www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/apam.636v20n2a3

Correction on "Some Relations Related to Centralizers on Semiprime Semiring, Vol. 13, Issue 1, 2017"

D. Mary Florence ${ }^{\boldsymbol{I}}$, R. Murugesan ${ }^{2}$ and P. Namasivayam ${ }^{3}$

${ }^{1}$ Department of Mathematics, Kanyakumari Community College Mariagiri - 629153, Tamil Nadu, India. E-mail: dmaryflorence@gmail.com
${ }^{2}$ Department of Mathematics, Thiruvalluvar College
Papanasam - 627425, Tamil Nadu, India. E-mail: rmurugesa2020@yahoo.com
${ }^{3}$ Department of Mathematics, The M.D.T Hindu College
Tirunelveli - 627010, Tamil Nadu, India. E-mail: vasuhe2010@gmail.com
Received 15 September 2019; accepted 24 October 2019

Abstract

In this paper, we generalize the following result. If S is a 2-torsion free semiprime semiring and $T: S \rightarrow S$ be an additive mapping such that $2 T(x y x)=$ $T(x) y x+x y T(x)$ holds for all $x, y \in S$, then T is a centralizer.

Keywords: Semiring, semiprime semiring, centralizer, jordan centralizer, left (right) centralizer.

AMS Mathematics Subject Classification (2010): 16Y60, 16N60

1. Introduction

Semirings has been formally introduced by Vandiver in 1934. Golan [4] discussed the notion of semirings and their applications. In [3], Chandramouleeswaran and Tiruveni worked on the derivations on semirings. Zalar [17] studied centralizers on semiprime rings and proved that Jordan centralizer and centralizers of this rings coincide. In [14], Vukman and Irena proved that if R is a 2 -torsion free semiprime ring and $T: R \rightarrow R$ is an additive mapping such that $2 T(x y x)=T(x) y x+x y T(x)$ holds for all $x, y \in R$, then T is a centralizer. In papers $[6,7,8]$ the authors Hoque and Paul worked on centralizers on semiprime Gamma rings and developed the results of [14] in Gamma rings. Motivated by this Florence and Murugesan [10] studied the notion of semirings and proved that Jordan centralizer of a 2 -torsion free semiprime semiring is a centralizer. Here we develop the results of $[7,14]$ in semirings by assuming that S be a 2 -torsion free semiprime semiring and $T: S \rightarrow S$ be an additive mapping such that $2 T(x y x)=$ $T(x) y x+x y T(x)$ holds for all $x, y \in S$. Then T is a centralizer. In [11], we use the commutator of x and y in $[x, y]=x y-y x$. Now, we change the commutator as $[x, y]=x y+y^{\prime} x$.

Now we recall the following definitions and results:
Let S be a non empty set followed with two binary operation '+' and '.' such that
i) $(S,+)$ is a commutative monoid with identity element 0 .
ii) $(S,$.$) is a monoid with identity element 1$.
iii) Multiplication distributes over addition from either side.

That is, $a .(b+c)=a . b+a . c$,
$(b+c) \cdot a=b \cdot a+c . a$. Then S is called a semiring.
A Semiring S is prime if $x S y=0$ implies $x=0$ or $y=0 \forall x, y \in S$, and semiprime if $x S x=0$ implies $x=0 \forall x \in S$. A semiring S is 2-torsion free if $2 x=0$, $x \in S \Rightarrow x=0$. The commutator $x y+y^{\prime} x$ will be denoted by $[x, y]$. More over the set $Z(S)=\{x \in S: x y=y x \forall y \in S\}$. we shall use basic commutator identities $[x, y z]=$ $[x, y] z+y[x, z]$ and $[x z, y]=[x, y] z+x[z, y]$. An additive mapping $T: S \rightarrow S$ is called a Left (Right) Centralizer if $T(x y)=T(x) y((T(x y)=x T(y))$ holds for all $x, y \in S$. We call T is a centralizer which is both left and right centralizer. For a fixed $a \in S$ then $T(x)=a x$ is a left centralizer and $T(x)=x a$ is a right centralizer. An additive mapping $T: S \rightarrow S$ is called a left (right) Jordan centralizer if $T(x x)=T(x) x(T(x x)=x T(x))$ holds for all $x \in S$. Every left centralizer is a Jordan left centralizer but the converse is not in general true. An additive mapping $T: S \rightarrow S$ is a Jordan centralizer if $T(x y+y x)=$ $T(x) y+y T(x)$ for all, $y \in S$. Every centralizer is a Jordan centralizer but Jordan centralizer is not in general a centralizer.
According to [9] for all $a, b \in S$ we have
$(a+b)^{\prime}=a^{\prime}+b^{\prime}$
$(a b)^{\prime}=a^{\prime} b=a b^{\prime}$
$a^{\prime \prime}=a$
$a^{\prime} b=\left(a^{\prime} b\right)^{\prime}=(a b)^{\prime \prime}=a b$
Also the following implication is valid.
$a+b=0$ implies $a=b^{\prime}$ and $a+a^{\prime}=0$

