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Abstract. In this paper, we introduce the concept of tripdlezy bi ideal of a near ring,
which is a generalisation of tripolar fuzzy setzZy bi ideal of a near ring. We would like
to study few properties of.it
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1. Introduction

The notion of near ring was introduced by Dicks8hifi 1905. Fuzzy ideals in near rings
were studied by Zaid [1]. The concept of bi idea $emi groups was introduced by
Good and Hughes [4]. The notion of bi ideals inoa&give rings were introduced by
Lajos and Szasz [5]. Bi ideals in near rings wagmgiby Chelvam and Ganesan [15].
Senapati, et al. [13] studied cubic subalgebrascabit closed ideals of B-algebras. Rafi
and Venkateshwarlu [11] gave a relation on alméstibutive lattices. Concept of fuzzy
set introduced by Zadeh [16]. Since then many eibeis have been given like
intuitionistic fuzzy sets, interval valued fuzzytsebipolar sets and so on. Intuitionistic
fuzzy sets have been introduced by Attanosov §lvam and Nagalakshmi [14]
discussed fuzzy PMS ideals in PMS algebras. Nagjretiel. [8] gave a note on fuzzy bi
ideals in ternary semigroups. Senapati, et al. [bRjated the notion of intuitionistic
fuzzifications of ideals in BG-algebras. Lee [6froduced the concept of bipolar valued
fuzzy sets. Bipolar fuzzy set is an extension udzf/ set whose membeshipp degree
range is [-1,1].

The concept of tripolar fuzzy set has been intredusy Rao [7]. Tripolar fuzzy
set is a generalisation of fuzzy set, intuitiomishiizzy set and bipolar fuzzy set. He
introduced the concept of tripolar fuzzy interigledls of a gamma semi group. The
tripolar concept is useful in studying the releyantlevant and the implicit counter
elements. Swamy, et al. [9] introduced the notibtripolar fuzzy ideals of a near ring. In
this paper we wish to introduce the concept obtepfuzzy bi ideal of a near ring which
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is a generalization of tripolar fuzzy set, fuzzyitheal of near ring. We also intend to
study some of its properties. Throughout the p&pdenotes a right near ring.

2. Preliminaries
Definition 2.1. [10] A Near ring (right) is a non-empty $etwith two binary operations
“+" and “.” satisfying the following axioms:

i) (R,+) is agroup (not necessarily abelian)

i) (R,.) is asemigroup
i) (y+2x=yx+ zforall x,y,z0 R

Definition 2.2. An ideal of a near rinR is a subset of R such that
i) (I,+) is anormal subgroup ¢, +)
i) IROI
i) x(y+i)—xyO Iforallidl andx, yOR

Definition 2.3. [15] A subgroup of (R,+) satisfying IRI (" (IR) 1 O | is called a bi
ideal ofR.

Definition 2.4. [16] A mapping /. N - [0,1] is called a fuzzy subset b

Definition 2.5. [1] A fuzzy subset/ of a near rindR is called a fuzzy sub near ringRf
if

) p(x=y)=min{u( R, 4( Y}
i) p(xy) 2min{g Q, x( Y} forall x, yOO R.

Definition 2.6. A fuzzy sub near ring/is a fuzzy ideal of a near ririgif
) p(y+x=y)zu(x,
i) p(xy) = p(x),
i) p(x(y+i)—xy) = u(i for all x,y,i00R.

Definition 2.7. A fuzzy subsetu of Ris called a fuzzy bi ideal &%, if

) p(x=y)=min{u( 3, (Y} ,
i) p(xy2) 2 min{u( 3, 1 3} .

Definition 2.8. Let M andN be two near rings. A mappin: M - N is said to be a
near ring homomaorphism if

) f(x+y)=f(x0+ f(y,
i) f(xy)= f(X f(y forall x, y(l M.
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Definition 2.9. Let @:M — N be a homomorphism of near rings ahtle a fuzzy
subset oM. Theng(f)(y) = sup f (x),fg™ (y)# C

g (y)
= 0, otherwise.
We call ¢ f) is the image off underg.

