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Abstract.   In  this  article,  we consider the class of  Diophantine  equations (10K + 11)x 
+  (10M  +  A)1 = z2 when K, x, M, z are non-negative integers and   A = 1, 3, 5, 7, 9.  For 
the values  A = 1, 7,  it is established that the equations have no solutions.  Whereas  
when  A = 3, 5, 9,  the equations have infinitely many solutions.  Various solutions are 
also exhibited. 

Keywords:  Diophantine equations   

AMS Mathematics Subject Classification (2010):  11D61  

1. Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions. 
 
       The famous general equation 

px  +  qy  =  z2 

has many forms.  The literature contains a very large number of articles on non-linear 
such individual equations involving particular primes and powers of all kinds.  Among 
them are for example [1, 2, 7, 9]. 
 
        This article is an upshot of the equation  px  +  qy  =  z2   where  p, q  are primes.  In 
(10K  +  11)x  +  (10M  +  A)1  =  z2,  the values K  ≥  0, M  ≥  0 are integers,  x, z  are 
positive integers and  A = 1, 3, 5, 7, 9.  For all values  K  and integers  x  ≥  1,  the power 
(10K  +  11)x  ends in the digit  1.  Our results relate to all primes and composites which 
are of the form  10K + 11  and end in the digit  1.  When  A = 1, 3, 5, 7, 9,  the values  
(10M + A)1  respectively end in the digits  1, 3, 5, 7, 9.  We are interested in all the 
solutions that stem from the sum  (10K  + 11)x  +  (10M  + A)1 when this sum equals a 
square  z2.  The results achieved are based primarily on our new method which uses the 
last digits of the powers involved. 
 
       In the following five sections, we consider the five values  A = 1, 3, 5, 7, 9.  
Although many similarities exist in this process, nevertheless, for the sake of simplicity, 
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clarity and completeness, and also for the convenience of the readers interested in 
particular equations, each value  A  is considered separately, and all theorems are self-
contained. 
 
2.  On  (10K  +  11)x  +  (10M  +  1)1  =  z2 
For all values  K, x  and  M, we show  that (10K  +  11)x  +  (10M  +  1)1  =  z2   has no 
solutions. 

 
Theorem  2.1. Let  K  ≥  0,  x  ≥  1  and  M   ≥  1  be integers.  Let  z  be a positive 
integer.  Then  

(10K  +  11)x  +  (10M  +  1)1  =  z2                                        (1) 
has no solutions. 
 
Proof: For each and every of the values K, x  and  M,  the powers  (10K  +  11)x  and 
(10M  +  1)1  have a last digit which is equal to  1.  Thus,  the sum  (10K  +  11)x  +  (10M 
+  1)1  is even,  and has a last digit equal to  2.  If  (1)  has a solution, then  z2  is even, and 
has a last digit equal to  2.  Since an even square does not have a last digit which is equal 
to  2,  it follows that   (10K  +  11)x  +  (10M  +  1)1   

≠   z2,  and  (10K  +  11)x  +  (10M  + 
1)1  =  z2  has no solutions as asserted. 
 
       The proof of Theorem  2.1  is complete.                                           □ 
 
Remark  2.1.   In [1],  the author considered  (10K  +  1)x  +  (10M  +  1)y  =  z2  for all 
integers  K  ≥  1,  M   ≥   1,  x  ≥  1  and  y  ≥  1.  For all values  y  he established that (10K  
+  1)x  +  (10M  +  1)y  =  z2  has no solutions.   
 
3. On  (10K  +  11)x  +  (10M  +  3)1  =  z2 
In Theorem  3.1 it will be shown that   (10K   +  11)x  +  (10M  +  3)1  =  z2  has infinitely 
many solutions. 
 
Theorem  3.1. Let  K  ≥  0,  x  ≥  1 and  M  ≥  0  be integers.  Let  z  be a positive integer.  
Then  

(10K  +  11)x  +  (10M   +   3)1   =   z2                                        (2) 
has infinitely many solutions. 
 
Proof: For all values  K  and  x,  the power  (10K  +  11)x  ends in the digit  1.  For all  M,  
the value (10M   + 3)1  ends in the digit 3.  Hence, the sum in  (2)  ends in the digit  4.  If  
(2)  exists, then  z2 ends in the digit  4, and  2, 8  are the last digits of   z.   For our 
purpose, it is clearly adequate to consider one of these two possibilities, say  z  ends in  2. 
 
       Suppose that  z  ends  in  2.  Denote  z  =  10A   +  2  where A  >  0  is an integer.  To 
prove our assertion, it suffices to consider  K,  x  as the smallest possible fixed values.  
These are  K = 0  and  x = 1,  and let these values K,  x  be fixed.  Then  (2)  implies  
                         111 + (10M  +  3)1  =  (10A  +  2)2,                           A  =  1, 2, …,                    (3) 
or  

M  = 10A2  +  4A  –  1. 
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It now follows that each value  A  determines a unique value  M   and equation  (3)  has 
infinitely many solutions. 
 