2. The centralizers of semiprime semiring

Lemma 2.1. Let S be a semiprime semiring. Suppose that the relation
$a x b+b x c=0 \forall x \in S$ and some $a, b \in S$. In this case $(a+c) x b=0, \forall x \in S$
Proof: By hypothesis we have $a x b+b x c=0$
Putting x by xby yield $a x b y b+b x b y c=0$
On the other hand right multiplying (1) by $y b$ we get

$$
\begin{equation*}
a x b y b+b x c y b=0 \quad \forall x, y \in S \tag{3}
\end{equation*}
$$

Replacing y by y^{\prime} in the above, we get
$a x b y^{\prime} b+b x c y^{\prime} b=0 \quad \forall x, y \in S$.
Adding (2) and (3), we get $a x b y b+b x b y c+a x b y^{\prime} b+b x c y^{\prime} b=0$
This implies, $\quad b x b y c+b x c y^{\prime} b=0$ $b x\left(b y c+c y^{\prime} b\right)=0$
Putting x by $y c x$ in (4) we get

$$
b y c x\left(b y c+c y^{\prime} b\right)=0
$$

Left multiplying (4) by $c y$ we obtain $c y b x\left(b y c+c y^{\prime} b\right)=0$
Replacing x by x^{\prime} in the above, we get

$$
\begin{equation*}
c y b x^{\prime}\left(b y c+c y^{\prime} b\right)=0 \tag{6}
\end{equation*}
$$

Adding (5) and (6), we get

$$
\left(b y c+c y^{\prime} b\right) x\left(b y c+c y^{\prime} b\right)=0
$$

Correction on "Some Relations Related to Centralizers on Semiprime Semiring,

 Vol. 13, Issue 1, 2017"By the semiprimeness of S implies, $b y c+c y^{\prime} b=0$
This implies $b y c=c y b, y \in S$
Replace y by x, in the above relation we get, $b x c=c x b$
So (1) becomes $a x b+c x b=0$

$$
(a+c) x b=0, \forall x \in S
$$

Hence the proof is complete.
Lemma 2.2. Let S be a 2-torsion free semiprime semiring and Let $T: S \rightarrow S$ be an additive mapping such that $2 T(x y x)=T(x) y x+x y T(x)$ holds for all $x, y \in S$. Then $2 T(x x)=T(x) x+x T(x)$.

Proof:

By the assumption we have $2 T(x y x)=T(x) y x+x y T(x)$
Linearizing the above by putting $x+z$ for x we obtain
$2 T((x+z) y(x+z))=T(x+z) y(x+z)+(x+z) y T(x+z)$
$2 T(x y z+z y x)=T(x) y z+T(z) y x+x y T(z)+z y T(x)$
Substituting $z=x^{2}$ the relation (8) yields
$2 T\left(x y x^{2}+x^{2} y x\right)=T(x) y x^{2}+T\left(x^{2}\right) y x+x y T\left(x^{2}\right)+x^{2} y T(x)$
Substitution for y by $x y+y x$ in (7) we arrive at
$2 T(x(x y+y x) x)=T(x)(x y+y x) x+x(x y+y x) T(x)$
$2 T\left(x^{2} y x+x y x^{2}\right)=T(x) x y x+T(x) y x^{2}+x^{2} y T(x)+x y x T(x)$
Comparing (9) and (10), we get
$T\left(x^{2}\right) y x+x y T\left(x^{2}\right)=T(x) x y x+x y x T(x)$
Adding $T(x) x y x^{\prime}+x^{\prime} y x T(x)$ on both sides, we get
$T\left(x^{2}\right) y x+x y T\left(x^{2}\right)+T(x) x y x^{\prime}+x^{\prime} y x T(x)=0$
$\left(T\left(x^{2}\right)+T(x) x^{\prime}\right) y x+x y\left(T\left(x^{2}\right)+x^{\prime} T(x)\right)=0$
From the above relation taking
$a=T\left(x^{2}\right)+T(x) x^{\prime}, x=y, b=x, c=T\left(x^{2}\right)+x^{\prime} T(x)$
Now applying lemma 2.1 follows that
$\left(T\left(x^{2}\right)+T(x) x^{\prime}+T\left(x^{2}\right)+x^{\prime} T(x)\right) y x=0$
$\left(2 T\left(x^{2}\right)+T(x) x^{\prime}+x^{\prime} T(x)\right) y x=0$
Taking $A(x)=2 T\left(x^{2}\right)+T(x) x^{\prime}+x^{\prime} T(x)$, then the above relation becomes,
$A(x) y x=0$
Applying y by $x y A(x)$ in (11) gives $A(x) x y A(x) x=0$
By the semiprimeness of $S, A(x) x=0$
On the other hand left multiplying (11) by x and right multiplying by $A(x)$
we obtain $x A(x) y x A(x)=0$
Since S is semiprime, $\quad x A(x)=0$
Putting $x+y$ for x in (12) we get
$A(x+y)(x+y)=0$
$A(x) y+A(y) x+B(x, y) x+B(x, y) y+A(x) x+A(y) y=0$ where
$B(x, y)=2 T(x y+y x)+T(x) y^{\prime}+T(y) x^{\prime}+y^{\prime} T(y)+y^{\prime}(T(x)$
Using (12) the above relation reduces to
$A(x) y+A(y) x+B(x, y) x+B(x, y) y$

