
Annals of Pure and Applied Mathematics 
Vol. 21, No. 2, 2020, 77-86 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 4 April 2020 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/apam.v21n2a1664 

 

77 
 

Annals of 

On the Class of the Diophantine Equations  
5x  + (10K + M)y  = z2  and  5x  + 5y = z2 

with Positive Integers x, y, z  when M = 1, 3, 7, 9  
Nechemia Burshtein 

 117 Arlozorov Street, Tel – Aviv 6209814, Israel 
Email: anb17@netvision.net.il 

Received 23 March 2020; accepted 1 April 2020 

Abstract.   In this article, we consider the equations 5x +  5y  =  z2  and 5x  + (10K + M)y = 
z2  in which  K  ≥  0  is an integer, M = 1, 3, 7, 9,  and  x, y, z  are positive integers.  We 
establish that  5x  + 5y  =  z2  and the cases  M  = 3, 7  yield no solutions.  When M  = 1,  9, 
we show for all values  x  ≥ 1  with  y = 1, that infinitely many solutions exist.  Several 
solutions are also exhibited. 
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions.  
In most cases, we are reduced to study individual equations, rather than classes of 
equations. 
 
       The famous general equation 

px  + qy = z2 
has many forms.  The literature contains a very large number of articles on non-linear 
such individual equations involving particular primes and powers of all kinds.  
 
       In this article we consider the equation  5x  + 5y = z2,  and the class of Diophantine 
equations  5x  + (10K + M)y =  z2  in which x, y, z  are positive integers,  K  ≥  0  is an 
integer, and   M  = 1, 3, 7, 9.  We shall prove that  5x  + 5y = z2,  and the cases  M  = 3, 7  
have no solutions.  For solutions when  M  = 1, 9,  it is shown that  K  and  y  must be odd 
values.  Then, for all values   x ≥ 1  with  y = 1,  it is established that infinitely many 
solutions exist.   
 
       The results are obtained by our new technique which uses the last digits of the 
powers involved, and applies to primes and composites as well with no distinction. 
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       The process of finding the solutions to the equations when  M  = 3, 7  (Sections 2, 4),  
and also when  M  = 1, 9  (Sections 5, 6)  is quite identical and has many similarities.  
Nevertheless, for the sake of simplicity, clarity and completeness, and also for the 
convenience of the readers interested in particular equations, each value  M  is considered 
separately,  and all theorems are self-contained. 
 
2.   On  5x + (10K + 3)y  =  z2 
 
        In 5x  + (10K + 3)y  = z2, K  ≥  0 is an integer. For all values  y  ≥ 1,  the power  (10K 
+ 3)y  has a last digit which respectively equals one of values  3, 9, 7, 1.  For all values  x  
≥ 1,  the power  5x  has a last digit which is equal to 5.  Therefore, the sum  5x  + (10K + 
3)y  has a last digit which is respectively equal to 8, 4, 2, 6,  and  the  sum is even.  If  5x  + 
(10K + 3)y  =  z2  has  a  solution  for some values  x, K,  y  and  z,  then the even value  z2  
does not end in  2  nor  does  it end in  8.  Hence,  z2  has a last digit which is equal to  4  
or equal to  6.  We shall now examine 5x  + (10K + 3)y  =  z2  for  solutions in the two 
cases when  z2 ends in  4  and when  z2 ends in  6. This is done in the following respective 
Theorems 2.1, 2.2.   
 
Theorem  2.1.   Suppose that  K  ≥  0 is an integer, and  x, y, z  are positive integers. If  z2 
ends in the digit  4,  then no value  K  satisfies  5x  + (10K + 3)y = z2.   
 
Proof: We shall assume that for some value  K,  there exist positive integers  x, y, z where 
z2  ends in the digit  4  and reach a contradiction. 
 
