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Abstract. This research explores the new exact solutiondhi®frionlinear conformable
time-fractional PHI-four equation through the getieed Kudryshov method with
conformable fractional derivative. The got new éx@mutions are designed in styles of
the rational and exponential functions designa&¢ tie studied procedure is serviceable
to study the fractional nonlinear evolution equasgioin mathematical physics and
engineering.
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1. Introduction
Nonlinear systems of the conformable time-fractiopartial differential equations

(CTFPDEs) can explain mathematical models of vari@henomena in distinct
categories of applied physical sciences. Solitanictires to nonlinear systems of
CTFPDEs are essential for investigating naturaleetspin broad sectors of applied
physical sciences. The performance of a symbolioptdgation package will obtain it
functional to introduce numerous analytical techeis for example, the extended
rational sinh-cosh methodl]] modified (G'/G)-expansion method2] 3], Fractional
SineGordon Equation ApproacH][( G ' /G )-expansion methodb] 6, 7], New extended
direct algebraic method8], the expt ¢( ¢ ))-expansion method9] 10], the new
extended direct algebraic methddy]} iterative reproducing kernel Hilbert space metho
[13], the first integral methodlf], modified khater methodLp], Shifted Jacobi spectral
collocation method16], residual power series methotl7], the generalized Kudryshov
method [L8], reproducing kernel Hilbert space meth&8][ and many more.

The paper applied the generalized Kudryshov mefti8dto derive the different type
of soliton structures for nonlinear conformabled#nactional PHI-four equatiori]l].
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Let us consider that nonlinear conformable timetfcanal PHI-four equationifl]:

WA —w,, +a?W +bW3(&) =0, t< 0,0< u<1. 1)
where,a andb are constants. The Klein-Gordon (KG) equation hasked a significant
function in mathematical physic]], as well as the KG equation, which has drawn
much application in investigating solitons in consled matter physics, in examining the
interaction of solitons in a collisionless plasnmal ahe recurrence of initial statea2].
The PHI-four equation can be studied as a partidatan of the KG equation that models
the phenomenon in particle physics where kink aridkdnk solitary waves interac2p).
The PHI-four equation has executed an essentialimahuclear and particle physics over
the decades. Traveling wave solutions for a noatinariant of the Phi-4 equation are
analyzed through the Weierstrass elliptic functiwethod in 23].

2. Fractional derivative
We consider thab : (0, «) — R, so the fractional derivative @ of orderu [20]:

o4 _ lim ot +&tH) - d(t)
o# &£-0 £
Some notable highlights of the fractional derivatare as follows:

,U4>0,u40 (0,0 (2)

o+ o+ o+
i. — (a® +bd) =a— (P) +b— (P), Oa,bOR
otH otH ot#

1%
i. a—(tﬂ):mf”‘/‘, OB0OR

atH
9
ii. ——(c) = 0, c=const.
at¥
. a/l — - '
iv. — (POD) =t #P'(t)P' (D(1)).
atH

3. Glimpse of the generalized Kudryshov method

Step 1. We consider that a frcational NLEE ff(x, 1):
MW W 9w 92w

K — , peeennees =0 3
( atH ot ot ' ot? ) ©)
- W 02w , N
where, K represents a polynomial W and v and e are fractional derivatives of
t t
W. To locate the transformation of equati@ix (
ct¥
W =W(x,t) =W(S), E=x-7 (4)

From equation3) and equation4) we locate the following ODE:
LOW,W W™ W™ ... )=0 (5)
Step 2: CalculateM andN through the balance rule on equatié (
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Step 3: Let us consider that
N [
Zi:O Aw
M j

where A and B; are real constantdN and M are positive integers such that

W(¢) = (6)

Ay, By #0and¥ satisfies the following ODE:

AR EGRG) (7)

The general solution of equation (6) is of the form
= 8
W)= 1+ p eg (8)

where, p is any arbitrary constant.

