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Abstract. The field derivative of the incompressible fluiBgrnoulli equation is shown
to be mathematically equivalent to the additiorthed dot product of the fluid velocity
with the Navier-Stokes equation added to the Laplaguation of the classical
Lagrangian of the incompressible viscous fluid peit mass specified for every time,
within a given finite time interval within a contreolume. Since the Navier-Stokes
equations are zero, this implies the Laplacian afpeg on the fluid’'s classical
Lagrangian per unit mass is also zero. Solving lthplace equation of the fluid’s
classical Lagrangian for a given tirhéor a given set of boundary condition will produce
a Lagrangian scalar field, which it may be potdlytiaould be solved for values of
Eulerian fluid velocity and pressure through theitoal volume domain and could be
used to produce a holographic movie of Euleriamaig} flow field and potential field
within the control volume domain.
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1. Introduction

The Laplace equation of the fluid velocity potehtias been well known to be used in
inviscid incompressible fluid flows in the litera&u[5, 6]. This article will show the use
of the Laplace equation is not limited to inviseiitompressible fluid flows, but the
Laplace equation can be also used for incompressiliscous flows with the
interpretation Holographic Principle. Referencggiows the Holographic Principle has
been used in physics to develop understanding doulance Kolmogorov scaling and its
relation to quantum foam and quantum gravity. eReice [8] provides description on
how the holographic principle has been used to ngtaied quantum physics as “if the
visible universe were reading of a lower dimenslidrdogram generated in hyperspace”.
Reference [9] reviews developments in holograplgitachics with the aim to understand
different techniques of transport coefficients comagion with the use of string theory.
Reference [10] actually applies the methods of ¢malphy in Fluid Mechanics and
particle dynamics with the use of strong opticghai processing.
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The thesis of this article has different perspectives compared to different
references above [7-10]. In this article for eéiglhd time, the holographic principle
corresponds to the boundary conditions within thed arbitrary Eulerian control
volume domain\W,, that are considered to represent the lower difneak“hologram
which is projected via the Laplace equation of ¢tessical fluid’s Lagrangian per unit
mass by propagating the boundary conditions tdetiierian control volume domaily,.

The article [1]entitled "On the Field Derivativeadaits Application to Fluids"
derived the Bernoulli equation for incompressitigidf which is a specified constant
along a streamline for sampled timég, within a given arbitrary finite time interval
[0,t1]. The innovation of [1] was to derive the field dedive concept and the field
derivative application to the Bernoulli equatiorelgis zero since the Navier-Stokes
equation is obtained. Unlike reference [1] or refee [3], in this article all spatial and
velocity components are Eulerian coordinates angdtrob volumes are fixed or/and
arbitrary. The Einstein summation convention isduigoughout this manuscript with
indices j and i equal to 1, 2 and 3, unless otrswioted.

The application of the field derivative to the ingoressible viscous fluid's
Bernoulli equation results in a time static Laplaeguation of the classical fluid
Lagrangian per unit mass, which is independentistous effects, since the Navier-
Stokes equation holds throughout the volume domaimerefore, the dot product of the
fluid’'s velocity with the Navier-Stokes componerguation can be interpreted to be
equivalent to a time static Laplace equation of ¢lessical Lagrangian per unit mass,
which is independent of viscous effect. Sincelthplace equation of the Lagrangian is
linear and therefore superposition of solutioralliswved.

Solving the Laplace equation of the classical Lagran per unit mass for given
sample timest,, and given set of boundary conditions will prodwcesolution set of
volumetric scalar fields of the Lagrangian per umass in Eulerian fixed space
dependent on the boundary conditions for each saiiple. The solution volumetric
scalar field of the Lagrangian may be potentiallyved for values of Eulerian fluid
velocity and pressure through the volume domainilailm or analogously to a
holographic movie of the fluid flow, although nurioal methods may need to be used to
track the Lagrangian fluid flow. This Eulerianuifi volumetric flow dependence on
surface boundaries conditions at a given instarineé via the Laplace equation of the
classical Lagrangian is similar or analogous to ‘ti@ographic principle” described in
Roger PenroseShe Road to Realitgook in page 920 [2].