       The square z2  has a last digit  equal to  4  when  (10K + 3)y  has a last digit equal to  
9.  Thus  y = 2 + 4n  where  n  ≥ 0  is an integer.  Then, by our assumption 5x  +  (10K + 
3)y  = 5x + (10K  + 3)2 + 4n   =  z2  yields  

5x = z2  – (10K + 3)2 + 4n  = z2   – (10K + 3)2(2n  + 1)   = (z – (10K + 3) 2n  + 1)(z + (10K + 3) 2n  + 1). 
Denote 

      z – (10K + 3) 2n  + 1 = 5A,       z  + (10K + 3) 2n  + 1  =  5B,         A < B,     A + B = x, 
where  A, B  are non-negative integers.  Then  5B– 5A  implies  

                                                 2(10K + 3) 2n  + 1 = 5A(5B – A – 1).                                       (1) 

It follows from  (1)  that  A > 0  is impossible.  Hence  A = 0.  When  A = 0,  then  B = x,  
and from  (1)  we have 

                                                       2(10K + 3) 2n  + 1 = 5x – 1.                                           (2) 

Since  5x – 1 =  5x – 1x,  we rewrite  (2)  as   

2(10K + 3) 2n  + 1 = 5x – 1x = (5 – 1)(5x– 1 + 5x– 2 + ∙∙∙ + 51 + 1). 

The product  2(10K  + 3) 2n  + 1  is a multiple of  2  only, whereas  5x – 1x  is a multiple of  
4.  This is a contradiction implying that our assumption is false. 
 
       When  z2  has a last digit which is equal to 4,  then 5x + (10K + 3)y = z2  has no 
solutions. 
 
       This concludes the proof of Theorem  2.1.                                                         □ 
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Theorem  2.2.   Suppose that  K  ≥  0  is an integer, and  x, y, z  are positive integers.  If  
z2  ends in the digit  6,  then no value  K  satisfies  5x + (10K + 3)y = z2.  
 
Proof: We shall assume that for some value  K,  there exist positive integers  x, y, z  such 
that  z2  ends in the digit  6  and reach a contradiction. 
 
       The square  z2  has a last digit  equal to  6  when  (10K + 3)y  has a last digit equal to  
1.  Hence  y =  4n  where  n  ≥ 1  is an integer. Then, by our assumption 5x  + (10K + 3)y =  
5x + (10K + 3) 4n  =  z2  yields  

5x = z2  – (10K + 3) 4n  = z2  – (10K + 3)2(2n)   = (z – (10K + 3) 2n)(z + (10K + 3) 2n). 
Denote 

z – (10K + 3) 2n = 5E,       z + (10K + 3) 2n = 5F,       E < F,       E + F = x, 
where  E, F  are non-negative integers.  Then  5F– 5E  implies  

                                                     2(10K + 3) 2n =  5E(5F – E – 1).                                       (3) 

It follows from  (3)  that  E  >  0  is impossible.  Hence  E = 0.  When  E = 0,  then  F = x,  
and from  (3)  we obtain 

                                                           2(10K + 3) 2n = 5x – 1.                                            (4) 

Since  5x – 1 =  5x – 1x,  we can write  (4)  as   

2(10K + 3) 2n =  5x – 1x  =  (5 – 1)(5x– 1 + 5x– 2 + ∙∙∙ + 51 + 1). 

The product  2(10K  + 3) 2n  is a multiple of  2  only, whereas  5x – 1x  is a multiple of  4.  
This contradiction implies that our assumption is false. 
 
       When  z2  ends in the digit 6, then 5x  + (10K + 3)y = z2  has no solutions. 
 
       This completes the proof of Theorem  2.2.                                                         □ 
 
Remark 2.1.   In accordance with the preface of this section, and as a direct consequence 
of both Theorems  2.1 and 2.2,  it now follows for  all  integers  K  ≥ 0, that the equation 
5x + (10K + 3)y = z2  has no solutions. 
 
3.   On  5x +  5y  = z2   
 

In the following Theorem  3.1,  we show that  5x  + 5y  =  z2  has no solutions. 
 
Theorem 3.1.   The equation  5x  + 5y  =  z2  has no solutions in positive integers  x, y, z. 
 
Proof:   For all values  x, y,  the sum  5x   +  5y  is even.  If  5x  + 5y  =  z2  has a solution, 
then  z2  is even,  and  z = 2T  where  T  is an integer.  Thus  z2  =  4T2. 
We shall assume that for some values  x, y, z,  the equation  5x  +  5y  =  z2  has a solution 
and reach a contradiction. 
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If  x = y,  then by our assumption we have that 
z2 = 5x  + 5y = 2	∙		5x  

≠  4T2 
a contradiction.  Hence  x  ≠  y.   
 