Step 4: Determine the positive integelsandM in equation §) by balancing the highest
order derivative term with the nonlinear term\&fé) in equation §) or equation §).
Moreover, we define the degree W{¢) asD(W(&))=N-M, which gives rise to the

degree of other expression as
——)=N-M+q, DWP(—>)°*=(N-M)p+s(N-M + 9
(dgq) a, (\N(dfq) ( )p+s( a )
where, p, g, sare integer numbers.
Step 5: Applying equation §) into equation (pand equation9), collecting all terms
with the same order @b together. Equating each coefficient of this polyia to zero,

yields a set of algebraic equations which can beeddo find the values ab(¢) with the
help of MAPLE.

4. Solitonsto the nonlinear confor mable time-fractional Phi-4 equation
Let us consider that the nonlinear conformable {iraetional Phi-4 equation:

WH -W,, +a®W +bW3(£) =0, t<0,0< <l (10)

(a) Real 3D shape (b) Imaglnary3D shape (c) Real contourplot (d) Imaginary  contour
plot

Figure 1: The three-dimensional and contour shape of thaisnlin W;(x,{) for
p=-05b=1 By=06, c=2andz=0.5.
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(@) Real 3D (b) Imaginary 3D (c) Real contour (e) Imaginary contour
shape shape plot (d) Plot

Figure 2: The three-dimensional and contour shape of theisnolin W;(x,1) for
p=-05b=-10, By, =-5, ¢=0.5andx=05.

Using w(x,t) =W(¢) , where¢ = x—% , the equation (10) converts the following ODE:

(c® -DW" (&) +a®W +bW3(&) =0 (11)
where,a, b are real parameters ands a traveling wave variable. Applying the rule of
homogeneous balance on equatidd),( (w"¢) and w3¢) = @B(N-M)=N-M+2) =
N =M +1. SettingM =1 thenN = 2. Therefore, we get:

+ AV + AW2
W) =% (12)
By equation {2) and equationi(1) and then equating each coefficientswf to zeros,
we get:

(@) Real 3D (b) Imaginary 3D (c) Real contour (d) Imaginary contour
shape shape plot Plot

Figure 3: The three-dimensional and contour shape of theisnolin W;x(x,t) for
p=-05b=1 By=0.6,c=2anda=05.
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Thefirst set:

a=v1-c? A =0,A = -By,| 2 A2 2501/ B, = By, B; = —2B,

where, ¢, b andB, are constants. Usmg the values of the firstegpiation {2) and
equation {1), we have:

o2
e L )

1+pe u 1+pe H

Wi($) =

(@) Real 3D (b) Imaginary 3D shape (c) Real contourplot (d) Imaginary  contour
shape plot

Figure 4: The three-dimensional and contour shape of thdisnlin W;(x,t) for
p=-05b=-10, By=-5 ¢c=0.5and=05.

The second set:

[2-2¢? [2-2¢?
a=-V1-c® Ay=0,A =B, —p 277280 — B0 =B, B = 2By

where, ¢, b andB, are constants. Similarly, we get:
2-2c? 1
N )" 280,22 = )
1+ pe * 1+ pe H
1
-2B(————
By —2By( o )

X
1+ pe #

W,($) =
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Thethird set:

a=\2-25, A = B 2(; D a- 4(; D a, 28,272
-2c? -2c?

B, = B,.B; = 2B,
where, ¢, b andB, are constants. Similarly, we get:

: 2(c —1) 4(c —1) 1 1o /
2- 2c /2 2c th”) & ( th”

1+ pe # 1+ pe #

Wa(&) = -
By~ 2By(———-

ctH
x-S
1+ pe #

)
Thefourth set:
a=—2_ 20 2(c —1) -_B 4(c —1) /
2- 20 2- 20

B,=B,,B; =
where, c, b andBO are constants. Similarly, we get:

2(c? -1 4(c? -1 1
g, A& D g, AT )28 272 )
2-2c 2-2¢2 x- o
b\/ b b\/b 1+ pe H 1+ pe H
W, ($) =
BO_ZBo(it,,)
1+ pe H

5. Conclusions

In this paper, we have derived diverse kinds ofcesalutions which are shown in the

Figures (- 4) of the equation 1) through the generalized Kudryshov method with
conformable fractional derivative. The investigatedy is sincere and reliable for

producing new varieties of exact solutions of fimtal NLEES in mathematical physics

and engineering.
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