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Abstract.   In this paper we consider the two equations p4 + q3 = z2 and  p4 – q3  =  z2  in 
which  p, q  are distinct odd primes, and  z  is a positive integer. We establish that both 
equations have no solutions. 
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions. 
 
       The famous general equation 

px + qy = z2 

has many forms.  The literature contains a very large number of articles on non-linear 
such individual equations involving particular primes and powers of all kinds.  Among 
them are for example [1, 3, 4]. 
 
       In this paper, we consider the two equations  

p4 + q3 = z2 
p4 – q3 = z2 

in which  p, q  are distinct odd primes, and  z  is a positive integer. 
 
2.   The solutions of   p4 + q3 = z2  and  p4 – q3  =  z2 
In Theorem 2.1, we establish that the equations have no solutions. 
 
Theorem 2.1. Suppose that p, q  are distinct odd primes,  and  z  is a positive integer.  
Then, the equations  
(a)        p4 + q3 = z2, 
(b)        p4 – q3  =  z2 
have no solutions. 
 
Proof:    (a)  Suppose  



Nechemia Burshtein 

16 
 

p4 + q3  =  z2.                                                    (1) 
We shall assume that there exist distinct odd primes  p, q,  such that  (1)  has a solution, 
and reach a contradiction. 
 
Equation  (1)  yields 

q3 = z2 – p4  =  z2  – (p2)2  =  (z – p2)( z + p2). 
Denote 

z – p2 = qA,                        z + p2 = qB,          A < B,           A + B = 3, 
where  A, B  are non-negative integers.  Then  qB – qA   yields 

2p2  =  qA (qB–A  –  1).                                                     (2) 

Since  p, q  are distinct primes,  it follows from  (2)  that  A  >  0  is impossible, and hence  
A = 0.  When   A = 0  then  B = 3,  and  (2)  implies  2p2 = q3 – 1 = q3 – 13  or   

                                                       2p2  = (q – 1)(q2 + q + 1).                                            (3) 

When  q = 3  in  (3),  then   2p2 = 2 ∙	13  which  is  impossible.  Therefore q ≠ 3,  and by 

our assumption q > 3.  Since  2 ∤ (q2 + q + 1)  and  q > 3,  it follows that  2 | (q – 1). 
Denote  2M  =  q– 1 where  M  > 1  is an integer.  Thus,  q = 2M + 1  and  q2 + q + 1 = 
4M2 + 6M + 3.  Then equality  (3)  results in  

p2  =  M  (4M2 + 6M + 3),                   M  > 1.                             (4) 

The three divisors of  p2  are  1,  p,  p2.  It is easily seen that none of these divisors 
satisfies equality  (4).  Hence q ≯ 3,  and equality  (4)  is impossible. 
 
       Since no prime  q  exists which satisfies equation  (1),  the contradiction derived 
implies that our assumption is false, and the equation  p4 + q3 = z2  has no solutions as 
asserted. 
 
This completes the proof of (a). 
 
(b)  Suppose 

p4 – q3  =  z2.                                                               (5) 

We shall assume that there exist distinct odd primes  p, q, such that  (5)  has a solution, 
and reach a contradiction.  
 
Equation  (5)  implies 

q3 = p4 – z2  =  (p2)2  – z2 = (p2 – z)(p2 + z). 
Denote 

p2 – z = qC,           p2 + z = qD,               C < D,               C + D = 3, 

where  C, D  are non-negative integers.  Then   qC  + qD  results  in 

  2p2  =  qC (qD–C  + 1).                                        (6) 

Since p, q are distinct primes, it follows from  (6)  that C  > 0  is impossible. Thus  C = 0.  
When  C = 0  then  D = 3,  and  (6)  yields  2p2 =  q3 + 1 = q3 + 13   or 

                                                          2p2 = (q + 1)(q2 – q + 1).                                         (7) 
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All odd primes  q  satisfy: 
(i)        q + 1 > 3,   and   q + 1  is even.  
(ii)       q2  – q + 1 > q + 1. 
 
The term  2p2  has  six divisors, namely:  1,  2,  p,  2p,  p2,  2p2.   
Firstly,  by  (i)  q + 1 ≠ 1, 2  since  q + 1 > 3,  and  q + 1  ≠  p,  p2  since  q + 1  is even.   
Secondly,  when  q + 1 =  2p,  2p2,  then respectively   q2 – q + 1  =  p,  1.  But this is in 
contradiction of  (ii)  since  q2  – q + 1 >  q + 1.  Thus,  q + 1 ≠  2p,  2p2,  and equality  (7) 
is impossible. 
 
Our assumption is therefore false, and the equation  p4 – q3  =  z2 has no solutions as 
asserted. 

This concludes the proof of  (b). 

The  proof  of  Theorem  2.1  is complete.                   □ 
 
3.   Conclusion 
In this paper,  we  have  established  for distinct odd primes p, q, that the  equations 
px + qy = z2  and  px – qy = z2  have no solutions  when  x = 4  and  y = 3. In this case x + y 
= 7.  Suppose that  p, q  also include the even prime  2.  When x + y < 7,  both equations 
have many solutions such as:  24 + 32 = 52,  32 + 71 = 42,  34 + 191 = 102,  53 + 191 = 122,  
55 + 111 = 562,  55 + 2391 = 582,  75 + 6171 = 1322,  33 – 21 = 52,  52 – 32 = 42,  53 – 22 = 
112,  72 – 131 =  62,  73 – 191 = 182.  When   x + y > 7,   we have  37 + 3131 = 502,  and 
with the prime  2:  27 + 411 = 132,  27 – 71 = 112,  27 – 471 = 92,  28 – 311 = 152,  29 + 171 = 
232,  29  + 1131 = 252,  29 – 4311 = 92.   

       It seems that both equations have infinitely many solutions in particular when the 
prime 2  is included. 
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