2. The Eulerian Bernoulli Equation for incompressilie viscous fluids
The Eulerian Bernoulli equation for incompressibliscous fluid was specified in
reference [1] as seen [&q. 1which is a constanB,, along the streamline for every time
t within a given time intervalQt1].

1

By (6, 2(0, 8(t, 2(0) = 2ub (6, %) + 22D + (3(0) + [y 2y Sbds + 1, = B, (1)
o o Xj
The innovation of reference [1] was to derive theddf derivative concept and showing
the field derivative applied to the Bernoulli eqoat(Eq. 1)after volume integration by

parts within a time independent arbitrary controlume, W,, with the usual no slip for
the fixed boundary conditions or/and zero sheasstfor arbitrary control volume, yields
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zero since the scalar or dot product of the vefocitmponents and Navier-Stokes
equation componen(&q. 2) are obtained.
. . oty ;
by, 5 oW = ([, i (G + w5+ S 4 22— LEU ) paw =0 (2)
Since the no slip conditions for solid boundarieply zero velocity field or/and the fluid
sheary; ;,is zero in absence of a solid boundaries sinceuh@ce normal of the control
volume boundary may be arbitrary and time indepetidberefore, the surface integral

due to volume integration by parts is identicakyq,
t

1
[ # f —TU; dsponjds]ui=0 or/and ;=0 at dW, — 0.
W, 0 Po
Thus, field or material differentiation with respec time of the surface integral is still
zero since the right side of the equation beindedihtiated is a constant zero [1] as
shown in(Eq. 2A).

%#awo fot T, u; dsn;dS = #awo 7, umn;dS = 0 (2A)
Therefore, the field derivative of the Bernoullivagion is zero and the Bernoulli
equation is constant along the streamline. Thia festatement of what was found in
reference [1]. What was missed in reference [1ihist this surface integral can be
converted to the volume integral of the Laplacigrerating on the fluid's classical
Lagrangian per unit mass via the Gauss divergdramém (see Appendix A).
By substituting the fluid shear stress for inconsgiiele viscous fluids given in

(Eq.1).

ou(s,2(s))  ou;(s, %(s))
0x; * 0x; )

Ti'j(S,f(S)) = Z,ueilj(s,a?(s)) = ,u<

J
The Bernoulli equatioficq. 1)can be restated &&q. 3)below,
B, = %ulz +:;O+ b+ fotv<(6ui(s,:?(s)))2 n 0uj(s,%(s)) au;(s,%(s))

ax,- axi ax,-
where the kinematic viscosity, is defined a%‘—.

o

)ds+lo 3)

3. The Laplace equation of the viscous incompressibfluid’s classical Lagrangian
The classical Lagrangian per unit masspf an incompressible viscous fluid is defined
as the kinetic energy per unit magsminus the potential energy per unit massThus,
by the classical definition of the Lagrangidre g —V, where the kinetic energy per

unit massg = u?(¢,x;(t))/2 andthe potential energy per unit magss= pﬂ+ o.

Theorem 1.Laplace Equation of the Fluid's Classical Lagramgi
If the nonslip boundary condition or/and zero shsimess condition are valid at the
boundaries of the viscous incompressible fluidnttie time integral of Laplacian of the
classical Lagrangian of the incompressible visctiuisl equals zero for every time
within the given finite time intervdD,t1].

t

vaLdszO

0

9B,
1Notea—: may not be zero.
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Thus, the Laplacian of the Lagrangian functiondeozAL = 0. Or alternatively, the field
derivative of the incompressible viscous Euleriaerridulli equation (Eq. 3) is
mathematically equivalent to the addition of the pimduct of the fluid velocity with the
Navier-Stokes equation added to the Laplace equafidhe classical Lagrangian of the
incompressible viscous fluid per unit mass.

dB, u (6ui ou; 1 dp 0d¢

= —+ui—+——+——vAu; | +vAL=0
dt Jat jaxj poaxl 0x; >

Thus, the Laplace equatiomiL = 0, holds true smcéfT” = 0due to the law of total

energy conservation of the fluid is constant altimg stream line [1] and the Navier-
Stokes equation is zero for viscous incompres$iibigs.

Proof of Theorem 1. Laplace Equation of the Fluid’s Glaal Lagrangian.

