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Abstract. The field derivative of the incompressible fluid’s Bernoulli equation is shown 
to be mathematically equivalent to the addition of the dot product of the fluid velocity 
with the Navier-Stokes equation added to the Laplace equation of the classical 
Lagrangian of the incompressible viscous fluid per unit mass specified for every time, t, 
within a given finite time interval within a control volume.  Since the Navier-Stokes 
equations are zero, this implies the Laplacian operating on the fluid’s classical 
Lagrangian per unit mass is also zero. Solving the Laplace equation of the fluid’s 
classical Lagrangian for a given time t for a given set of boundary condition will produce 
a Lagrangian scalar field, which it may be potentially could be solved for values of 
Eulerian fluid velocity and pressure through the control volume domain and could be 
used to produce a holographic movie of Eulerian velocity flow field and potential field 
within the control volume domain.  
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1. Introduction  
The Laplace equation of the fluid velocity potential has been well known to be used in 
inviscid incompressible fluid flows in the literature [5, 6].  This article will show the use 
of the Laplace equation is not limited to inviscid incompressible fluid flows, but the 
Laplace equation can be also used for incompressible viscous flows with the 
interpretation Holographic Principle.  Reference [7] shows the Holographic Principle has 
been used in physics to develop understanding on Turbulence Kolmogorov scaling and its 
relation to quantum foam and quantum gravity.   Reference [8] provides description on 
how the holographic principle has been used to understand quantum physics as “if the 
visible universe were reading of a lower dimensional hologram generated in hyperspace”. 
Reference [9] reviews developments in holographic dynamics with the aim to understand 
different techniques of transport coefficients computation with the use of string theory.  
Reference [10] actually applies the methods of holography in Fluid Mechanics and 
particle dynamics with the use of strong optical signal processing. 
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The thesis of this article has a different perspective as compared to different 
references above [7-10].   In this article for each fixed time, the holographic principle 
corresponds to the boundary conditions within the fixed arbitrary Eulerian control 
volume domain, Wo, that are considered to represent the lower dimensional “hologram 
which is projected via the Laplace equation of the classical fluid’s Lagrangian per unit 
mass by propagating the boundary conditions to the Eulerian control volume domain, Wo.  

The article [1]entitled "On the Field Derivatives and its Application to Fluids" 
derived the Bernoulli equation for incompressible fluid which is a specified constant 
along a streamline for sampled times, tk, within a given arbitrary finite time interval 
[0,t1]. The innovation of [1] was to derive the field derivative concept and the field 
derivative application to the Bernoulli equation yields zero since the Navier-Stokes 
equation is obtained. Unlike reference [1] or reference [3], in this article all spatial and 
velocity components are Eulerian coordinates and control volumes are fixed or/and 
arbitrary. The Einstein summation convention is used throughout this manuscript with 
indices j and i equal to 1, 2 and 3, unless otherwise noted.    

The application of the field derivative to the incompressible viscous fluid’s 
Bernoulli equation results in a time static Laplace equation of the classical fluid 
Lagrangian per unit mass, which is independent of viscous effects, since the Navier-
Stokes equation holds throughout the volume domain.  Therefore, the dot product of the 
fluid’s velocity with the Navier-Stokes component equation can be interpreted to be 
equivalent to a time static Laplace equation of the classical Lagrangian per unit mass, 
which is independent of viscous effect.  Since the Laplace equation of the Lagrangian is 
linear and therefore superposition of solutions is allowed. 

Solving the Laplace equation of the classical Lagrangian per unit mass for given 
sample times, tk, and given set of boundary conditions will produce a solution set of 
volumetric scalar fields of the Lagrangian per unit mass in Eulerian fixed space 
dependent on the boundary conditions for each sample time. The solution volumetric 
scalar field of the Lagrangian may be potentially solved for values of Eulerian fluid 
velocity and pressure through the volume domain similarly or analogously to a 
holographic movie of the fluid flow, although numerical methods may need to be used to 
track the Lagrangian fluid flow.   This Eulerian fluid volumetric flow dependence on 
surface boundaries conditions at a given instant of time via the Laplace equation of the 
classical Lagrangian is similar or analogous to the “holographic principle” described in 
Roger Penrose’s The Road to Reality book in page 920 [2]. 
 