Definition 2.10. [6] A bipolar fuzzy setw = (u*, ™) ={(x, 1" (X), £~ (X)) : xO X},
where " : X - [0,1] and ™ : X - [-1,0] are membership functiong:” (x) is a
degree of membership of the bipolar fuzzy get {( x, " (X), 1~ (X)) : x(O X} and
M~ (X) is a degree of non-membership of the bipolaryiset

H={0x 17 (), 17 (X)) xU X}

Definition 2.11. [7] A fuzzy subseT of a universe seX is said to be a tripolar fuzzy set,
if

T={(x (3 B3, yo( )/ X0 Xan@<a,( K+ B )1, whe

a;: X - [0,2,5;: X - [0,1],); : X - [-1,0]. The membership degreax;(X)
characterises the extent that the elememttisfies to the property corresponding to
tripolar fuzzy sefl, B; (X)characterises the extent that the elenxesutisfies to the not

property (irrelevant) corresponding to tripolar ZyzsetT and )4 (X) characterises the
extent that the element x satisfies to the imptoitinter property of tripolar fuzzy sét
T={(xa:(R Br( R y-(Y)/ XJ X and 0<a; (X)+ B, (X)<1} is denoted by
T=(a;,85;,V;) - Thus, a tripolar fuzzy sét is a generalization of fuzzy set, bipolar
fuzzy set and intuitionistic fuzzy set.

Definition 2.12. [9] A tripolar fuzzy setl =(a;,[5;,);)of a near ringR is called a
tripolar fuzzy sub near ring & if it satisfies the following conditions:

) a,(x—y)2min{a,( 3, a;( Y},
i) a;(xy)2min{a;(3, a;( Y},
iii) B (x—y) <max{B; (X, 5; (Y},
iv) B;(xy) <max{Z: (X, 5: (M},
v) ¥ (x=y) smax{ys (X, v (W)},
Vi) ¥4 (xy) < max{y; (X, v (W}

Definition 2.13. [9] A tripolar fuzzy sub near ring = (a5, 5;,);) of a near rinQR is
called a tripolar fuzzy ideal & if T satisfies the following conditions:

) ar(xy) 2{a( 3},
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i) ar (x(y+1)—xy) 2{a-()} ,
iiN) ar (y+x-y)2{a;( 3},
V) Br(y+x=y<{B(3,
V) B (xy) {53},
vi) B (x(y+i)—xy) <{B(}},
vii) e (y+x—y) <{y:( 3},
viil) yr (xy) <{y7( 3} ,
iX) yr((x+i)y—xy) <{y;( )} forall x,y,i0R.
3. Tripolar fuzzy bi ideal

In this section we introduce the concept of tripdleezy bi ideal and study some of their
properties.

Definition 3.1. A tripolar fuzzy sefl =(a;, 5;,);)of a near ringR is called a tripolar
fuzzy bi ideal ofR, if

i) a; (X_ y) 2 min{aT( )91 aT( 9}

i) ar(xy2 2 minfar( 3 a-( 3},

iii) B (x=y) < max{B; (X, 5; (W},

V) fB; (xy2 < max{B; (3. 5:( 3},

V) Ve (x=y) smax{y; (X, yr (W}

vi) ¥4 (xy2) < max{y; (%, y; (3}
for every x, yOI R.

Example 3.1. Let R={0, a, b, c} be a near ring with the binary operations defined
below:

+|0ja|bjc| |*|0O|la|b]|cC
OlO|a|b|c| |0|0|0|0]|O
ala|0Oflc|b||a|O0|0|la]a
blblc|O|a| |b|0|0|b|b
c|c|lbja|0| |c|0|0O|c|c

Define a tripolar fuzzy set =(a;,5;,);) by

T ={( 0,08,02,- 04), (a,06,03 - 0.2), (b,06,03 - 02),(c,06,03 - 0.2)}.
ThenT is a tripolar fuzzy bi-ideal of the near riRg
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Theorem 3.1. Intersection of two tripolar fuzzy bi ideals of Ralso its tripolar fuzzy bi
ideal.