If  x, y  are distinct, then without loss of generality let  x  > y. 
Denote  x – y = R.  By our assumption we obtain  

z2  = 5x  + 5y  = 5y (5x – y  + 1)  = 5y(5R + 1)  =  4T2.                                     (5) 
From  (5)  it follows that  4 | (5R + 1).  Since  5 = 4N + 1  (N  = 1),  therefore for all 
values  R  the power  5R  is of the form  4V + 1.  Thus  

 5R + 1 = (4V + 1) + 1 =  4V + 2 = 2(2V + 1). 

Hence in  (5)  4 ∤ (5R + 1). The contradiction derived implies that our assumption is false.  
 

       The equation  5x  + 5y  =  z2  has no solutions.                                                         □ 
 
Corollary  3.1.    As a consequence of Theorem 3.1,  it clearly follows that  if  5  is 
replaced by any prime  p  >  5 where  p  =  4N  + 1  (N  > 1),  then the equation  px  + py = 
z2 has no solutions in positive integers  x, y, z. 
 
Proof: The  proof  is  the  same  proof  as  that  of  Theorem  3.1  when 5   is replaced  
by  p.                                                                                                                         □ 
 
4.   On  5x  + (10K + 7)y = z2 
 
       In  5x  + (10K + 7)y  =  z2,  K  ≥ 0 is an integer. For all values y  ≥  1,  the power  (10K 
+ 7)y  has a last digit which is respectively equal to one of the values 7, 9, 3, 1.  For all 
values  x  ≥ 1,  the power  5x  has a last digit which is equal to 5.  Therefore, the sum  5x   

+ (10K  + 7)y  has a last digit which is respectively equal to  2, 4, 8, 6,  and the sum is 
even.  If  5x  + (10K  +  7)y  =  z2  has a solution for some values  x, K,  y and  z,  then the 
even value  z2  does not have a last digit which is equal to  2  and also equal to 8.  Hence,  
z2  has a last digit equal to  4  or equal to  6.  We therefore investigate the two cases when  
z2  ends in  4  and also ends in  6.  This is done in the following respective two theorems 
namely  Theorem 4.1  and Theorem  4.2. 
 
Theorem  4.1.   Suppose that  K  ≥  0 is an integer, and  x, y, z  are positive integers. If  z2  
ends in the digit  4,  then no value  K  satisfies  5x  +  (10K  + 7)y  =  z2. 
  
Proof: We shall assume that for some value  K,  there exist positive integers  x, y, z  such 
that  z2  ends in the digit  4  and reach a contradiction. 
 
       The square  z2  has a last digit  equal to  4  when  (10K  +  7)y  has a last digit equal to  
9.   Hence  y = 2 + 4m   where  m  ≥  0   is  an  integer.  Then,  by our assumption  5x  +  
(10K + 7)y = 5x  + (10K + 7)2 + 4m   =  z2  yields  

5x  =  z2  – (10K  + 7)2 + 4m  = z2 – (10K + 7)2(2m  + 1)  = (z – (10K + 7) 2m  + 1)(z + (10K + 7) 2m  + 1). 
Denote 

z – (10K +  7) 2m + 1 = 5A,         z  + (10K + 7) 2m  + 1 = 5B,         A < B,           A + B = x, 
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where  A, B  are non-negative integers.  Then  5B – 5A  yields 

                                         2(10K + 7) 2m + 1 = 5A(5B – A – 1).                                       (6) 

It follows from  (6)  that  A > 0  is impossible.  Thus  A = 0.  When  A = 0,  then  B = x,  
and from  (6)  we obtain 

                                                       2(10K + 7) 2m + 1  = 5x – 1.                                           (7) 

Since  5x – 1 =  5x – 1x,  we can write  (7)  as   

2(10K + 7) 2m + 1 = 5x – 1x = (5 – 1)(5x– 1 + 5x– 2 + ∙∙∙ + 51 + 1). 

The product  2(10K + 7) 2m + 1  is a multiple of  2  only, whereas  5x – 1x  contains the 
factor 4.  This is a contradiction implying that our assumption is false. 
 
       When  z2  has a last digit which equals 4,  then 5x  + (10K + 7)y  =  z2  has no 
solutions. 
 