The conversion of the Bernoulli equati¢fag. 3)to the integral of the Laplacian of the
classical Lagrangian of the incompressible visciiwigl is pretty straight forward with
the following definition of the kinetic energy penit massg, as seen ifEqg. 4).

q =uf(t,x()/2 “4)
The Laplacian operatak, applied to the kinetic energg, kinematically results ifEq. 5).
Aq = (%;;(t)))z + u Ay (5)
Or rearranging to obtaifiq. 6)
(HEHO? = pq — iy, ) (6

Additionally, by taking the divergence of the inqumassible Navier-Stokes equation is
well known to result in the Laplacian of the potehenergy per unit masg, = pﬂ + ¢, as

seen inEq. 7)[3].
Auj(tx; () duy(t.x; () _ _
jaxi ax]' - AV (7)
By taking the field or material derivative ¢Eq. 3) to obtain(Eq.8) since the total
energy,B,, is conserved along the streamline.

dB, _  duy (s, x(s)) uj(s,2(s)) duy(s,%(s))
e Wi tu ‘ax( +¢) (( ax; )* + ]axl ax; ) 0 (®)
Now, inserting(EQ.6) and(Eq.?)lnto (Eq.8)to obtam(Eq 9)
%= i%-'_ax( +q§)—vAul)+vA(q— V)=0 9)

Since, the Navier-Stokes equation is zero wittig. 9) and because the Laplacian
operator is a linear operatoffzq. 9) can be rearrange to obtafgq. 10) using the
definition of the Lagrangiard, = g —V = -V¥.

u; (S + —( + qs) — vAy ) = —vA(q —V) = —vAL = vA¥ = 0 (10)

0x;
An alternative method is given by the use of theidlaStokes equation as shown(Eq.
11) since kinetic viscosity is always positive scalar coefficient. Note theldf or

material derivative is being used(lﬁq 11)

du; 1 dp 0P\ _ 1d

uAu; = — (dt+;6_xi+6_xi)_vdt( +V) (12)

Therefore,(Eq. 12)shows the equivalence (ﬁf‘(gﬂ 2in terms of kinetic energy per
Xj

unit massg, and potential energy per unit mass; p(’;;st)) + ¢ (x; (D).
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(76”"(;;‘]_"“)))2 =8q -y 5@+ V) (12)

Additionally, by taking the divergence of the inqumassible Navier-Stokes equation is
well known to result [3] in the Laplacian of thetgntial energy per unit masé, as seen
in (Eq. 13).

2x®) gultxi)- _py (13)

Xi X]'

Rewriting the Bernoulli equation ifEq. 3)using(Eq. 7)and(Eg. 8)results in(Eq. 14)in
terms of the potential and kinetic energy per orass.

Bo=q+V+f0t(qu—%(q+V)—vAV)ds+Io (14)
Integrating the field derivative [1];—5 (q + V), reducegEqg. 14)to (Eq.15).
By=q,+V,+1,+ foth(q —Vds (15)

Since B, (tyx;(to), w;(te, xi(ty)) = B, = qo +V, +1,, then fothL ds = 0.2 Since this
equation is valid for all times within the givemitie time interval0,t]], this implies the
Laplacian operator of the classical Lagrangianymérmass/ = g — V, is zero.

AL=10
Another alternate proof of the theorem can be dedlby taking the field derivative of
(Eq. 14) or (Eq. 15)to obtain (Eq. 16) which is equivalent toEg. 2) due to the
incompressible Navier-Stokes equation also beingindd.

dfto =vA(g—V)=vAL=0 (16)
Thus the Laplace equation of the Lagrangian isdvidr every time,t, within time
interval [0,t1] and since the kinematic viscosity, is nonzero for viscous fluids it can be
cancelled oufhus,(Eq. 2)is equivalent tdEq. 16)since the total energy of the fluid is a
constant along the streamline (i.e. conserved gypat shown ifEq. 17)
B\ tX (0)u(tX(0) du du; , ¢ , 19p 107y

( dt( ))=ui<¥+ufa_@+a_i+ﬁa_i_ﬁa_xjj>=v“=0 17)
The dot or scalar product of the Navier-Stokes tgmawith the fluid velocity is
equivalent to the Laplacian operator of the cladsi@grangian per unit mass of the
viscous incompressible fluid. F@EQ. 9)be equivalent t¢Eq. 17) then the Laplacian of
the Lagrangian must be identically zero. Otherhmé&s may be found to produce the
same result. Notice also this result only appfasviscous flows since the kinematic

viscosity needs to be positive. QED.

