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Abstract. In this article, we consider the equatiofis55 = Z and 5 + (1K + M)’ =

Z in which K > 0 is an integeM =1, 3,7, 9, andk, y, z are positive integers. We
establish that 5+ 5 = 7 and the caseM =3, 7 yield no solutions. Whén =1, 9,
we show for all valuesx > 1 with y = 1, that infinitely many solutions exist. Severa
solutions are also exhibited.
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1. Introduction

The field of Diophantine equations is ancient, yvastd no general method exists to
decide whether a given Diophantine equation hassahytions, or how many solutions.
In most cases, we are reduced to study individgalatons, rather than classes of
equations.

The famous general equation
p+ao=72
has many forms. The literature contains a vergdartumber of articles on non-linear
such individual equations involving particular pesnand powers of all kinds.

In this article we consider the equatioh +55 = Z, and the class of Diophantine
equations 5+ (1K + M)Y = Z in whichx, y, z are positive integersKk > 0 is an
integer, and M =1, 3, 7, 9. We shall prove that 65 =7, and the caseM =3, 7
have no solutions. For solutions whéh =1, 9, itis shown thaK andy must be odd
values. Then, for all valuesx > 1 with y =1, itis established that infinitely many
solutions exist.

The results are obtained by our new tectmighich uses the last digits of the
powers involved, and applies to primes and comessis well with no distinction.
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The process of finding the solutions tod¢lgeations wherM = 3, 7 (Sections 2, 4),
and also whenM =1, 9 (Sections 5, 6) is quite identical amd many similarities.
Nevertheless, for the sake of simplicity, claritydacompleteness, and also for the
convenience of the readers interested in parti@daations, each valuel is considered
separately, and all theorems are self-contained.

2. On 85+ (1K+3) =7

In %+ (1K + 3) =7, K > 0is an integer. For all valugs > 1, the power (10
+ 3) has a last digit which respectively equals oneatfies 3, 9, 7, 1. For all values
> 1, the power 5 has a last digit which is equal to 5. Thereftihe, sum 5+ (1K +
3) has a last digit which is respectively equal td4,8, 6, and the sumis even. {f+5
(10K + 3y = Z has a solution for some valugsk, y and z, then the even valug®
does not end in 2 nor does itendin 8. Hemtehas a last digit which is equal to 4
or equal to 6. We shall now examine+ (1K + 3Y = Z for solutions in the two
cases wher? ends in 4 and whe# ends in 6. This is done in the following respeti
Theorems 2.1, 2.2.

Theorem 2.1. Suppose thaK > 0 is an integer, and, y, z are positive integers. I’
ends in the digit 4, then no valle satisfies 5+ (10K + 3 =Z.

Proof: We shall assume that for some vakig there exist positive integers y, zwhere
Z ends in the digit 4 and reach a contradiction.

The squar# has a last digit equal to 4 when K10 3) has a last digit equal to
9. Thusy=2+ 4 wheren >0 is an integer. Then, by our assumptidr 51K +
3 =8+ (1K +3F*" = Z yields
B*=Z (1K + 3 " =7 — (1K + 3f@ *D = (z— (1K + 3)" "H(z+ (1K + 3)™ ),
Denote
z-(1K+3)**"1=5"  z+(1K+3**"!t =5, A<B, A+B=x,
where A, B are non-negative integers. The®-5" implies
1% + 3)2n +1: 5A(58—A_ 1) (1)

It follows from (1) thatA> 0 is impossible. HencA = 0. WhenA =0, thenB =X,
and from (1) we have

21K + 3y *1=5_1, (2)
Since 5—-1= 3- I, we rewrite (2) as
20K +3)M" =5 _1*=(5-1)(B'+5 %+ +5+1).

The product 2(1R + 3)* ** is a multiple of 2 only, whereas'51* is a multiple of
4. This is a contradiction implying that our asgdion is false.