       This concludes the proof of Theorem  4.1.                                                         □ 
 
Theorem  4.2.   Suppose that  K  ≥ 0 is an integer,  and x, y, z are positive integers.  If  z2 

ends in the digit  6,  then no value  K  satisfies  5x + (10K + 7)y  =  z2. 
 
Proof: We shall assume that for some value  K,  there exist positive integers  x, y, z  such 
that  z2  ends in the digit  6  and reach a contradiction. 
 
       The square  z2  has a last digit  equal to  6  only when  (10K + 7)y  has a last digit 
equal to  1.   Thus  y = 4n  where  n ≥ 1   is  an  integer. Then,  by our assumption  5x  + 
(10K + 7)y  =  5x + (10K + 7)4n  = z2  yields  

5x  =  z2  – (10K + 7)4n  = z2 – (10K + 7)2(2n)   = (z – (10K + 7) 2n)(z + (10K + 7) 2n). 
Denote 

z – (10K + 7) 2n  = 5C,       z + (10K + 7) 2n  = 5D,       C  <  D,       C + D = x, 

where  C, D  are non-negative integers.  Then  5D – 5C  yields 

                                                     2(10K + 7) 2n = 5C(5D – C  – 1).                                       (8) 

It follows from  (8)  that  C  >  0  is impossible.  Hence  C = 0.  When  C = 0,  then  D = 
x,  and we have from  (8)  

                                                           2(10K + 7) 2n  = 5x – 1.                                            (9) 

In  (9),  the difference  5x – 1  can be written as  5x – 1x,  and   

2(10K + 7) 2n = 5x  – 1x = (5 – 1)(5x– 1 + 5x– 2 + ∙∙∙ + 51 + 1). 

The product  2(10K  +  7) 2n  is a multiple of  2  only, whereas  5x – 1x  is a multiple of  4.  
This contradiction implies that our assumption is false. 
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       When  z2  has a last digit which is equal to 6,  then 5x + (10K + 7)y = z2  has no 
solutions. 
 
       The proof of Theorem  4.2  is complete.                                                            □ 
 
Remark 4.1. In accordance with the preface of this section, and as a direct consequence 
of both Theorems  4.1 and 4.2,  it now follows  for  all  integers K  ≥  0,  that  the  
equation 5x + (10K + 7)y  =  z2  has no solutions. 
 
Concluding remark for  M  = 3,7.  The author and many others have considered the 
equation px + qy  = z2   in which  p  and  q  are primes.  In this article  p = 5,  where  q  is 
defined as  q = 10K + 3  or  q = 10K + 7  for all integers  K  ≥  0. By using all values K  ≥  
0,  the results established therefore include all primes  q  whose last digit is equal to  3  
and equal to 7. Moreover, the results are valid for all composites whose last digits are 3  
and  7. 
 
5.   On  5x + (10K + 1)y  = z2 
 
        In this section we consider 5x  + (10K + 1)y = z2  when  K  ≥  1  is an integer.  We 
will show that if  y = 1  and  K  assumes odd values, then for each value  x ≥ 1 the 
equation has infinitely many solutions. 
 
Theorem  5.1.   If  5x  + (10K + 1)y  =  z2  has a solution with positive integers  x, y, z,  
then  K  and  y are odd.  
 
Proof:  The prime  5  is of the form  5 = 4N  + 1  (N  = 1).  Then, for all values  x  ≥ 1,  5x 
=  (4N  +  1)x  is of the form  4A + 1.  Moreover, for all values  x  ≥ 1  the power  5x  has a 
last digit equal to 5.  For all values  y  ≥ 1,  the power  (10K  + 1)y  has a last digit equal to  
1.  In any solution of  5x  + (10K  + 1)y  =  z2,  the last digit of  z2  is therefore equal to  6.  
Since  z2  is even, then  z = 2T  and  z2 = 4T2  where  T  is an integer.   
 
        For  all  values  K  ≥ 1,  and  for  all even  values  y,  the  power  (10K + 1)y  is of the 
form  4B + 1.  Then  

5x + (10K + 1)y  = (4A + 1) + (4B + 1) = 4(A + B) + 2 ≠  4T2 = z2, 

and  5x + (10K + 1)y   =  z2  has no solutions.   
Hence, if  5x  +  (10K  + 1)y  = z2  has a solution, then  y = 2n + 1  where  n  ≥ 0  is an 
integer.  
 

