Annals of Pure and Applied Mathematics Vol. 21, No. 1, 2020, 15-17 ISSN: 2279-087X (P), 2279-0888(online) Published on 4 February 2020 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v21n1a2

Annals of **Pure and Applied Mathematics**

On the Diophantine Equations $p^4 + q^3 = z^2$ and $p^4 - q^3 = z^2$ when p, q are Distinct Odd Primes

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: anb17@netvision.net.il

Received 29 December 2019; accepted 30 January 2020

Abstract. In this paper we consider the two equations $p^4 + q^3 = z^2$ and $p^4 - q^3 = z^2$ in which p, q are distinct odd primes, and z is a positive integer. We establish that both equations have no solutions.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation

$$p^x + q^y = z^2$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds. Among them are for example [1, 3, 4].

In this paper, we consider the two equations

$$p^{4} + q^{3} = z^{2}$$

 $p^{4} - q^{3} = z^{2}$

in which p, q are distinct odd primes, and z is a positive integer.

2. The solutions of $p^4 + q^3 = z^2$ and $p^4 - q^3 = z^2$

In Theorem 2.1, we establish that the equations have no solutions.

Theorem 2.1. Suppose that p, q are distinct odd primes, and z is a positive integer. Then, the equations

(a) $p^4 + q^3 = z^2$, (b) $p^4 - q^3 = z^2$ have no solutions.

Proof: (a) Suppose

Nechemia Burshtein

$$p^4 + q^3 = z^2. (1)$$

We shall assume that there exist distinct odd primes p, q, such that (1) has a solution, and reach a contradiction.

Equation (1) yields

Denote

$$q^{3} = z^{2} - p^{4} = z^{2} - (p^{2})^{2} = (z - p^{2})(z + p^{2}).$$

 $z - p^2 = q^A$, $z + p^2 = q^B$, A < B, where A, B are non-negative integers. Then $q^B - q^A$ yields

$$2p^2 = q^A (q^{B-A} - 1). (2)$$

Since p, q are distinct primes, it follows from (2) that A > 0 is impossible, and hence A = 0. When A = 0 then B = 3, and (2) implies $2p^2 = q^3 - 1 = q^3 - 1^3$ or

$$2p^{2} = (q-1)(q^{2}+q+1).$$
(3)

When q = 3 in (3), then $2p^2 = 2 \cdot 13$ which is impossible. Therefore $q \neq 3$, and by our assumption q > 3. Since $2 \nmid (q^2 + q + 1)$ and q > 3, it follows that $2 \mid (q - 1)$. Denote 2M = q - 1 where M > 1 is an integer. Thus, q = 2M + 1 and $q^2 + q + 1 = 4M^2 + 6M + 3$. Then equality (3) results in

$$p^2 = M (4M^2 + 6M + 3), \qquad M > 1.$$
 (4)

The three divisors of p^2 are 1, p, p^2 . It is easily seen that none of these divisors satisfies equality (4). Hence $q \ge 3$, and equality (4) is impossible.

Since no prime q exists which satisfies equation (1), the contradiction derived implies that our assumption is false, and the equation $p^4 + q^3 = z^2$ has no solutions as asserted.

This completes the proof of (a).

(b) Suppose

$$p^4 - q^3 = z^2. (5)$$

We shall assume that there exist distinct odd primes p, q, such that (5) has a solution, and reach a contradiction.

Equation (5) implies

$$q^{3} = p^{4} - z^{2} = (p^{2})^{2} - z^{2} = (p^{2} - z)(p^{2} + z).$$

Denote

$$p^2 - z = q^C$$
, $p^2 + z = q^D$, $C < D$, $C + D = 3$,
where *C*, *D* are non-negative integers. Then $q^C + q^D$ results in

$$2p^2 = q^C (q^{D-C} + 1). (6)$$

Since p, q are distinct primes, it follows from (6) that C > 0 is impossible. Thus C = 0. When C = 0 then D = 3, and (6) yields $2p^2 = q^3 + 1 = q^3 + 1^3$ or

$$2p^{2} = (q+1)(q^{2}-q+1).$$
(7)

On the Diophantine Equations $p^4 + q^3 = z^2$ and $p^4 - q^3 = z^2$ when p, q are Distinct Odd Primes

All odd primes q satisfy:

(i) q+1 > 3, and q+1 is even. (ii) $q^2 - q + 1 > q + 1$.

(II) q - q + 1 > q + 1.

The term $2p^2$ has six divisors, namely: 1, 2, p, 2p, p^2 , $2p^2$. Firstly, by (i) $q + 1 \neq 1, 2$ since q + 1 > 3, and $q + 1 \neq p$, p^2 since q + 1 is even. Secondly, when q + 1 = 2p, $2p^2$, then respectively $q^2 - q + 1 = p$, 1. But this is in contradiction of (ii) since $q^2 - q + 1 > q + 1$. Thus, $q + 1 \neq 2p$, $2p^2$, and equality (7) is impossible.

Our assumption is therefore false, and the equation $p^4 - q^3 = z^2$ has no solutions as asserted.

This concludes the proof of (b).

The proof of Theorem 2.1 is complete. \Box

3. Conclusion

In this paper, we have established for distinct odd primes p, q, that the equations $p^x + q^y = z^2$ and $p^x - q^y = z^2$ have no solutions when x = 4 and y = 3. In this case x + y = 7. Suppose that p, q also include the even prime 2. When x + y < 7, both equations have many solutions such as: $2^4 + 3^2 = 5^2$, $3^2 + 7^1 = 4^2$, $3^4 + 19^1 = 10^2$, $5^3 + 19^1 = 12^2$, $5^5 + 11^1 = 56^2$, $5^5 + 239^1 = 58^2$, $7^5 + 617^1 = 132^2$, $3^3 - 2^1 = 5^2$, $5^2 - 3^2 = 4^2$, $5^3 - 2^2 = 11^2$, $7^2 - 13^1 = 6^2$, $7^3 - 19^1 = 18^2$. When x + y > 7, we have $3^7 + 313^1 = 50^2$, and with the prime 2: $2^7 + 41^1 = 13^2$, $2^7 - 7^1 = 11^2$, $2^7 - 47^1 = 9^2$, $2^8 - 31^1 = 15^2$, $2^9 + 17^1 = 23^2$, $2^9 + 113^1 = 25^2$, $2^9 - 431^1 = 9^2$.

It seems that both equations have infinitely many solutions in particular when the prime 2 is included.

REFERENCES

- 1. N. Burshtein, All the solutions of the diophantine equations $p^x + p^y = z^2$ and $p^x p^y = z^2$ when $p \ge 2$ is prime, Annals of Pure and Applied Mathematics, 19 (2) (2019) 111 119.
- 2. N. Burshtein, On solutions of the diophantine equations $p^4 + q^4 = z^2$ and $p^4 q^4 = z^2$, when p and q are primes, Annals of Pure and Applied Mathematics, 19 (1) (2019) 1-5.
- 3. N. Burshtein, On solutions of the diophantine equations $p^3 + q^3 = z^2$ and $p^3 q^3 = z^2$, when p,q are primes, Annals of Pure and Applied Mathematics, 18 (1) (2018) 51 57.
- 4. S. Chowla, J. Cowles and M. Cowles, On $x^3 + y^3 = D$, *Journal of Number Theory*, 14 (1982) 369 373.
- 5. B. Poonen, Some Diophantine equations of the form $x^n + y^n = z^m$, Acta Arith., 86 (1998) 193–205.
- 6. B. Sroysang, On the diophantine equation $3^x + 17^y = z^2$, *Int. J. Pure Appl. Math.*, 89 (2013) 111 114.