When Z has a last digit which is equal to 4, thén+510K + 3 =7 has no
solutions.

This concludes the proof of Theorem 2.1. o
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Theorem 2.2. Suppose thaK > 0 is an integer, and, y, z are positive integers. If
Z ends in the digit 6, then no valte satisfies 5+ (10K + 3 =7

Proof: We shall assume that for some valkie there exist positive integers y, z such
that Z ends in the digit 6 and reach a contradiction.

The square? has a last digit equal to 6 when K10 3) has a last digit equal to
1. Hencey = 4n wheren > 1 is an integer. Then, by our assumptida 1K + 3) =
5+ (1K + 3)" = Z yields

5=7—- (1K +3)" =7 - (1K + 3f™ = (z— (1K + 3)")(z+ (1K + 3)™).
Denote

- (1K +3)"=5, z+(1X+3)*"=5, E<F, E+F=x
where E, F are non-negative integers. Theh-5 implies
2(1K + 3)M = (5" F-1). (3)

It follows from (3) thatE > 0 is impossible. Henck = 0. WhenE =0, thenF =X,
and from (3) we obtain

2(1K + 3)*' =51, ) (4
Since 5—1= 3- I, we can write (4) as
20K +3)"=5-2 = 5-1)B '+5 %+ +5+1).

The product 2(1Q + 3)* is a multiple of 2 only, whereas* 51* is a multiple of 4.
This contradiction implies that our assumptionaisé.

WhenZ ends in the digit 6, therd 5 (10K + 3) =7 has no solutions.

This completes the proof of Theorem 2.2. O
Remark 2.1. In accordance with the preface of this section, @sd direct consequence
of both Theorems 2.1 and 2.2, it now follows fadt integerskK > 0, that the equation
5+ (1K + 3) =7 has no solutions.
3. On 8+ 5 =7

In the following Theorem 3.1, we show thdt+5%’ = Z has no solutions.

Theorem 3.1. The equation ’5+ ¥ = Z has no solutions in positive integexsy, z
Proof: For all valuesx, y, the sum 5+ 5 iseven. If 5+5 = 7 has a solution,
then Z is even, andz= 2T whereT is an integer. Thug = 412

We shall assume that for some valuey, z, the equation *5+ 5 = Z has a solution
and reach a contradiction.
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If x=vy, then by our assumption we have that
Z=5+5=2 5% 4T
a contradiction. Hence # .

If %,y are distinct, then without loss of generality Jet> y.
Denotex—y =R. By our assumption we obtain
Z=5+5 =55 +1) =56 +1) = 42 (5)
From (5) it follows that 4 (5 + 1). Since 5=M+1 (N = 1), therefore for all
valuesR the power B is of the form ¥ + 1. Thus

BR+1=(+1)+1= &+2=2+1).
Hence in (5) 4 (5% + 1). The contradiction derived implies that oss@mption is false.

The equation*5 5 = Z has no solutions. O

Corollary 3.1. As a consequence of Theorem 3.1, it cleadlps that if 5 is
replaced by any prim@ > 5 wherep = 4N +1 (N > 1), then the equatiop” + p’ =
Z has no solutions in positive integexsy, z

Proof: The proof is the same proof as that of ofém 3.1 when5 is replaced
by p. O

4. On B+ (1K +7y=7

In 8+ (1K + 7Y = Z, K >0is an integer. For all valugs> 1, the power (10
+ 7Y has a last digit which is respectively equal ne of the values 7, 9, 3, 1. For all
values x > 1, the power 5 has a last digit which is equal to 5. Thereftine,sum %
+ (1K + 7Y has a last digit which is respectively equal2p4, 8, 6, and the sum is
even. If 5+ (1K + 7)Y = Z has a solution for some valugs K, y and z, then the
even valueZ does not have a last digit which is equal tarl also equal to 8. Hence,
Z has a last digit equal to 4 or equal to 6. tiMzefore investigate the two cases when
Z endsin 4 and also ends in 6. This is dortaérfollowing respective two theorems
namely Theorem 4.1 and Theorem 4.2.

