefore false, and the equation has no solutions.

The proof of (a) is complete.
(b) Suppose

$$
\begin{equation*}
11^{2 n+2}+23^{2 n+1}=z^{2}, \quad n \geq 0 \tag{5}
\end{equation*}
$$

When $n=0$, we obtain from (5)
Solution 1. $11^{2}+23^{1}=12^{2}=z^{2}$.
Let $n \geq 1$. We shall assume that for some value $n$, the equation has a solution and reach a contradiction.

From (5) we have

$$
23^{2 n+1}=z^{2}-11^{2 n+2}=z^{2}-11^{2(n+1)}=\left(z-11^{n+1}\right)\left(z+11^{n+1}\right) .
$$

Denote

$$
z-11^{n+1}=23^{K}, \quad z+11^{n+1}=23^{L}, \quad K<L, \quad K+L=2 n+1,
$$

where $K, L$ are integers. Then $23^{L}-23^{K}$ yields

$$
\begin{equation*}
2 \cdot 11^{n+1}=23^{K}\left(23^{L-K}-1\right) \tag{6}
\end{equation*}
$$

On Solutions of the Diophantine Equation $11^{x}+23^{y}=z^{2}$ with Consecutive Positive Integers $x, y$

If $K>0$, the power $23^{K}$ does not divide the left side of (6), and therefore $K=0$. When $K=0$, then $L=2 n+1$, and (6) results in

$$
\begin{equation*}
2 \cdot 11^{n+1}=23^{2 n+1}-1 \tag{7}
\end{equation*}
$$

For all values $n \geq 1$, (7) yields

$$
2 \cdot 11^{n+1}+1<11 \cdot 11^{n+1}+1=11^{n+2}+1<23^{n+2} \cdot 23^{n-1}=23^{2 n+1}
$$

Implying that $2 \cdot 11^{n+1} \neq 23^{2 n+1}-1$.
Our assumption that for some value $n \geq 1$, the equation $11^{2 n+2}+23^{2 n+1}=z^{2}$ has a solution is therefore false, and the equation has no solutions.

This concludes part (b).
(c) Suppose

$$
\begin{equation*}
11^{2 n+1}+23^{2 n+2}=z^{2}, \quad n \geq 0 \tag{8}
\end{equation*}
$$

When $n=0$, we have from (8) that $11^{1}+23^{2}=540 \neq z^{2}$, and the equation has no solution.

Let $n \geq 1$. We shall assume that for some value $n$, the equation has a solution and reach a contradiction.

From (8) we obtain

$$
11^{2 n+1}=z^{2}-23^{2 n+2}=z^{2}-23^{2(n+1)}=\left(z-23^{n+1}\right)\left(z+23^{n+1}\right)
$$

Denote

$$
z-23^{n+1}=11^{A}, \quad z+23^{n+1}=11^{B}, \quad A<B, \quad A+B=2 n+1
$$

where $A, B$ are integers. Then $11^{B}-11^{A}$ implies

$$
\begin{equation*}
2 \cdot 23^{n+1}=11^{A}\left(11^{B-A}-1\right) \tag{9}
\end{equation*}
$$

If $A>0$, the power $11^{A}$ does not divide the left side of (9). Hence $A=0$ and accordingly $B=2 n+1$. Then (9) yields

$$
\begin{equation*}
2 \cdot 23^{n+1}=11^{2 n+1}-1 \tag{10}
\end{equation*}
$$

For all values $n \geq 1$, the power $11^{2 n+1}$ has a last digit equal to 1 . Therefore $11^{2 n+1}-1$ ends in the digit 0 . Hence $11^{2 n+1}-1$ is a multiple of 5 . Since the left side of (10) is not a multiple of 5 , it follows that $2 \cdot 23^{n+1} \neq 11^{2 n+1}-1$.