Proof: Let f =(a,B:,V:).9=(ay,B,,V,) be two tripolar fuzzy bi ideals of R
andx, yU R. Then
a; .o (X=y)=min@; (x-y),a,(x—y)) 2min(ming, (x),a (y)),min@, (x),a,(y)))
=min(min(a; (x),a4(x)),min(a; (y),a,(y))) = min(@; ,4(x), a; ,4()) »
ay,q(xy2d=min(@ (xyd, a,(xy2) = min(min(@ (x),a; (2)), min(a, (x),a,(2)))
=min(min(a; (x),a,4 (X)), min(a; (2),a,(2))) = min(@; ., (x),a;,,(2).
Bing (X=y)=max(@; (x= ), By (x—y)) 2 max(maxpB; (x), B; (y)), max(B, (x), B, (¥)))
= max(max(B; (x), B, (X)), max(B; (¥), By (¥))) = max(B; . (X), Bi g (V) »
B g (xy2 =max(B; (xy2), B, (xy2) = max(maxpB; (x), B; (2)), max(B, (x), B,(2)))
= max(max(B; (x), B, (x)), max(B; (2), B,(2))) = max(B; ,4(x), B; .4(2)) ,
Ving(X=Y) =max(y; (x=Y), ¥, (X = y)) 2 max(maxg; (), ; (¥)), max(y (X), V4 ()
= max(max(y; (X), ¥, (X)), max(y; (y), g (¥))) = max(/; . (X), Vi g (¥)) 5
Viag(Xy2 =max(y; (xy2), y,(xy2) 2 max(max; (), y; (2)), max(, (x), ¥,(2)))

= max(max(y; (X), Vg (X)), max(; (2), 4 (2)) = max 4 (X), ¥4 (2)-
Hence proved.

Theorem 3.2. If a tripolar fuzzy seil =(a;,5;,);) of near ringR is a tripolar fuzzy
bi- ideal ofR, then(a;,a;, ;) , wherea, =1-a,is a tripolar fuzzy bi ideal oR.
Proof: Let X,y,z[OR . Then a_T(x— y) =1-a;(x-y) <1l-min{a; (X),a; (Y)}

= max{lL-a, (x),1-a; (¥)} = maxia, (x),a- ()} anda, (xy2) =1-a; (xy2)

<1-min{a, ()., (2} =maxfl- a, (x)1-a; (2} = maxia; (x),a (2}.

Theorem 3.3. Let f : M — Nbe a near ring homomorphism.Tf=(a;, 5;,);) is a

tripolar fuzzy bi-ideal ofN , then f (T)=(fY(a;), f *(B), f'()4))is a tripolar
fuzzy bi ideal ofM.
Proof: Let x,y[UM.

fHar (x-y)) =a; (f(x-y))
=a. (f(x) - f(y)
= min{a; (f(x)),a; (f(y)}
=min{f *(a; (¥), f *(a; (Y))},

51



Rakshita Deshmukh, P. Narasimha Swamy and B. Jyothi

f(a; (xy2) =a; (f(xy2)

=a. (f(x)f(y)f(2)

> min{a; (f (x)),a; (f(2)}

=min{ f *(a; (X)), f *(a; ()},
f2(B (x=y)) = Br (F(x-Y))

=B: (£(x) = f(y))

< max{B; (f (x)), B; (f ()}

=max{f (B (), f *(B; (Y}
f(B: (xy2) =B (f(xyD)

=B (F(x)f(y)f(2)

< max{B; (f(x)), B: (f(2))}

=max{f (B, (), f (5 (2,
F20r (x=y)) =y (F(x—Y))

=y (F(X) = f(y))

< max{y; (f(x), v+ (F(Y)}

=max{f 7 (yr (), f *(yr (Y}
f2 (0 (xy2) =y (f(xy2)

=y (F() f(y) F(2)

< max{y; (f (X)), B; (f(2))}

=max{f *(y; (X)), f () (2)}.

Thus f 3(T) = ( f—l(a,T)' f‘l(ﬂT)’ f‘l(yT)) is a tripolar fuzzy bi ideal oM .
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