Theorem 4.1. Suppose thaK > 0 is an integer, and, y, z are positive integers. I
ends in the digit 4, then no value satisfies 5+ (1K +7) = 2

Proof: We shall assume that for some valkie there exist positive integers y, z such
that Z ends in the digit 4 and reach a contradiction.

The square? has a last digit equalto 4 when K18 7Y has a last digit equal to
9. Hencey=2+4n wherem > 0 is an integer. Then, by our assumptidn+ 5
(10K + 7Y =B + (1K + 7¢ " = Z yields
5= Z (1K + 7P M =7 (AK + 7@ V= (z— AK + 7)™ " Yz + (1K + 7)™ Y,
Denote

z- (1K + 7)™*1=5" z+(1AK+7)""1=5, A<B, A+B=x,
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where A, B are non-negative integers. Theh-5" yields
206 7)Y =55 A-1). (6)

It follows from (6) thatA > 0 is impossible. Thu®\ =0. WhenA =0, thenB =x,
and from (6) we obtain

21K + 7)™t =51, (7)
Since 5—1= 5-1, we can write (7) as
20K + 7)™ =8 _ = (5-1)(8 '+ 5%+ + 5 +1).
The product 2(1R + 7)*™** is a multiple of 2 only, whereas® 5 I contains the
factor 4. This is a contradiction implying thatr @ssumption is false.

When Z has a last digit which equals 4, thén (1K + 7Y = Z has no
solutions.

This concludes the proof of Theorem 4.1. o

Theorem 4.2. Suppose thaK >0 is an integer, arx]y, zare positive integers. I
ends in the digit 6, then no valle satisfies 5+ (1K + 7) = Z.

Proof: We shall assume that for some valkie there exist positive integers y, z such
that Z ends in the digit 6 and reach a contradiction.

The squareZ has a last digit equal to 6 only when K10 7)Y has a last digit
equalto 1. Thusg/=4n wheren>1 is an integer. Then, by our assumptidn+ 5
(10K + 7Y = B'+ (1K + 7)" = Z vyields

5= Z-(IK+ 7" =2 - (AK + 7Y = (z— AK + 7)*)(z + (1K + 7)™).
Denote

z-(1K+7)* =5, z+(1XK+7)* =5, C<D, C+D=x
where C, D are non-negative integers. Thel-%° yields
21K + 7)™ =55 ¢ - 1). (8)

It follows from (8) thatC > 0 is impossible. Henc€ = 0. WhenC =0, thenD =
X, and we have from (8)

21K + 7)™ =5—1. ) (9
In (9), the difference *5-1 can be written as* 5 I, and
20K + 7)) =5 - I=(5-1)(B '+ 5%+ + 5 + 1).

The product 2(1Q + 7)* is a multiple of 2 only, whereas' 51 is a multiple of 4.
This contradiction implies that our assumptionaisé.
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When Z has a last digit which is equal to 6, thént§10K + 7Y = Z has no
solutions.

The proof of Theorem 4.2 is complete. O

Remark 4.1.In accordance with the preface of this section, ané direct consequence
of both Theorems 4.1 and 4.2, it now follows fafl integersK > 0, that the
equation 5+ (1K + 7 = Z has no solutions.

Concluding remark for M = 3,7. The author and many others have considered the
equationp”+ ¢ = Z in which p and q are primes. In this articlp = 5, whereq is
defined asq=1K + 3 orq= 1K + 7 for all integersK > 0. By using all valuek >

0, the results established therefore include rathgs q whose last digit is equal to 3
and equal to 7. Moreover, the results are validafbocomposites whose last digits are 3
and 7.

5. On 5+ (1K +1y =7

In this section we considef 5 (1K + 1Y =7 when K > 1 is an integer. We
will show that if y =1 and K assumes odd values, then for each value 1 the
equation has infinitely many solutions.

