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Abstract. This research explores the new exact solutions of the nonlinear conformable 
time-fractional PHI-four equation through the generalized Kudryshov method with 
conformable fractional derivative. The got new exact solutions are designed in styles of 
the rational and exponential functions designate that the studied procedure is serviceable 
to study the fractional nonlinear evolution equations in mathematical physics and 
engineering. 
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1. Introduction 
Nonlinear systems of the conformable time-fractional partial differential equations 
(CTFPDEs) can explain mathematical models of various phenomena in distinct 
categories of applied physical sciences. Soliton structures to nonlinear systems of 
CTFPDEs are essential for investigating natural aspects in broad sectors of applied 
physical sciences. The performance of a symbolic computation package will obtain it 
functional to introduce numerous analytical techniques, for example, the extended 
rational sinh-cosh method [1], modified )/'( GG -expansion method [2, 3], Fractional 

SineGordon Equation Approach [4], ( G ′ /G )-expansion method [5, 6, 7], New extended 
direct algebraic method [8], the exp(− ϕ( ξ ))-expansion method [9, 10], the new 
extended direct algebraic method [11], iterative reproducing kernel Hilbert space method 
[13], the first integral method [14], modified khater method [15], Shifted Jacobi spectral 
collocation method [16], residual power series method [17], the generalized Kudryshov 
method [18], reproducing kernel Hilbert space method [19], and many more.  

 

The paper applied the generalized Kudryshov method [18] to derive the different type 
of soliton structures for nonlinear conformable time-fractional PHI-four equation [11]. 
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Let us consider that nonlinear conformable time-fractional PHI-four equation [11]: 

         0)(32)( =++− ξµ bWWaWW xxt , .10 ,0 <<≤ µt                                              (1) 
where, a and b are constants. The Klein-Gordon (KG) equation has worked a significant 
function in mathematical physics [21], as well as the KG equation, which has drawn 
much application in investigating solitons in condensed matter physics, in examining the 
interaction of solitons in a collisionless plasma and the recurrence of initial states [22]. 
The PHI-four equation can be studied as a particular form of the KG equation that models 
the phenomenon in particle physics where kink and anti-kink solitary waves interact [23]. 
The PHI-four equation has executed an essential role in nuclear and particle physics over 
the decades. Traveling wave solutions for a nonlinear variant of the Phi-4 equation are 
analyzed through the Weierstrass elliptic function method in [23]. 
 

2. Fractional derivative 
 

    We consider that Φ : (0 , ∞) → R, so the fractional derivative of Φ of order µ [20]: 
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Some notable highlights of the fractional derivative are as follows: 
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3. Glimpse of the generalized Kudryshov method 
 

Step 1: We consider that a frcational NLEE for W(x, t): 
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where,  K represents a polynomial in W and  α
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W. To locate the transformation of equation (3): 
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From equation (3) and equation (4) we locate the following ODE: 
                   0.),.........''','',',( =WWWWL                                                                       (5) 

Step 2: Calculate M and N through the balance rule on equation (5). 
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Step 3: Let us consider that 
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where iA  and  jB  are real constants, N and M are positive integers such that 

0, ≠MN BA and Ψ satisfies the following ODE: 

                    )()()( 2 ξψξψξψ −=′                                                                                    (7) 

The general solution of equation (6) is of the form: 

                   ξξψ
pe+

=
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)(                                                                                               (8) 

where,  p is any arbitrary constant. 
Step 4: Determine the positive integers N and M in equation (6) by balancing the highest 
order derivative term with the nonlinear term of W(ξ) in equation (3) or equation (5). 
Moreover, we define the degree of W(ξ) as ,))(( MNWD −=ξ  which gives rise to the 

degree of other expression as 
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where,  p, q, s are integer numbers.  
 

Step 5: Applying equation (6) into equation (5) and equation (9), collecting all terms 
with the same order of Φ together. Equating each coefficient of this polynomial to zero, 
yields a set of algebraic equations which can be solved to find the values of Φ(ξ) with the 
help of MAPLE. 
 

4. Solitons to the nonlinear conformable time-fractional Phi-4 equation 

Let us consider that the nonlinear conformable time-fractional Phi-4 equation: 

                      ,0)(32 =++− ξµ bWWaWW xxt  .10 ,0 <<≤ µt                                              (10) 

 
(a) Real 3D shape 

 
(b) Imaginary 3D shape 

 
(c) Real contour plot 

 
(d) Imaginary  contour 

plot 
 

Figure 1: The three-dimensional and contour shape of the solution in W1(x,t) for 
,1 ,5.0 =−= bp      B0 = 0.6,  c = 2 and α = 0.5. 
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(a) Real 3D 

shape 

 
(b) Imaginary 3D 

shape 

 
(c) Real contour 

plot 

 
(e) Imaginary  contour  

(d) Plot 
 

Figure 2: The three-dimensional and contour shape of the solution in W2(x,t) for 

,10 ,5.0 −=−= bp    50 −=B ,  c = 0.5 and α = 0.5. 
 

 

Using )(),( ξWtxW = , where 
µ

ξ
µct

x −= , the equation (10) converts the following ODE: 

                    0)()('')1( 322 =++− ξξ bWWaWc                                                               (11) 

where, a, b are real parameters and c is a traveling wave variable. Applying the rule of 

homogeneous balance on equation (11), ( )('' ξW and )(3 ξW  ⇒ )2)(3( +−=− MNMN ⇒

.1+= MN  Setting 1=M  then N = 2. Therefore, we get: 
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By equation (12) and equation (11) and then equating each coefficients of iΨ  to zeros, 
we get:  
 

 
(a) Real 3D 

shape 

 
(b) Imaginary 3D 

shape 

 
(c) Real contour 

plot 

 
(d) Imaginary  contour  
Plot 

 
Figure 3: The three-dimensional and contour shape of the solution in W3(x,t) for

,1 ,5.0 =−= bp   B0 = 0.6,  c = 2 and α = 0.5. 
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The first set:  
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where,  c, b and B0 are constants. Using the values of the first set, equation (12) and 
equation (11), we have:          
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(a) Real 3D 

shape 

 
(b) Imaginary 3D shape 

 
(c) Real contour plot 

 
(d) Imaginary  contour 
plot 

 
Figure 4: The three-dimensional and contour shape of the solution in W4(x,t) for 

,10 ,5.0 −=−= bp      B0 = -5,  c = 0.5 and α = 0.5. 
 

 
The second set:  
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where,  c, b and B0 are constants. Similarly, we get: 
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The third set: 
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where,  c, b and B0 are constants. Similarly, we get: 
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The fourth set: 
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where,  c, b and B0 are constants. Similarly, we get: 
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5. Conclusions 

In this paper, we have derived diverse kinds of exact solutions which are shown in the 
Figures (1- 4) of the equation (1) through the generalized Kudryshov method with 
conformable fractional derivative. The investigated way is sincere and reliable for 
producing new varieties of exact solutions of fractional NLEEs in mathematical physics 
and engineering. 
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