Annals of Pure and Applied Mathematics Vol. 20, No. 2, 2019, 75-77 ISSN: 2279-087X (P), 2279-0888(online) Published on 27 November 2019 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.638v20n2a5

Annals of **Pure and Applied Mathematics**

On Solutions to the Diophantine Equation $7^{x} + 10^{y} = z^{2}$ when x, y, z are Positive Integers

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: <u>anb17@netvision.net.il</u>

Received 3 November 2019; accepted 25 November 2019

Abstract. We establish that the equation $7^x + 10^y = z^2$ has no solutions in positive integers x, y, z.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation

$$p^x + q^y = z^2$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds. Among them are for example [1, 2, 6, 8].

Articles of various authors have been written on the equation $p^x + (p + A)^y = z^2$ where A = 4, 6, 8, 10, and p, q = p + A are primes. For instance [2, 3, 4, 5]. In this paper, we investigate the equation $p^x + (p + A)^y = z^2$ where p is prime and A is odd, namely $7^x + 10^y = z^2$.

The values x, y, z are positive integers.

2. On the equation $7^x + 10^y = z^2$

In the following theorem it is shown that $7^x + 10^y = z^2$ has no solutions.

Theorem 2.1. The equation

$$7^x + 10^y = z^2 \tag{1}$$

has no solutions in positive integers x, y, z.

Proof: We shall assume that (1) has solutions with positive integers x, y, z, and reach a contradiction.

Nechemia Burshtein

By our assumption z is always odd. The last digit of 7^x is one of 1, 3, 7, 9, whereas the last digit of 10^y is 0.

Suppose that x = 2t + 1 where t is an integer. It is then easily seen that 7^1 ends in 7, 7^3 ends in 3, 7^5 ends in 7, 7^7 ends in 3, and so on. Thus, for all values y, $7^{2t+1} + 10^y = z^2$ ends either in the digit 3 or in the digit 7. Since no odd value z^2 ends in the digit 3 or in the digit 7, it follows that $x \neq 2t + 1$. Therefore, by our assumption x must be even. For y, we shall consider two cases, namely y even and y odd. The following values m, n are integers.

Suppose that x = 2m is even, y = 2n is even. From (1) we obtain that $7^{2m} + 10^{2n} = z^2$ implying $7^{2m} = z^2 - 10^{2n} = (z - 10^n)(z + 10^n).$

Denote

$$z - 10^{n} = 7^{A}, \quad z + 10^{n} = 7^{B}, \quad A < B, \quad A + B = 2m,$$

where A, B are integers. Then $7^{B} - 7^{A}$ yields
 $2 \cdot 10^{n} = 7^{A}(7^{B-A} - 1).$ (2)

The factor 7^A divides the right side of (2). If A > 0 then $7^A \nmid 2 \cdot 10^n$. Therefore A = 0 in (2), and hence B = 2m. This then implies

$$2 \cdot 10^n = 7^B - 1 = 7^{2m} - 1 = (7^m - 1)(7^m + 1).$$
(3)

It is easily seen for all values m = 1, 2, 3, ..., that $3 \mid (7^m - 1)$. Hence, the right side of (3) is a multiple of 3, whereas the left side of (3) $2 \cdot 10^n$ is not. Therefore, (3) is impossible and $y \neq 2n$.

Suppose that x = 2m is even, and y = 2n + 1 is odd. Then from (1) we have $7^{2m} + 10^{2n+1} = z^2$ or $10^{2n+1} = z^2 - 7^{2m} = z^2 - (7^m)^2 = (z - 7^m)(z + 7^m).$

Denote

 $z - 7^{m} = 10^{C}, \qquad z + 7^{m} = 10^{D}, \qquad C < D, \qquad C + D = 2n + 1,$ where C, D are integers. Then $10^{D} - 10^{C}$ results in $2 \cdot 7^{m} = 10^{C} (10^{D-C} - 1).$ (4)

Since both values 7^m and $z = 7^m + 10^C$ are always odd, it follows that $C \neq 0$, and hence C > 0. This implies therefore that the right side of (4) is a multiple of 5, whereas the left side (4) $2 \cdot 7^m$ is not. Thus (4) is impossible, and $y \neq 2n + 1$.

We have shown that no value y satisfies the equation $7^x + 10^y = z^2$. Our assumption that (1) has solutions is therefore false.

The equation $7^{x} + 10^{y} = z^{2}$ has no solutions as asserted.

3. Conclusion

It is observed that the equation $p^x + (p+3)^y = z^2$ has solutions for various primes p when x = y = 1. The first five such solutions are: $3^1 + 6^1 = 3^2$, $11^1 + 14^1 = 5^2$, $23^1 + 26^1 = 7^2$, $59^1 + 62^1 = 11^2$, $83^1 + 86^1 = 13^2$.

Two questions may now be raised.

On Solutions to the Diophantine Equation $7^{x} + 10^{y} = z^{2}$ when x, y, z are Positive Integers

Question 1. Are there infinitely many solutions of $p^x + (p+3)^y = z^2$ in which p is an odd prime, and x = y = 1?

We presume that the answer is affirmative.

Question 2. Are there solutions of $p^x + (p+3)^y = z^2$ in which p > 3 is prime, and at least one of x, y is larger than 1 ?

When p = 3, we have the solution $3^2 + (3 + 3)^3 = 15^2$, and when p = 2, we have the solution $2^2 + (2 + 3)^1 = 3^2$.

REFERENCES

- 1. N. Burshtein, Solutions of the diophantine equation $p^x + (p + 6)^y = z^2$ when p, (p + 6) are primes and x + y = 2, 3, 4, *Annals of Pure and Applied Mathematics*, 17(1) (2018) 101 106.
- 2. N. Burshtein, The diophantine equation $p^x + (p + 4)^y = z^2$ when p > 3, p + 4 are primes is insolvable in positive integers *x*, *y*, *z*, *Annals of Pure and Applied Mathematics*, 16(2) (2018) 283 286.
- 3. S. Kumar, D. Gupta and H. Kishan, On the non-linear diophantine equations $31^x + 41^y = z^2$ and $61^x + 71^y = z^2$, Annals of Pure and Applied Mathematics, 18 (2) (2018) 185 188.
- 4. S. Kumar, S. Gupta and H. Kishan, On the non-linear diophantine equation $61^x + 67^y = z^2$ and $67^x + 73^y = z^2$, Annals of Pure and Applied Mathematics, 18 (1) (2018) 91 94.
- 5. F. N. de Oliveira, On the solvability of the diophantine equation $p^{x} + (p + 8)^{y} = z^{2}$ when p > 3 and p + 8 are primes, Annals of Pure and Applied Mathematics, 18 (1) (2018) 9 - 13.
- 6. B. Sroysang, More on the diophantine equation $4^x + 10^y = z^2$, International Journal of Pure and Applied Mathematics, 91 (1) (2014) 135 138.
- 7. B. Sroysang, More on the diophantine equation $2^{x} + 3^{y} = z^{2}$, International Journal of Pure and Applied Mathematics, 84 (2) (2013) 133 137.
- 8. A. Suvarnamani, A. Singta and S. Chotchaisthit, On two diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, *Sci. Technol. RMUTT J.*, 1 (1) (2011) 25 28.