Theorem 5.1. If 5 + (1K + 1Y = Z has a solution with positive integessy, z,
then K and y are odd.

Proof: The prime 5 is ofthe form 534+ 1 (N =1). Then, for all values >1, ¥

= (4N + 1Y is of the form A+ 1. Moreover, for all values > 1 the power 5 has a
last digit equal to 5. For all valugs > 1, the power (1K + 1) has a last digit equal to
1. In any solution of 5+ (1K + 1) = 7, the last digit ofZ is therefore equal to 6.
Since Z is even, therz = 2T and Z = 4T where T is an integer.

For all valueX >1, and for all even valueg the power (1R + 1Y is of the
form 4+ 1. Then

B+ (1K + 1) = (4A+ 1)+ (B +1)=4Q+B) + 2# 4T° =7,

and 3+ (1K + 1Y = Z has no solutions.
Hence, if 3 + (1K + 1) = Z has a solution, thely = 2n+ 1 wheren >0 is an
integer.

Suppose thaK is even. For all even valudé > 2, the value 10 + 1 is of the
form 4U + 1. For all odd valuey = 2n + 1, then the power (KO+ 1Y = (4U + 1f"**
is of the form ¥ + 1. We have

5+ (1K + 1) = (4A+ 1) + (& +1) = 4@ +V) + 2+ 4T?° =7,
and 3 + (1K + 1) = Z has no solutions.
Thus, if 3+ (1K + 1y = Z has a solution, theK >1 is odd.
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The proof of Theorem 5.1 is complete. O

Theorem 5.2. If K >1 isodd andy =1, then for each and every integer> 1, 5 +
(10K + 1Y = Z has infinitely many solutions.

Proof: By Theorem 5.1, it follows that in any solutiohtbe equation, the last digit of
Z is equal to 6. A square (@0 R)* has a last digit equal to 6 whé&= 4 or when
R=6. For our purpose, it will clearly suffice ¢onsider one of the two possibilities say
R=6.

Letx >1 be afixed value. Le€C denote the smallest possible value for which
(10C + 6§ > 5. Then there exists an odd valte satisfying the equation
“B (1K + 1) = (10C + 6Y = A (10)
Evidently, for any fixed valuex with each valueC + 1,C + 2, ...,C +Q, ...,
there exists a respective odd valle such that (10) holds. The infinitude of salas
is established.
For each and every valxe> 1, 5+ (1K + 1)' = Z has infinitely many solutions.
This concludes the proof of Theorem 5.2. o

We now exhibit some solutions for odd andrevaluesx which illustrate Theorem
5.2. WhenK isodd,y=1, x=1,3 andz=10C + 6 we have

Solution 1. 5+31 = 6 x=1, K =3, c=0.
Solution 2. 5'+251% = 16 x=1, K =25 Cc=1.
Solution 3. 5'+671F = 26 x=1, K =67, c=2.
Solution 4. 5+ 131 = 16 X=3, K =13, c=1.
Solution 5. 5 +551F = 26 X=3, K = 55, c=2.
Solution 6. 5+ 1171 = 36 X=3, K =117, c=3.

When K isodd,y=1, x=2,4, 6 andz=10C + 6 we have

5+ 11 =6, 8+51 =286, 8+ 251 =126,
5% + 231 = 16, 8+671 =36, 8+ 2871 = 136.

In the above solutions, the valuesK10 1 consist of primes and composites.
The following question may now be raised.

Question 1. Does 5 + (1K + 1Y = Z have solutions for odd valuek and odd
valuesy>17?
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6. On B+ (1K +9yY =7

First, we prove that'3 (1K + 9Y = Z has solutions only if K and y are both
odd. Secondly, we show that whgn= 1, then for each and every value > 1 the
equation has infinitely many solutions. We remidadt these results resemble the results
obtained in Section 5.