Suppose that  K  is even.  For all even values  K  ≥  2,  the value 10K + 1 is of the 
form  4U + 1.  For all odd values  y = 2n + 1, then  the power  (10K + 1)y =  (4U + 1)2n + 1  
is of the form  4V + 1.  We have 

5x + (10K + 1)y  = (4A + 1) + (4V  + 1) = 4(A + V) + 2 ≠  4T2 = z2, 
and 5x + (10K + 1)y  =  z2  has no solutions. 
Thus,  if  5x + (10K + 1)y  =  z2  has a solution, then  K  ≥ 1  is odd.  
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       The proof of Theorem  5.1  is complete.                                                             □ 
 
Theorem  5.2.   If  K  ≥ 1  is odd and  y = 1,  then for each and every integer  x  ≥ 1,  5x + 
(10K + 1)y  =  z2  has infinitely many solutions.  
 
Proof:  By Theorem  5.1,  it follows that in any solution of the equation, the last digit of  
z2  is equal to 6.  A square (10C + R)2  has a last digit equal to  6  when  R = 4 or when   
R = 6.  For our purpose, it will clearly suffice to consider one of the two possibilities say   
R = 6.   
 
          Let  x  ≥ 1  be a fixed value.  Let  C  denote the smallest possible value for which  
(10C + 6)2  > 5x.  Then there exists an odd value  K  satisfying the equation 

                                        5x + (10K + 1)1 = (10C + 6)2 =  z2.                                         (10) 

        Evidently, for  any fixed value  x  with each value  C + 1, C + 2, …, C + Q, …,  
there exists a respective odd value  K  such that  (10)  holds.  The infinitude of solutions 
is established. 
 
        For each and every value  x  ≥ 1,  5x + (10K + 1)1  =  z2  has infinitely many solutions.  
 
       This concludes the proof of Theorem  5.2.                                                         □ 
 
       We now exhibit some solutions for odd and even values  x which illustrate Theorem   
5.2.  When  K  is odd,  y = 1,  x = 1, 3  and  z = 10C + 6  we have 
 
Solution 1.   51 + 311     =   62  x = 1,   K = 3,             C = 0. 
Solution 2.   51 + 2511   =   162  x = 1,   K = 25,           C = 1. 
Solution 3.   51 + 6711   =   262  x = 1,   K = 67,            C = 2. 
 
Solution 4.                  53 + 1311   =   162  x = 3,  K = 13,  C = 1. 
Solution 5.   53 + 5511   =   262  x = 3,  K = 55,  C = 2. 
Solution 6.  53 + 11711 =   362  x = 3,  K = 117, C = 3. 
 

When  K  is odd,  y = 1,  x = 2, 4, 6  and  z = 10C + 6  we have 
 

52 + 111   = 62,             54 + 511   = 262,             56 + 2511       = 1262, 
52 + 2311 = 162,           54 + 6711 = 362,             56 + 28711 = 1362. 

 
In the above solutions, the values  10K + 1 consist of primes and composites. 
 

The following question may now be raised. 
 
Question 1.   Does 5x  + (10K + 1)y  =  z2  have solutions for odd values  K  and odd 
values  y > 1 ? 
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6.  On  5x + (10K + 9)y  =  z2 
 
       First, we prove that 5x + (10K + 9)y  =  z2  has solutions only if   K  and  y  are both 
odd.  Secondly, we show that when  y = 1,  then for each and every value  x  ≥ 1  the 
equation has infinitely many solutions.  We remark that these results resemble the results 
obtained in  Section 5. 
 
Theorem  6.1.  If  5x + (10K + 9)y  =  z2  has a solution with positive integers  x, y, z, then 
K  and  y  are odd.   
 
Proof:   For  all  values  x  ≥ 1,  the  power  5x  has  a  last  digit  equal  to 5,  whereas  for 
all  values  y  ≥  1  the power  (10K + 9)y  has a last digit which is respectively  equal  to  
9  or to 1.  Therefore, the sum  5x + (10K  + 9)y  has a last digit which is respectively 
equal to  4  or to  6.  Hence, in any solution of   5x + (10K  + 9)y  = z2,  the power  z2  is 
even.  Thus,  z = 2T,  z2 = 4T2  where  T  is an integer.  
 