Replacing x by x^{\prime} and using the result $a+b=0$ then $a=\mathrm{b}^{\prime}$, we get $A(x) y+B(x, y) x=0$
Right multiplication of the above relation by $A(x)$ gives because of (13)
$A(x) y A(x)=0 \forall x, y \in S$
By the semiprimeness of S, we get $A(x)=0$.
Thus $2 T\left(x^{2}\right)+T(x) x^{\prime}+x^{\prime} T(x)=0$
$2 T\left(x^{2}\right)=T(x) x+x T(x)$
This completes the proof.
Lemma 2.3. Let S be a 2-torsion free semiprime semiring and let $T: S \rightarrow S$ be an additive mapping, suppose that $2 T(x y x)=T(x) y x+x y T(x)$ holds for all pairs $x, y \in S$. Then $[T(x), x]=0$
Proof: We have $2 T(x x)=T(x) x+x T(x)$
Linearizing the above by replacing x by $x+y$ we obtain
$2 T(x y+y x)=T(x) y+T(y) x+x T(y)+y T(x)$
Replacing y by $2 x y x$ in (15) and using the assumption of the theorem yields

$$
\begin{align*}
4 T\left(x^{2} y x+x y x^{2}\right)= & 2 T(x) x y x+2 T(x y x) x+x 2 T(x y x)+2 x y x T(x) \tag{15}\\
= & 2 T(x) x y x+(T(x) y x+x y T(x)) x+x(T(x) y x \\
& +x y T(x))+2 x y x T(x) \\
2\left(2 T\left(x^{2} y x+x y x^{2}\right)\right)= & 2 T(x) x y x+T(x) y x^{2}+x y T(x) x+x T(x) y x \\
& +x^{2} y T(x)+2 x y x T(x) \tag{16}
\end{align*}
$$

Applying (10) in (16) gives

$$
\begin{gather*}
2\left(T(x) x y x+T(x) y x^{2}+x^{2} y T(x)+x y x T(x)\right)=2 T(x) x y x+T(x) y x^{2} \\
+x y T(x) x+x T(x) y x+x^{2} y T(x)+2 x y x T(x) \\
T(x) y x^{2}+x^{2} y T(x)=x y T(x) x+x T(x) y x \tag{17}
\end{gather*}
$$

Replacing y by $y x$ in (17) we arrive at

$$
\begin{align*}
& T(x) y x^{3}+x^{2} y x T(x)=x y x T(x) x+x T(x) y x^{2} \forall x, y \in S \\
& T(x) y x^{3}=x y x T(x) x+x T(x) y x^{2}+x^{2} y^{\prime} x T(x) \forall x, y \in S \tag{18}
\end{align*}
$$

Right multiplication of (17) by x yields,

$$
\begin{equation*}
T(x) y x^{3}+x^{2} y T(x) x=x y T(x) x^{2}+x T(x) y x^{2} \tag{19}
\end{equation*}
$$