      Therefore,  (10K  +  11)x  +  (10M  +  3)1   =  z2  has infinitely many solutions. 
 
       This concludes the proof of Theorem  3.1.                                                         □ 
 
      We exhibit some solutions of  (2)  as follows: 
 

Solution 1 111  +  (10	∙ 13  +  3)1  =  122 K  =  0 x  =  1 M  =  13 A  = 1 
Solution 2 111  +  (10	∙ 47 + 3)1      = 222 K  =  0 x  =  1 M  =   47 A  = 2 
Solution 3 111  +  (10	∙ 101 + 3)1  = 322 K  =  0 x  = 1 M  =  101 A  = 3 

 
Remark  3.1. Let   z  =  10A  +  2.  Then for K   >  0  and  x  >  1,  infinitely many 
solutions  of  (2)  exist.  Some of which are for instance:    
 (10	∙ 1 + 11)2 + (10	∙ 4 + 3)1 = (10	∙ 2 + 2)2,  (10	∙ 1 + 11)3 + (10	∙ 114 + 3)1 = (10	∙ 10 + 
2)2,  (10	∙ 2 + 11)3 + (10	∙ 333 + 3)1 = (10	∙ 18 + 2)2. 
 
4.   On (10K + 11)x + (10M + 5)1 = z2 
We will show that infinitely many solutions exist for (10K + 11)x  +  (10M + 5)1 = z2. 
 
Theorem  4.1. Let  K  ≥  0,  x  ≥  1 and  M   ≥  0  be integers.  Let  z  be a positive integer.  
Then, for each and every value  K 

(10K  +  11)x  +  (10M  +  5)1  =  z2                                      (4) 
has infinitely many solutions. 
 
Proof: For all values  K  and  x,  the power  (10K  +  11)x  ends in the digit  1.  For all  M,  
the value (10M  +  5)1  ends in the digit  5.  Hence, the sum in  (4)  ends in the digit  6.  
Therefore, if  (4)  exists, then  z2  ends in the digit  6, and  4, 6  are the last digits of  z.  
For our purpose, it clearly suffices to consider one of these two possibilities, say  z  ends 
in  6. 
 
       Suppose that  z  ends in  6.  Denote  z  =  10B  +  6  where  B  ≥  0  is an integer.  For 
any given  fixed  values  K,  x,  let  min B  denote the smallest possible  value  B  which  
satisfies the inequality  (10 min B + 6)2   >   (10K  +  11)x.  The difference  (10 min B + 6)2 

–  (10K + 11)x  yields an integer that ends  in  5  and  is  equal  to  10M + 5.  We have 

(10 min B  +  6)2  –  (10K  +  11)x  =  10M  +  5.                   (5) 

where M  is uniquely determined. The values min B  =  K  =  0,  x = 1  and  M  =  2  in  
(5) yield the first solution of  (4). 
 
       To prove the infinitude of solutions of  (4)  for any fixed values  K, x,  consider the 
infinite set  S  of consecutive integers  
       S = {  min B + 1,  min B + 2, … ,  min B + n, … }           n  an integer. 
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Evidently, for any given fixed values  K, x, and min B, it follows that each and every 
value  n ≥ 1 yields a solution to  

(10K + 11)x  + (10M  + 5)1  =  (10 (min B + n) + 6)2. 

This establishes the infinitude of solutions to  (4)  as asserted. 
 
Thus,  for each value  K   (10K  +  11)x  +  (10M  +  5)1  =  z2  has infinitely many 
solutions. 
 
       This completes the proof of Theorem  4.1.                                                         □ 
 
       We now exhibit various solutions for the values  K, x, M  and  z = 10B + 6. 
 
Solution 4 (10	∙ 0+11)1 + (10	∙ 2+5)1    = 62 K = 0 x  =  1 M  = 2 B  = 0 
Solution 5 (10	∙ 0+11)1 + (10	∙ 24+5)1 = 162 K = 0 x  =  1 M  = 24 B  = 1 
Solution 6 (10	∙ 0+11)1 + (10	∙ 66+5)1 = 262 K = 0 x  =  1 M  = 66 B  = 2 
Solution 7 (10	∙ 1+11)1 + (10	∙ 1+5)1   =  62 K = 1 x  =  1 M  = 1 B  = 0 
Solution 8 (10	∙ 0+11)2 + (10	∙ 13+5)1 = 162 K = 0 x  =  2 M  = 13 B  = 1 
Solution 9 (10	∙ 2+11)2 + (10	∙ 33+5)1 = 362 K = 2 x  =  2 M  = 33 B  = 3 
Solution 10 (10	∙ 4+11)4 + (10	∙ 2603+5)1  

                                                                   = 26062 
K = 4 x  =  4 M  = 2603 B = 260 

Solution 11 (10	∙ 5+11)4 + (10	∙ 3723+5)1  

                                                                   = 37262 
K = 5 x  =  4 M = 3723 B = 372 

 
Remark  4.1. We note that in  Solution 4  and in Solutions 7–11,  the appearing values  
B  are actually values of  min B which are  in accordance with the given values  K  and  x. 
 
