www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/apam.638v20n2a5

On Solutions to the Diophantine Equation $7^{x}+10^{y}=z^{2}$ when x, y, z are Positive Integers

Nechemia Burshtein

117 Arlozorov Street, Tel - Aviv 6209814, Israel
Email: anb17@ netvision.net.il
Received 3 November 2019; accepted 25 November 2019
Abstract. We establish that the equation $7^{x}+10^{y}=z^{2}$ has no solutions in positive integers x, y, z.
Keywords: Diophantine equations
AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation

$$
p^{x}+q^{y}=z^{2}
$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds. Among them are for example $[1,2,6,8]$.

Articles of various authors have been written on the equation $p^{x}+(p+A)^{y}=z^{2}$ where $A=4,6,8,10$, and $p, q=p+A$ are primes. For instance $[2,3,4,5]$. In this paper, we investigate the equation $p^{x}+(p+A)^{y}=z^{2}$ where p is prime and A is odd, namely $7^{x}+10^{y}=z^{2}$.

The values x, y, z are positive integers.

2. On the equation $\boldsymbol{7}^{x}+10^{y}=z^{2}$

In the following theorem it is shown that $7^{x}+10^{y}=z^{2}$ has no solutions.
Theorem 2.1. The equation

$$
\begin{equation*}
7^{x}+10^{y}=z^{2} \tag{1}
\end{equation*}
$$

has no solutions in positive integers x, y, z.
Proof: We shall assume that (1) has solutions with positive integers x, y, z, and reach a contradiction.

Nechemia Burshtein

By our assumption z is always odd. The last digit of 7^{x} is one of $1,3,7,9$, whereas the last digit of 10^{y} is 0 .

Suppose that $x=2 t+1$ where t is an integer. It is then easily seen that
7^{1} ends in $7, \quad 7^{3}$ ends in $3, \quad 7^{5}$ ends in $7, \quad 7^{7}$ ends in 3 , and so on. Thus, for all values $y, 7^{2 t+1}+10^{y}=z^{2}$ ends either in the digit 3 or in the digit 7. Since no odd value z^{2} ends in the digit 3 or in the digit 7 , it follows that $x \neq 2 t+1$. Therefore, by our assumption x must be even. For y, we shall consider two cases, namely y even and y odd. The following values m, n are integers.

Suppose that $x=2 m$ is even, $y=2 n$ is even.
From (1) we obtain that $7^{2 m}+10^{2 n}=z^{2}$ implying

$$
7^{2 m}=z^{2}-10^{2 n}=\left(z-10^{n}\right)\left(z+10^{n}\right) .
$$

Denote

$$
z-10^{n}=7^{A}, \quad z+10^{n}=7^{B}, \quad A<B, \quad A+B=2 m,
$$

where A, B are integers. Then $7^{B}-7^{A}$ yields

$$
\begin{equation*}
2 \cdot 10^{n}=7^{A}\left(7^{B-A}-1\right) . \tag{2}
\end{equation*}
$$

The factor 7^{A} divides the right side of (2). If $A>0$ then $7^{A} \nmid 2 \cdot 10^{n}$. Therefore $A=0$ in (2), and hence $B=2 m$. This then implies

$$
\begin{equation*}
2 \cdot 10^{n}=7^{B}-1=7^{2 m}-1=\left(7^{m}-1\right)\left(7^{m}+1\right) . \tag{3}
\end{equation*}
$$

It is easily seen for all values $m=1,2,3, \ldots$, that $3 \mid\left(7^{m}-1\right)$. Hence, the right side of (3) is a multiple of 3 , whereas the left side of (3) $2 \cdot 10^{n}$ is not. Therefore, (3) is impossible and $y \neq 2 n$.