Substituting (18) with (19), we get

$$
\begin{aligned}
& x y x T(x) x+x T(x) y x^{2}+x^{2} y^{\prime} x T(x)+x^{2} y T(x) x=x y T(x) x^{2}+x T(x) y x^{2} \\
& x y x T(x) x+x^{2} y^{\prime} x T(x)+x^{2} y T(x) x=x y T(x) x^{2}+x T(x) y x^{2}+x T(x) y^{\prime} x^{2} \\
& x y x T(x) x+x^{2} y\left(T(x) x+x^{\prime} T(x)\right)=x y T(x) x^{2}
\end{aligned}
$$

$$
\begin{equation*}
x^{2} y[T(x), x]=x y[T(x), x] x \tag{20}
\end{equation*}
$$

Applying y by $T(x) y$ in (20) leads to

$$
\begin{equation*}
x^{2} T(x) y[T(x), x]=x T(x) y[T(x), x] x \tag{21}
\end{equation*}
$$

Replacing y by y^{\prime} in the above, we get
$x^{2} T(x) y^{\prime}[T(x), x]=x T(x) y^{\prime}[T(x), x] x$
Left multiplication of (20) by $T(x)$ gives

$$
\begin{equation*}
T(x) x^{2} y[T(x), x]=T(x) x y[T(x), x] x \tag{22}
\end{equation*}
$$

Adding (22) with (21), we get

$$
T(x) x^{2} y[T(x), x]+x^{2} T(x) y^{\prime}[T(x), x]=T(x) x y[T(x), x] x+x T(x) y^{\prime}[T(x), x] x
$$

$\left(T(x) x^{2}+x^{\prime 2} T(x)\right) y[T(x), x]=\left(T(x) x+x^{\prime} T(x)\right) y[T(x), x] x$

Correction on "Some Relations Related to Centralizers on Semiprime Semiring,

Vol. 13, Issue 1, 2017"
$\left[T(x), x^{2}\right] y[T(x), x]=[T(x), x] y[T(x), x] x$
$([T(x), x] x+x[T(x), x]) y[T(x), x]=[T(x), x] y[T(x), x] x$
$[T(x), x] x y[T(x), x]+x[T(x), x] y[T(x), x]=[T(x), x] y[T(x), x] x$
Replace $x y$ by y in (20), we get $x y[T(x), x]=y[T(x), x] x$.
The above result becomes
$[T(x), x] y[T(x), x] x+x[T(x), x] y[T(x), x]=[T(x), x] y[T(x), x] x$
$x[T(x), x] y[T(x), x]=[T(x), x] y[T(x), x] x+[T(x), x] y[T(x), x] x^{\prime}$
$x[T(x), x] y[T(x), x]=0$
Substituting $y=y x$ in the above relation
$x[T(x), x] y x[T(x), x]=0 \forall x, y \in S$
By the semiprimeness of $S, \quad x[T(x), x]=0$
Replacing y by $x y$ in (17) gives

$$
\begin{align*}
& T(x) x y x^{2}+x^{2} x y T(x)=x x y T(x) x+x T(x) x y x \\
& T(x) x y x^{2}+x^{3} y T(x)=x^{2} y T(x) x+x T(x) x y x \tag{24}
\end{align*}
$$

Left multiplication of (17) by x we get

$$
x T(x) y x^{2}+x^{3} y T(x)=x^{2} y T(x) x+x^{2} T(x) y x
$$

Replacing y by y^{\prime} in the above relation, we get
$x T(x) y^{\prime} x^{2}+x^{3} y^{\prime} T(x)=x^{2} y^{\prime} T(x) x+x^{2} T(x) y^{\prime} x$
Adding (25) and (24) we obtain

$$
\begin{align*}
{\left[T(x) x+x^{\prime} T(x)\right] y x^{2}=} & x\left[T(x) x+x^{\prime} T(x)\right] y x=0 \tag{25}\\
& {[T(x), x] y x^{2}=x[T(x), x] y x } \tag{26}
\end{align*}
$$

Using (23) in the above relation yields $[T(x), x] y x^{2}=0$
Applying $y T(x)$ for y in (26) we obtain $[T(x), x] y T(x) x^{2}=0$
Right multiplication of (26) by $T(x)$ gives $[T(x), x] y x^{2} T(x)=0$
Replacing y by y^{\prime} in the above relation, we get
$[T(x), x] y^{\prime} x^{2} T(x)=0$
Adding (28) and (27) we get

$$
\begin{align*}
& {[T(x), x] y\left(T(x) x^{2}+x^{\prime 2} T(x)\right)=0} \tag{28}\\
& {[T(x), x] y\left[T(x), x^{2}\right]=0} \\
& {[T(x), x] y([T(x), x] x+x[T(x), x])=0}
\end{align*}
$$