4. Conclusion

The proof of Theorem 1demonstrates that the Eulahjeamical incompressible viscous
Navier-Stokes momentum equations at a fixed tier® mathematically equivalent to the
Laplace equation of the classical Lagrangian offliid per unit mass at the same fixed
time t. Although, a better approach is to define the heplequation with respect to the
negative Lagrangian functio, = —L, since—AL = A(—L) = AW = 0 is also a Laplace
equation within voluméy,. Therefore, the Laplace equation at sample timean be
rewritten agEq. 18)with Dirichlet boundary conditions, i.e. the valokthe function is
specified at the boundaries.

2Uf f = [y vALds = 0, then 2 = vAL = 0.
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AY = owithin control volumeW,, at timest (18)
Ylow, = (pﬂ + ¢)| aw,, at timesty

The boundary conditions ¥fare due to thespecified pressure and external potential,
(pﬂ+¢), at the solid boundaried/,,, since the kinetic energy is zero due no slip

boundary conditions at each sampled titpe In other words$y|,y, is only a spatial
function of the boundary for each sampled timaithin a finite time intervaj0,t1].

If the time Fourier transforms of the fluid’s veitbes at Eulerian coordinate
locations within the volumeare spectrally boundgdhe Nyquist sampling criteria [4],
then the finite time sampling of harmonic Lagrangsolutions of the Laplace equation
defines a volumetric control volumeVéls a “holographic frame” for each sampled time
t, within the time interval. Therefore, the fluid&locity flow field within the fixed
control volumeW,, may be reconstructed in time as a “holographiateBan fluid flow
movie with each volume frame given at the samplads. The analogy to a hologram is
due to the fact the lower dimensional boundary @@ is responsible for the Eulerian
flow within the volume at a given sample time. isTtescription is similar or analogous
to the “holographic principle” described in RogemPose’sThe Road to Realitipook in
page 920 [2]. The solution of the Laplace equatibthe classical Lagrangian per unit
mass for each sample tintg,is a harmonic function representing Lagrangiaiasdield
in Eulerian coordinates, therefore, the classiegrangian has to be a harmonic function
at each fixed sample timg,

Although the fundamental solution of the Laplacaatpn is typically a function
of the radial distance only, this might be too nie8te condition since the boundary
conditions may not be radially symmetric, therefahe harmonic solutions of the
Laplace equation of the classical Lagrangian pet orass may require additional
coordinates besides radial distance. The advardfdkis method is that the Laplace
equation is a linear equation, therefore the haimsalutions can be superimposed to
satisfy boundary conditions and the harmonic sohgiof the Laplace equation are very
well understood. The disadvantage of this metlodhat following a fluid’s parcel
positions will need to be clustered and tracked different times [10], thus adding
complexity to the traveling fluid parcel's positiogolution (so called Lagrangian
coordinates of the fluid parcel).

Acknowledgements. The author would like to thank the anonymous reeieswand chief
editor of APAM for their time and effort spent ieviewing this article.

5.0. Appendix A
The surface integral ifEq. 2A) can be converted into a volume integral via Gauss
divergence theorem within the arbitrary and tindejpendent control volumay,:

a(t; iy;
§ v ums = [[| C0aw = o
W, J

aw,
. R du; . . :
Since 7;ju; = u(% + a%) u; = “(aix,. (%ulz) + 0_192) andtaking the divergencef z; ;ju; is
2
(T, ju;) 9 /1 du; Ou;
o= (34 g
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u 2y
6xj 6xl-
therefore by substitution leads to the Laplace eguaof the classical Lagrangian per
unitmassL =q —V.

W a(ruul) v = ﬂ plAq — pAvay = M PALAV =0

By dividing by the constant denS|ty to obtain:

[, = ‘“’(j;;“” av = fff,, vALdV =0 .

OrvAL = 0 since the control vqumWo, can be arbitrary, and is independent of time.

. 2
Sinceaﬁ: 0 by incompressibility of the fluida—2 (luiz) = Aq and = —AV
0x; ij 2
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