Remark  4.2. We observe that two solutions with a fixed value  K  and consecutive 
values  x  have values min B which are not consecutives.  This is shown in the following 
two solutions: 

(10	∙ 0  + 11)2  +  (10	∙ 13  + 5)1   =  162   and  (10	∙ 0 + 11)3   +   (10	∙ 78  +  5)1   =   462, 
in which  K  =  0,  x  =  2,  min B  =  1,  and  K  =  0,  x  =  3,  min B  =  4. 
 
5.  On   (10K  +  11)x  +  (10M  +  7)1  =  z2 
For all values K, x  and M  we will show that (10K + 11)x +  (10M + 7)1  =  z2    has no 
solutions. 
 
Theorem  5.1.  Let  K  ≥  0,  x  ≥  1  and  M  ≥  0  be integers.  Let  z  be a positive 
integer.  Then  

(10K  +  11)x  +  (10M  +  7)1  =  z2                                        (6) 
has no solutions. 
 
Proof:   For all values  K and x,  the power (10K + 11)x  ends in the digit  1.  For all  M,  
the value (10M   +  7)1  ends in the digit  7.  Thus, the sum in  (6)  ends in the digit  8  and 
is even.  The even square  z2  if such exists in  (6)  ends in the digit  8.  Since no even 
square has a last digit equal to  8,  it then follows for all values  K,  x,  M  that  (10K  +  
11)x  +  (10M  + 7)1   

≠  z2,  and therefore  (6)  has no solutions as asserted. 
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       The proof of Theorem  5.1  is complete.                                                          □ 
 
6.  On  (10K + 11)x + (10M + 9)1 = z2 
We will show that  (10K + 11)x  +  (10M  +  9)1  =  z2  has infinitely many solutions. 
 
Theorem  6.1.  Let  K  ≥  0,  x  ≥  1  and  M  ≥  0  be integers.  Let  z  be a positive 
integer.  Then  

(10K  +  11)x  +  (10M   +   9)1   =   z2                                        (7) 
has infinitely many solutions. 
 
Proof:   For all values  K and x,  the power (10K + 11)x  ends in the digit  1.  For all M,  
the value  (10M  +  9)1  ends in the digit  9.  Hence, the sum in  (7)  ends in the digit  0.   
Therefore, if  (7)  exists, then  z2  ends in the digit  0,  and also z  ends in the digit  0.   
 
        When  z  ends in  0,  denote  z  =  10C  where  C  ≥ 1  is an integer.  To prove our 
assertion it suffices to consider  K,  x  as the smallest possible fixed values.  The smallest 
possible fixed values are  K = 0  and  x= 1.  With these values we obtain in  (7)   

                      111  +  (10M  +  9)1   =  (10C)2 ,                   C  = 1, 2, …,                   (8) 
or 

M  = 10C2  –  2. 
It follows that for each value  C,  the value  M  is uniquely determined satisfying  (8)  and 
also  (7).  Hence,  (10K  + 11)x  + (10M  +  9)1  =  z2  has infinitely many solutions. 
 
       This concludes the proof of Theorem  6.1.                                                          □ 
 
       The first two solutions which follow from  (8)  are: 
 

Solution 12 111 + (10	∙ 8 + 9)1   = 102 K = 0 x = 1 M = 8 C = 1 
Solution 13 111 + (10	∙ 38 + 9)1 = 202 K = 0 x = 1 M = 38 C = 2 

 
        We have the following remark. 
 
Remark  6.1.  Let  K  ≥  1 be any value.  Then for each such value  K,  there exist 
infinitely many values  x  and  M  satisfying  (7)  in which  z = 10C.   
 
       Some solutions with larger values  K, x which are in accordance with Remark  6.1  
are as follows: 
 

Solution 14 (10	∙ 1 + 11)1 + (10	∙ 7 + 9)1      = 102 K  = 1 x  = 1 M = 7 C = 1 
Solution 15 (10	∙ 1 + 11)2 + (10	∙ 45 + 9)1   = 302 K  = 1 x  = 2 M = 45 C = 3 
Solution 16 (10	∙ 1 + 11)3 + (10	∙ 73 + 9)1    = 1002 K  = 1 x  = 3 M = 73 C = 10 
Solution 17 (10	∙ 2 + 11)3 + (10	∙ 260 + 9)1 = 1802 K  = 2 x  = 3 M = 260 C = 18 
Solution 18 (10	∙ 3 + 11)2 + (10	∙ 81 + 9)1    = 502 K  = 3 x  = 2 M = 81 C = 5 

 
Final   remark.  In this article we have established for  (10K + 11)x  +  (10M  +  A)1  =  z2   
when   A = 1, 7  that no solutions exist, whereas when  A = 3, 5, 9  that infinitely many 
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solutions exist.  Several solutions have also been demonstrated.  Our results were 
achieved primarily and in principle by utilizing our new technique which is based upon 
the last digits of the powers involved. 
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