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Abstract. In this paper we consider the two equatiphs ¢° = Z and p*—¢® = Z in
which p, g are distinct odd primes, and is a positive integer. We establish that both
equations have no solutions.
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1. Introduction
The field of Diophantine equations is ancient, yvastd no general method exists to
decide whether a given Diophantine equation hassahyions, or how many solutions.

The famous general equation
P+ =2

has many forms. The literature contains a vergeatumber of articles on non-linear
such individual equations involving particular pesnand powers of all kinds. Among
them are for example [1, 3, 4].

In this paper, we consider the two equations
pi+a=2
p4 _qs =7
in which p, g are distinct odd primes, argl is a positive integer.

2. The solutions of p*+?=7Z and p*~¢*= 7
In Theorem 2.1, we establish that the equations havsolutions.

Theorem 2.1.Suppose thgp, q are distinct odd primes, and is a positive integer.
Then, the equations

@ p+g’=7

by p'-g’=7

have no solutions.

Proof: (a) Suppose
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p+aq’ =2 (1)
We shall assume that there exist distinct odd wimpeg, such that (1) has a solution,
and reach a contradiction.

Equation (1) yields
q¢=Z-p' =Z- ()’ = @-p)(z+p).

Denote
z-p’=q", z+p*=¢f, A<B, A+B=3,
where A, B are non-negative integers. Thgh—q" yields
2p* = d' (¢~ ). (2

Since p, g are distinct primes, it follows from (2) that > 0 is impossible, and hence
A=0. When A=0 thenB=3, and (2) impliesi=q’-1=g*- 2 or
2" =@-1E° +a+ 1) 3)(

When g=3 in (3), then #=2-13 which is impossible. Therefoyet 3, and by
our assumptiom > 3. Since 2 (° +q+ 1) and g > 3, it follows that 2] (g-12).
Denote M = g1 whereM >1 isaninteger. Thugg=2M +1 andg?+q+ 1=
4M? + 6M + 3. Then equality (3) results in

p’ = M (4M?+ 6M + 3), M > 1. (4)

The three divisors ofp? are 1, p, p° It is easily seen that none of these divisors
satisfies equality (4). Hencer 3, and equality (4) is impossible.

Since no primeq exists which satisfies equation (1), the catiotion derived
implies that our assumption is false, and the éguap* + g° = Z has no solutions as
asserted.

This completes the proof ¢&).

(b) Suppose

p'-g’= 2. (5)
We shall assume that there exist distinct odd ®impgeq, such that (5) has a solution,
and reach a contradiction.

Equation (5) implies
q’=p'-Z = 0’ -Z=E"-2(p°+2).

Denote
p’-z=4", p*+z=0", C<D, C+D=3,
where C, D are non-negative integers. TheyT + g° results in
2p* = (g7 +1). (6)

Sincep, q are distinct primes, it follows from (6) th@t > 0 is impossible. Thu€ = 0.
When C=0 thenD =3, and (6) yields@= gq*+1=¢*+2* or

=@+ 1E-q+1). @)
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All odd primes q satisfy:
® g+1>3, andg+ 1 iseven.
(i) o-g+1>q+1.

The term p? has six divisors, namely: 1, B, 2p, p°, 20°

Firstly, by () q+1#1, 2 sinceq+1>3, andq+1 # p, p° sinceq+ 1 is even.
Secondly, wherg+ 1= 2, 20 then respectivelyq®—q+ 1 =p, 1. Butthisis in
contradiction of (i) sincef’ —q+ 1> q+ 1. Thus,q+ 1+ 2p, 20°, and equality (7)
is impossible.

Our assumption is therefore false, and the equapdr o° = Z has no solutions as
asserted.

This concludes the proof db).
The proof of Theorem 2.1 is complete. O

3. Conclusion

In this paper, we have established for distiultt primeg, g, that the equations

p*+ ¢ =7 and p*— @ =Z have no solutions wher =4 andy = 3. In this cas& +y
= 7. Suppose thap, g also include the even prime 2. Wheny < 7, both equations
have many solutions such as* 23=5, F+ 7 =4, 3 +19=1C¢, 5+ 19= 12
5°+11'=56, +23¢ =58, ?+617=137, 3$-2'=5, 5-F=4 5-2=
172, 7-13= 6, 7-19=18 When x+y>7, we have 3+ 313 =5F, and
with the prime 2: 2+ 41'=13%, 2-7 =17 2 -47=9, 2-31=1%, 2+ 17=
2%, 2 +113 =25, 2-431=¢.

It seems that both equations have infinitalgny solutions in particular when the
prime 2 is included.
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