Using (23) in the above relation reduces to

$$
\begin{equation*}
[T(x), x] y[T(x), x] x=0 \tag{29}
\end{equation*}
$$

Putting y by $x y$ in the above implies $[T(x), x] x y[T(x), x] x=0$
Since S is semiprime, $\quad[T(x), x] x=0$
Putting x by $x+y$ in (23) yields
$(x+y)[T(x+y), x+y]=0$
$x[T(x), x]+x[T(x), y]+x[T(y), x]+x[T(y), y]+y[T(x), x]+y[T(x), y]$

$$
\begin{equation*}
+y[T(y), x]+y[T(y), y]=0 \tag{30}
\end{equation*}
$$

Using (23), the above relation reduces to
$x[T(x), y]+[T(y), x]+x[T(y), y]+y[T(x), x]+y[T(x), y]+y[T(y), x]=0$
Replacing x by x^{\prime}, in the above relation implies
$x[T(x), y]+[T(y), x]^{\prime}+x^{\prime}[T(y), y]+y[T(x), x]+y^{\prime}[T(x), y]+y^{\prime}[T(y), x]=0$ (31)
Adding (30) and (31), we get $x[T(x), y]+y[T(x), x]=0$
Left multiplying by $[T(x), x]$ and using (29), we get

$$
[T(x), x] y[T(x), x]=0
$$

By the semiprimeness of S implies, $[T(x), x]=0$.
Theorem 2.1. Let S be a 2-torsion free semiprime semiring. Let $T: S \rightarrow S$ be an additive mapping, suppose that $2 T(x y x)=T(x) y x+x y T(x)$ holds for all $x, y \in S$. Then T is a centralizer.
Proof: We have by Lemma 2.3, $[T(x), x]=0$

$$
\begin{aligned}
& T(x) x+x^{\prime} T(x)=0 \\
& T(x) x=x T(x)
\end{aligned}
$$

Applying the above results in (14) we obtain $2 T\left(x^{2}\right)=2 T(x) x$
Adding $2 T(x) x^{\prime}$ on both sides, we get $T\left(x^{2}\right)+T(x) x^{\prime}=0$
which implies $T\left(x^{2}\right)=T(x) x$.
Similarly $T\left(x^{2}\right)=x T(x)$. This means that T is a Jordan Centralizer. By theorem 4.1 in [10] yields that T is a left and right centralizer. Thus the proof is completed.

REFERENCES

1. M.Bresar and J.Vukman, On some additive mapping in rings with involution, Aequationes Math., 38 (1989) 178-185.
2. M.Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104 (1988) 1003-1006
3. T.Chandramouleeswaran, On derivations of semirings, Advances in Algebra, 3(1) (2010) 123-131.
4. J.S.Golan, Semirings and their Applications, Kluwer Academic Press, (1969).
5. I.N.Herstein, Topics in ring theory, University of Chicago Press, (1969).
6. M.F.Hoque and A.C.Paul, An equation related to centralizers in semiprime gamma rings, Annals of Pure and Applied Mathematics, 1(1) (2012) 84-90.
7. M.F.Hoque and A.C.Paul, Centralizers on semiprime gamma rings, Italian Journal of Pure and Applied Mathematics, 30 (2013) 289-302.
8. M.F.Hoque and A.C.Paul, On centralizers of semiprime gamma rings, International Mathematical Forum, 6(13) (2011) 627-638.
9. P.H.Karvellas, Inversivesemirings, J. Aust. Math. Soc., 18 (1974) $277-288$.
10. D.Mary Florence, R.Murugesan and P.Namasivayam, Centralizers on semiprime semiring, IOSR Journal of Mathematics, 12 (2016) 86-93.
11. D.Mary Florence, R.Murugesan and P.Namasivayam, Some Relations Related to Centralizers on Semiprime Semiring, Annals of Pure and Applied Mathematics, 13(1) (2017) 119-124.
12. K.Ray Chowdhury, A.Sultana, N.K.Mitra and A.F.M.K.Khan, Some structural properties of semirings, Annals of Pure and Appl. Mathematics, 5(2) (2014) 158-167.
13. T.Vasanthi and N.Sulochana, On the additive and multiplicative structure of semirings, Annals of Pure and Applied Mathematics, 3(1) (2013) 78-84.
14. J.Vukman and I.Kosi-ulbl, On centralizers of semiprime rings, Aequationes Math., 66 (3) (2003) 277-283.
15. J.Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae, 40 (3) (1999) 447-456.
16. J.Vukman, Centralizers on semiprime rings, Comment Math. Univ. Carolinae, 42(2) (2001) 237-245.

Correction on "Some Relations Related to Centralizers on Semiprime Semiring, Vol. 13, Issue 1, 2017"
17. B.Zalar, On centralizers of semiprime rings, Commentationes Mathematicae Universitatis Carolinae, 32(4) (1991) 609-614