Theorem 6.1.1f 5*+ (1K + 9Y = Z has a solution with positive integexsy, z, then
K andy are odd.

Proof: For all valuesx > 1, the power Shas a last digit equal to 5, whereas for
all valuesy > 1 the power (I0+ 9) has a last digit which is respectively equal to
9 orto 1. Therefore, the sum* 6 (1K + 9) has a last digit which is respectively
equal to 4 orto 6. Hence, in any solution &f + (1K + 9) =7, the powerZ is
even. Thusz= 2T, Z=4T* whereT is an integer.

Lety be even. For all valuex>1 andy=2n wheren>1 is an integer, it is
easily seen that the sunf 5(1K + 97" is a multiple of 2 only. Sinc@ is a multiple
of 4, therefore whery = 2n, it follows that 5 + (1K + 9Y = Z has no solutions.
Hence, if 3+ (1K + 9Y = 7 has a solution, thery=2n + 1 wheren> 0 is an
integer.

Lety=2n+1. For all valuex>1, the power 5is of the form W +1.
When K is even, then 30+ 9 is of the form @& +1, and (1B + 9Y™'= (4G +1™*!
has the form @ + 1. Then

B+ (1K +9Y =5+ (AK+ 9" ' =(H + 1) + (R + 1) =4H + Q) + 2+ 4T*=7,
and the equation has no solutions. HeHcés not even, and is odd as asserted.

This concludes the proof of Theorem 6.1. O

Theorem 6.2.If K is odd andy = 1, then for each and every valye> 1, 5+ (1K +
9y = 7 has infinitely many solutions.

Proof: Since y=1, it follows that the last digit off is equal to 4. A square
(10W + R)? has a last digit equal to 4 only whé&= 2 or whenR = 8. For our purpose,
it suffices to consider one of the two cases, Ray?2.

Letx >1 be a fixed value. Le¥V denote the smallest possible value for which
(10W + 2¥ > 5% Then there exists an odd vale which satisfies the equation
B (1K + 9) = (10W +2F = A (11)
Certainly, for any fixed valuex with each valu&v+ 1W + 2,..., W+ J,..., there
exists a respective odd valu€ such that (11) is satisfied. An infinitudesaflutions
then exists.

For each and every value> 1, 5 + (1K + 9 =Z has infinitely many solutions.
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The proof of Theorem 6.2 is complete. O

We now demonstrate some solutions bf+ $10K + 9} =7 when x=2, 4, K is
odd, y=1 andz= 10W + 2.

Solution 7. ¥ +119 = 12 X=2, K =11, W=1.
Solution 8. 52+ 459 = 23 X=2, K = 45 W=2,
Solution 9. 5°+999 = 32 X=2, K =99, W=3.
Solution 10. 5'+399 = 32 X=4, K = 39, W=3.
Solution 11. 5'+ 1139 = 42 X=4, K =113, W=4,
Solution 12. 5*+2079 = 57 X=4 K = 207, W=5.

In the above six solutions, the valuesK 09 are composites.
The following question may now be raised.

Question 2. Does 5 + (1K + 9) = Z havesolutions for odd value& and odd values
y>17?

Final remark. In this article, we have established for all imegK >0 that 5+ (1K
+3Y =7 5+ (1K + 7Y =Zand 3+ 5 =7 have no solutions in positive integers

X, y, z For 8+ (1K + 1= Z and %+ (1K + 9)Y =7, it has been determined for
all values x> 1 with y =1, that infinitely many solutions exist. Thesults achieved
are primarily and in principle based upon our neethod which uses the last digits of
the powers in the equations. This elementary together with other simple and known
basic facts enabled these results. We presumenibrat equations may be solved in this
manner.

In all the articles of the author which are citadthis paper, this new method has been
utilized very recently (2019 — 2020). It is thenef obvious, that no other references
exist on this subject.
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