Our assumption that for some value $n \geq 1$, the equation $11^{2 n+1}+23^{2 n+2}=z^{2}$ has a solution is therefore false, and the equation has no solutions.

The proof of (c) is complete.
(d) Suppose

$$
\begin{equation*}
11^{2 n+1}+23^{2 n}=z^{2}, \quad n \geq 1, \quad z^{2} \text { is even. } \tag{11}
\end{equation*}
$$

For all values $n \geq 1$, the power $11^{2 n+1}$ has a last digit which is equal to 1 . When

## Nechemia Burshtein

$n=2 a(a \geq 1)$, the power $23^{4 a}$ ends in the digit 1 . Therefore, $11^{4 a+1}+23^{4 a}=z^{2}$ ends in the digit 2. Since an even square $z^{2}$ does not end in the digit 2 , it follows that $n \neq 2 a$.

$$
\begin{align*}
& \text { Suppose that } n=2 \beta+1(\beta \geq 0) \text {. Then (11) yields } \\
& 11^{4} \beta^{+3}+23^{4 \beta^{+2}}=z^{2} . \tag{12}
\end{align*}
$$

We shall assume that for some value $\beta$ (12) has a solution, and reach a contradiction.
From (12) we have

$$
11^{\beta^{+}+3}=z^{2}-23^{4 \beta^{+2}}=z^{2}-23^{2\left(2 \beta^{+1}\right)}=\left(z-23^{2 \beta^{+1}}\right)\left(z+23^{2 \beta^{+1}}\right) .
$$

Denote

$$
z-23^{2 \beta^{+1}}=11^{C}, \quad z+23^{2 \beta^{+1}}=11^{D}, \quad C<D, \quad C+D=4 \beta+3
$$

where $C, D$ are integers. Then $11^{D}-11^{C}$ yields

$$
\begin{equation*}
2 \cdot 23^{2 \beta^{+1}}=11^{C}\left(11^{D-C}-1\right) \tag{13}
\end{equation*}
$$

For all values $C>0$, the right side of (13) is a multiple of $11^{C}$, whereas the left side of (13) is not. Therefore $C=0$. Then $D=4 \beta+3$, and (13) yields

$$
\begin{equation*}
2 \cdot 23^{2 \beta^{+1}}=11^{4 \beta^{+3}}-1 \tag{14}
\end{equation*}
$$

For all values $\beta$, the last digit of $11^{4} \beta^{+3}$ is equal to 1 , and hence $11^{4} \beta^{+3}-1$ has a last digit equal to 0 . Therefore $11^{4^{+3}}-1$ is a multiple of 5 . Since the left side of (14) is not a multiple of 5 , it follows that $2 \cdot 23^{2 \beta^{+1}} \neq 11^{4} \beta^{+3}-1$.

Our assumption that for some odd value $n$ the equation $11^{2 n+1}+23^{2 n}=z^{2}$ has a solution is therefore false, and the equation has no solutions.

This concludes the proof of (d), and of Theorem 2.1.

## 3. The equation $11^{x}+23^{y}=z^{2}$ and the Sophie Germain primes

First we shall provide the reader with few basic facts on a particular class of primes, namely the Sophie Germain primes.

Sophie Germain (1776-1831) was a French lady mathematician, physicist and philosopher. Among other fields, she was also known in Number Theory for her work on Fermat's Last Theorem, and for the Sophie Germain prime numbers.

A Sophie Germain prime is a prime number $\boldsymbol{P}$ such that $\mathbf{2 P}+\mathbf{1}$ is also prime. The first few Sophie Germain primes are $\boldsymbol{P}=2,3,5,11,23,29, \ldots$.