2. The Eulerian Bernoulli Equation for incompressible viscous fluids 
The Eulerian Bernoulli equation for incompressible viscous fluid was specified in 
reference [1] as seen in (Eq. 1)which is a constant, Bo, along the streamline for every time 
t within a given time interval [0,t1]. 
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The innovation of reference [1] was to derive the field derivative concept and showing 
the field derivative applied to the Bernoulli equation (Eq. 1) after volume integration by 
parts within a time independent arbitrary control volume, Wo, with the usual no slip for 
the fixed boundary conditions or/and zero shear stress for arbitrary control volume, yields 
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zero since the scalar or dot product of the velocity components and Navier-Stokes 
equation components (Eq. 2)1 are obtained. 
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Since the no slip conditions for solid boundaries imply zero velocity field or/and the fluid 
shear, ��,�,is zero in absence of a solid boundaries since the surface normal of the control 
volume boundary may be arbitrary and time independent; therefore, the surface integral 
due to volume integration by parts is identically zero,  
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�3,4	3
�

0
 !&�54 6]	38� �:/<=$ �3,48� <� �(�
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Thus, field or material differentiation with respect to time of the surface integral is still 
zero since the right side of the equation being differentiated is a constant zero [1] as 
shown in (Eq. 2A).  

 � ∯ � �3,4	3
�

0  !54 6�(� = ∯ �3,4	354 6�(� = 0                                  (2A) 

Therefore, the field derivative of the Bernoulli equation is zero and the Bernoulli 
equation is constant along the streamline.  This is a restatement of what was found in 
reference [1]. What was missed in reference [1] is that this surface integral can be 
converted to the volume integral of the Laplacian operating on the fluid’s classical 
Lagrangian per unit mass via the Gauss divergence theorem (see Appendix A).  

By substituting the fluid shear stress for incompressible viscous fluids given in 
(Eq.1). 
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The Bernoulli equation(Eq. 1) can be restated as (Eq. 3) below, 
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where the kinematic viscosity, F, is defined as 
H

�� . 
 
3. The Laplace equation of the viscous incompressible fluid’s  classical  Lagrangian 
The classical Lagrangian per unit mass, L, of an incompressible viscous fluid is defined 
as the kinetic energy per unit mass, q, minus the potential energy per unit mass, V. Thus, 
by the classical definition of the Lagrangian, I ≡ K − L,  where the kinetic energy per 
unit mass, K = 	���, ��(���/2 and the potential energy per unit mass, L = M

&%
+ �. 

Theorem 1. Laplace Equation of the Fluid’s Classical Lagrangian.   
If the nonslip boundary condition or/and zero shear stress condition are valid at the 
boundaries of the viscous incompressible fluid, then the time integral of Laplacian of the 
classical Lagrangian of the incompressible viscous fluid equals zero for every time t 
within the given finite time interval [0,t1].  
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�
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Thus, the Laplacian of the Lagrangian function is zero, ∆I = 0. Or alternatively, the field 
derivative of the incompressible viscous Eulerian Bernoulli equation (Eq. 3) is 
mathematically equivalent to the addition of the dot product of the fluid velocity with the 
Navier-Stokes equation added to the Laplace equation of the classical Lagrangian of the 
incompressible viscous fluid per unit mass.     �% � = 	� CD	�D� + 	�

D	�D�� + 1
&�

DM
D�� + D�

D�� − F∆	�E + F∆I = 0 

Thus, the Laplace equation, F∆I = 0, holds true since 
 �% � = 0due to the law of total 

energy conservation of the fluid is constant along the stream line [1] and the Navier-
Stokes equation is zero for viscous incompressible fluids. 
 