Suppose that $x=2 m$ is even, and $y=2 n+1$ is odd.
Then from (1) we have $7^{2 m}+10^{2 n+1}=z^{2}$ or

$$
10^{2 n+1}=z^{2}-7^{2 m}=z^{2}-\left(7^{m}\right)^{2}=\left(z-7^{m}\right)\left(z+7^{m}\right) .
$$

Denote

$$
z-7^{m}=10^{C}, \quad z+7^{m}=10^{D}, \quad C<D, \quad C+D=2 n+1
$$

where C, D are integers. Then $10^{D}-10^{C}$ results in

$$
\begin{equation*}
2 \cdot 7^{m}=10^{C}\left(10^{D-C}-1\right) \tag{4}
\end{equation*}
$$

Since both values 7^{m} and $z=7^{m}+10^{C}$ are always odd, it follows that $C \neq 0$, and hence C >0. This implies therefore that the right side of (4) is a multiple of 5 , whereas the left side (4) $2 \cdot 7^{m}$ is not. Thus (4) is impossible, and $y \neq 2 n+1$.

We have shown that no value y satisfies the equation $7^{x}+10^{y}=z^{2}$. Our assumption that (1) has solutions is therefore false.

The equation $7^{x}+10^{y}=z^{2}$ has no solutions as asserted.

3. Conclusion

It is observed that the equation $p^{x}+(p+3)^{y}=z^{2}$ has solutions for various primes p when $x=y=1$. The first five such solutions are:
$3^{1}+6^{1}=3^{2}, \quad 11^{1}+14^{1}=5^{2}, \quad 23^{1}+26^{1}=7^{2}, \quad 59^{1}+62^{1}=11^{2}, \quad 83^{1}+86^{1}=13^{2}$.

Two questions may now be raised.

On Solutions to the Diophantine Equation $7^{x}+10^{y}=z^{2}$ when x, y, z are Positive Integers

Question 1. Are there infinitely many solutions of $p^{x}+(p+3)^{y}=z^{2}$ in which p is an odd prime, and $x=y=1$?

We presume that the answer is affirmative.
Question 2. Are there solutions of $p^{x}+(p+3)^{y}=z^{2}$ in which $p>3$ is prime, and at least one of x, y is larger than 1 ?

When $p=3$, we have the solution $3^{2}+(3+3)^{3}=15^{2}$, and when $p=2$, we have the solution $2^{2}+(2+3)^{1}=3^{2}$.

REFERENCES

1. N . Burshtein, Solutions of the diophantine equation $p^{x}+(p+6)^{y}=z^{2}$ when $p,(p+$ 6) are primes and $x+y=2,3,4$, Annals of Pure and Applied Mathematics, 17(1) (2018) 101 - 106.
2. N. Burshtein, The diophantine equation $p^{x}+(p+4)^{y}=z^{2}$ when $p>3, p+4$ are primes is insolvable in positive integers x, y, z, Annals of Pure and Applied Mathematics, 16(2) (2018) 283 - 286.
3. S. Kumar, D. Gupta and H. Kishan, On the non-linear diophantine equations $31^{x}+41^{y}=z^{2}$ and $61^{x}+71^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18 (2) (2018) $185-188$.
4. S. Kumar, S. Gupta and H. Kishan, On the non-linear diophantine equation $61^{x}+$ $67^{y}=z^{2}$ and $67^{x}+73^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18 (1) (2018) 91-94.
5. F. N. de Oliveira, On the solvability of the diophantine equation $p^{x}+(p+8)^{y}=z^{2}$ when $p>3$ and $p+8$ are primes, Annals of Pure and Applied Mathematics, 18 (1) (2018) 9-13.
6. B. Sroysang, More on the diophantine equation $4^{x}+10^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 91 (1) (2014) 135-138.
7. B. Sroysang, More on the diophantine equation $2^{x}+3^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 84 (2) (2013) 133 - 137.
8. A. Suvarnamani, A. Singta and S. Chotchaisthit, On two diophantine equations $4^{x}+$ $7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Sci. Technol. RMUTT J., 1 (1) (2011) $25-28$.