Numerous articles have been written on the Sophie Germain primes, for example [3, 4, 5, 6, 7]. It is conjectured that there are an infinite number of Sophie Germain pairs $(\boldsymbol{P}, \mathbf{2 P}+\mathbf{1})$. The conjecture is extremely difficult to prove. From [8] we also cite: As of 29.2.2016, the largest known proven Sophie Germain prime $\boldsymbol{P}$ is

$$
\begin{equation*}
P=2618163402417 \cdot 2^{1290000}-1 \tag{15}
\end{equation*}
$$

In this article, we have considered the equation $p^{x}+q^{y}=z^{2}$ in (1) in which the pair of primes $p, q$ satisfies $(p, q)=(11,23)=(\boldsymbol{P}, \mathbf{2 P}+\mathbf{1})$. We have established that the equation $11^{x}+23^{y}=z^{2}$ has exactly one solution with consecutives $x=2, y=1$, where

On Solutions of the Diophantine Equation $11^{x}+23^{y}=z^{2}$ with Consecutive Positive Integers $x, y$
$z=12$. For each prime $\boldsymbol{P}$, there exists an equation $\boldsymbol{P}^{\mathrm{x}}+(\mathbf{P}+\mathbf{1})^{y}=z^{2}$ which has a unique solution with consecutives $x=2, y=1$ and $z=\boldsymbol{P}+1$. The resulting equality $\boldsymbol{P}^{2}+(2 \boldsymbol{P}+\mathbf{1})^{1}=(\boldsymbol{P}+1)^{2}$ is an identity valid for each and every Sophie Germain prime $P$.

So far, quite a large but finite number of primes $\boldsymbol{P}$ exist, therefore the same number of the above identities also exists. If we denote by $\boldsymbol{P}_{\boldsymbol{L}}$ the largest known prime $\boldsymbol{P}$ demonstrated in (15), then the largest known equation $\boldsymbol{P}_{L}^{x}+\left(\mathbf{2} \boldsymbol{P}_{L}+\mathbf{1}\right)^{y}=z^{2}$ has a unique solution with consecutives $x=2, y=1$ and $z^{2}=\left(\boldsymbol{P}_{L}+1\right)^{2}$.

Remark 3.1. When the pair $(p, q)=(\boldsymbol{P}, \mathbf{2 P}+\mathbf{1})$ is replaced by the pair $(A, 2 A+1)$ where $A$ is a positive integer, then the above identity with consecutives $x=2, y=1$ is the identity $A^{2}+(2 A+1)^{1}=(A+1)^{2}$ valid for each and every integer $A \geq 1$. The values $A$ and $(2 A+1)$ range over primes and composites accordingly.

## 4. Conclusion

In this article, we have shown that $11^{x}+23^{y}=z^{2}$ has exactly one solution when $x, y$ are consecutives, namely $11^{2}+23^{1}=12^{2}$ (Solution 1).

In this discussion, we have utilized our technique which uses the last digit of powers such as $11^{u}$ and $23^{v}$. This technique is rather very elementary, but quite efficient in solving equations of this kind.

## REFERENCES

1. N. Burshtein, On solutions to the diophantine equations $5^{x}+103^{y}=z^{2}$ and $5^{x}+11^{y}=$ $z^{2}$ with positive integers $x, y, z$, Annals of Pure and Applied Mathematics, 19 (1) (2019) 75-77.
2. N. Burshtein, On the diophantine equation $p^{x}+q^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 13 (2) (2017) 229 - 233.
3. N. Burshtein, On Sophie Germain primes, Journal for Algebra and Number Theory Academia, 6 (1) (2016) 37-41.
4. C. K. Caldwell, An amazing prime heuristic, 2000. //www.utm.edu./caldweii// H. Dubner, Large Sophie Germain primes, Math. of Comput., 65 (1996) 393 - 396.
5. Karl-Heinz Indlekofer and A. Járai, Largest known Twin primes and Sophie Germain primes, Math. of Comput., 68 (1999) 1317-1324.
6. F. Liu, On the Sophie Germain prime conjecture, WSEAS Transaction on Mathematics, 10 (2011) 421-430.
7. Primegrid, www.primegrid.com/