Proof of Theorem 1. Laplace Equation of the Fluid’s Classical Lagrangian. 
The conversion of the Bernoulli equation (Eq. 3) to the integral of the Laplacian of the 
classical Lagrangian of the incompressible viscous fluid is pretty straight forward with 
the following definition of the kinetic energy per unit mass, q, as seen in (Eq. 4). 

K = 	���, ��(���/2                                                        (4) 
The Laplacian operator, ∆, applied to the kinetic energy, q, kinematically results in (Eq. 5). 

∆K = (�����,�3(���
��� � + 	3∆	3                                                (5) 

Or rearranging to obtain (Eq. 6). 

(�����,�3(���
��� � = ∆K − 	3∆	3                                                      (6) 

Additionally, by taking the divergence of the incompressible Navier-Stokes equation is 
well known to result in the Laplacian of the potential energy per unit mass, L = M

&%
+ �, as 

seen in (Eq. 7) [3]. 
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By taking the field or material derivative of (Eq. 3) to obtain (Eq.8), since the total 
energy, ��, is conserved along the streamline. 
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Now, inserting (Eq.6) and (Eq.7) into (Eq.8) to obtain (Eq. 9). 
$O�
$� = 	�($��

$� + �
��� P �

�� + �Q − F∆	3� + F∆(K − L� = 0                          (9) 

Since, the Navier-Stokes equation is zero within (Eq. 9) and because the Laplacian 
operator is a linear operator, (Eq. 9) can be rearrange to obtain (Eq. 10) using the 
definition of the Lagrangian, I = K − L = −Ψ. 

	� P$��
$� + �

��� P �
�� + �Q − F∆	�Q = −F∆(K − L� = −F∆I = F∆Ψ = 0                      (10) 

An alternative method is given by the use of the Navier-Stokes equation as shown in (Eq. 
11) since kinetic viscosity F  is always positive scalar coefficient.  Note the field or 
material derivative is being used in (Eq. 11). 
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Therefore, (Eq. 12) shows the equivalence of (�����,�3(���
��� � in terms of kinetic energy per 

unit mass, q, and potential energy per unit mass, L = ���3(���
�� + ���3(���. 
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Additionally, by taking the divergence of the incompressible Navier-Stokes equation is 
well known to result [3] in the Laplacian of the potential energy per unit mass, V, as seen 
in (Eq. 13). 

�����,�3(���
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�����,�3(���
��� = −∆L                                                         (13) 

Rewriting the Bernoulli equation in (Eq. 3) using (Eq. 7) and (Eq. 8) results in (Eq. 14) in 
terms of the potential and kinetic energy per unit mass. 

�� = K + L + � PF∆K −  
 ! (K + L� − F∆LQ�
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Integrating the field derivative [1], -
$
$G (K + L� , reduces (Eq. 14) to (Eq.15). 
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�  !                                           (15) 

Since ��(�0��(�0�, 	3(�0, ��(�0�� = �� = K� + L� + "�,  then � F∆I�
�  ! = 0. 2  Since this 

equation is valid for all times within the given finite time interval [0,t1], this implies the 
Laplacian operator of the classical Lagrangian per unit mass, I = K − L, is zero. ∆I = 0 
Another alternate proof of the theorem can be deduced by taking the field derivative of 
(Eq. 14) or (Eq. 15) to obtain (Eq. 16) which is equivalent to (Eq. 2) due to the 
incompressible Navier-Stokes equation also being obtained.  �% � = F∆(K − L� = F∆I = 0                                      (16) 

Thus the Laplace equation of the Lagrangian is valid for every time, t, within time 
interval [0,t1] and since the kinematic viscosity, F, is nonzero for viscous fluids it can be 
cancelled out.Thus, (Eq. 2) is equivalent to (Eq. 16) since the total energy of the fluid is a 
constant along the streamline (i.e. conserved quantity) as shown in (Eq. 17). 
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The dot or scalar product of the Navier-Stokes equation with the fluid velocity is 
equivalent to the Laplacian operator of the classical Lagrangian per unit mass of the 
viscous incompressible fluid. For (Eq. 9) be equivalent to (Eq. 17), then the Laplacian of 
the Lagrangian must be identically zero.  Other methods may be found to produce the 
same result.  Notice also this result only applies for viscous flows since the kinematic 
viscosity needs to be positive. QED. 
 