         Let  y  be even. For all values  x ≥ 1  and  y = 2n  where  n ≥ 1  is an integer, it is 
easily seen that the sum  5x + (10K + 9)2n  is a multiple of  2  only.  Since z2  is a multiple 
of  4,  therefore  when  y = 2n,  it follows that 5x + (10K + 9)y  =  z2  has no solutions.  
Hence, if  5x + (10K + 9)y  =  z2  has a solution, then  y = 2n + 1  where  n ≥ 0  is an 
integer.   
 
         Let  y = 2n + 1.  For  all  values  x ≥ 1,  the  power  5x  is  of  the  form  4H +1.  
When  K  is even, then  10K + 9  is of the form   4G +1,  and  (10K + 9)2n+ 1 = (4G +1)2n+ 1 
has the form  4Q + 1.  Then 

5x + (10K + 9)y  = 5x + (10K + 9)2n+ 1 = (4H + 1) + (4Q + 1) = 4(H + Q) + 2 ≠  4T2 = z2, 
and the equation has no solutions.  Hence  K  is not even,  and  K  is odd as asserted. 
 
       This concludes the proof of Theorem  6.1.                                                        □ 
 
Theorem  6.2. If K  is odd and  y = 1,  then for each and every value  x  ≥ 1,  5x + (10K + 
9)y  =  z2  has infinitely many solutions. 
 
Proof:   Since   y = 1,  it  follows   that   the  last   digit  of   z2   is  equal  to   4.  A  square  
(10W + R)2  has a last digit equal to  4 only when  R = 2 or when  R = 8.  For our purpose, 
it suffices to consider one of the two cases,  say  R = 2. 
 
       Let  x  ≥ 1  be a fixed value.  Let  W  denote the smallest possible value for which 
(10W  +  2)2  >  5x.  Then there exists an odd value  K  which satisfies the equation 
                                     5x + (10K + 9)1  = (10W  + 2)2  =  z2.                                          (11) 
       Certainly, for  any fixed value  x  with each value W + 1,W + 2,…, W + J,…, there 
exists a respective odd value  K  such that  (11)  is satisfied.  An infinitude of solutions 
then exists. 
 
         For each and every value  x ≥ 1,  5x + (10K + 9)1 = z2  has infinitely many solutions. 
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       The proof of Theorem  6.2  is complete.                                                            □ 
 
       We now demonstrate some solutions of  5x + (10K + 9)1 = z2  when  x = 2, 4,  K  is 
odd,  y = 1 and z = 10W + 2. 
 
Solution 7.   52 + 1191    =  122  x = 2,           K = 11,           W = 1. 
Solution 8.  52 + 4591    =   222  x = 2,  K = 45,           W = 2. 
Solution 9.  52 + 9991    =   322  x = 2,  K = 99,  W = 3. 
 
Solution 10.  54 + 3991    =   322  x = 4,  K = 39,  W = 3. 
Solution 11.  54 + 11391  =   422  x = 4,  K = 113, W = 4. 
Solution 12.  54 + 20791  =   522  x = 4,  K = 207, W = 5. 
 
In the above six solutions, the values  10K + 9  are composites. 
 
       The following question may now be raised. 
 
Question 2.   Does 5x  +  (10K + 9)y  = z2  have solutions for odd values  K  and odd values  
y  > 1 ? 
 
Final remark.  In this article, we have established for  all integers  K ≥ 0  that  5x + (10K 
+ 3)y = z2, 5x  + (10K + 7)y  = z2 and  5x  + 5y = z2 have no solutions in positive integers   
x,  y,  z.  For  5x  + (10K + 1)y =  z2  and  5x  + (10K + 9)y = z2,  it has been determined for 
all values  x ≥ 1  with  y = 1,  that infinitely many solutions exist.  The results achieved 
are primarily and in principle based upon our new method which uses the last digits of 
the powers in the equations.  This elementary tool, together with other simple and known 
basic facts enabled these results.  We presume that more equations may be solved in this 
manner.  
 
In all the articles of the author which are cited in this paper, this new method has been 
utilized very recently (2019 – 2020).  It is therefore obvious, that no other references 
exist on this subject. 
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