4. Conclusion  
The proof of Theorem 1demonstrates that the Eulerian dynamical incompressible viscous 
Navier-Stokes momentum equations at a fixed time t are mathematically equivalent to the 
Laplace equation of the classical Lagrangian of the fluid per unit mass at the same fixed 
time t. Although, a better approach is to define the Laplace equation with respect to the 
negative Lagrangian function, Ψ = −I, since −∆I = ∆(−I� = ∆Ψ = 0 is also a Laplace 
equation within volume, '�.  Therefore, the Laplace equation at sample time, tk, can be 
rewritten as (Eq. 18) with Dirichlet boundary conditions, i.e. the value of the function is 
specified at the boundaries. 
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∆Ψ = 0within control volume, Wo, at times tk                                (18) 

Ψ|�(� = ( M
&%

+ ��| �(�, at times tk 

The boundary conditions ofΨare due to the specified pressure and external potential, ( M
&%

+ ��,  at the solid boundaries, D'� , since the kinetic energy is zero due no slip 

boundary conditions at each sampled time tk.  In other words,Ψ|�(�  is only a spatial 
function of the boundary for each sampled time tk within a finite time interval [0,t1]. 

If the time Fourier transforms of the fluid’s velocities at Eulerian coordinate 
locations within the volumeare spectrally bounded by the Nyquist sampling criteria [4], 
then the finite time sampling of harmonic Lagrangian solutions of the Laplace equation 
defines a volumetric control volume Wo as a “holographic frame” for each sampled time 
tk within the time interval.  Therefore, the fluid’s velocity flow field within the fixed 
control volume, Wo, may be reconstructed in time as a “holographic” Eulerian fluid flow 
movie with each volume frame given at the sampled times.  The analogy to a hologram is 
due to the fact the lower dimensional boundary conditions is responsible for the Eulerian 
flow within the volume at a given sample time.   This description is similar or analogous 
to the “holographic principle” described in Roger Penrose’s The Road to Reality book in 
page 920 [2].  The solution of the Laplace equation of the classical Lagrangian per unit 
mass for each sample time, tk, is a harmonic function representing Lagrangian scalar field 
in Eulerian coordinates, therefore, the classical Lagrangian has to be a harmonic function 
at each fixed sample time, tk.  

Although the fundamental solution of the Laplace equation is typically a function 
of the radial distance only, this might be too restrictive condition since the boundary 
conditions may not be radially symmetric, therefore the harmonic solutions of the 
Laplace equation of the classical Lagrangian per unit mass may require additional 
coordinates besides radial distance. The advantage of this method is that the Laplace 
equation is a linear equation, therefore the harmonic solutions can be superimposed to 
satisfy boundary conditions and the harmonic solutions of the Laplace equation are very 
well understood.  The disadvantage of this method is that following a fluid’s parcel 
positions will need to be clustered and tracked for different times [10], thus adding 
complexity to the traveling fluid parcel’s position solution (so called Lagrangian 
coordinates of the fluid parcel). 
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5.0. Appendix A 
The surface integral in (Eq. 2A) can be converted into a volume integral via Gauss 
divergence theorem within the arbitrary and time independent control volume Wo: 
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Since
���
��� = 0  by incompressibility of the fluid, 

�Z
���Z P�

 	�Q = ∆K  and 
�	3���

���
��� = −∆L 

therefore by substitution leads to the Laplace equation of the classical Lagrangian per 
unit mass, I = K − L. 

Y D(��,�	��
D��'%

 L = Y  A∆K −  A∆L L = Y  A∆I L
'%'%

= 0 

By dividing by the constant density to obtain: 

∭ �
��

�(,�,����
���'%  L = ∭ F∆I L = 0'%  . 

Or F∆I = 0 since the control volume, Wo, can be arbitrary, and is independent of time. 
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