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Abgtract. In this article, we consider the class ofofidiantine equations (KO+ 11)

+ (1M + A)1 =Z whenkK, x, M, zare non-negative integersand =1, 3,5, 7, 9. For
the values A = 1, 7, it is established that the equations hawesolutions. Whereas
when A = 3, 5, 9, the equations have infinitely manyuiohs. Various solutions are
also exhibited.
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1. Introduction
The field of Diophantine equations is ancient, yvastd no general method exists to
decide whether a given Diophantine equation hasahyions, or how many solutions.

The famous general equation
prd =27
has many forms. The literature contains a vergdatumber of articles on non-linear

such individual equations involving particular peshand powers of all kinds. Among
them are for example [1, 2, 7, 9].

This article is an upshot of the equatish+ o’ = Z where p, q are primes. In
(10K + 11f + (1M + A)! = Z, the valueX > 0,M > 0 are integersy, z are
positive integers and\ =1, 3, 5, 7, 9. For all valugs and integersx > 1, the power
(10K + 11f ends in the digit 1. Our results relate topailnes and composites which
are of the form 1R + 11 and end in the digit 1. Wheh=1, 3, 5, 7, 9, the values
(10M + A)" respectively end in the digits 1, 3, 5, 7, 9. ‘fe interested in all the
solutions that stem from the sum KLO+ 11f + (1M + A)! when this sum equals a
square Z. The results achieved are based primarily onnew method which uses the
last digits of the powers involved.

In the following five sections, we considdme five values A = 1, 3, 5, 7, 9.
Although many similarities exist in this processyertheless, for the sake of simplicity,
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clarity and completeness, and also for the conweeieof the readers interested in
particular equations, each valug is considered separately, and all theorems dfe se
contained.

2. On (10K + 11)* + (10M + D' = 7
For all valuesK, x and M, we show that (10 + 11¥ + (1M + 1) = Z has no
solutions.

Theorem 21. Let K > 0, x > 1 andM > 1 be integers. Lez be a positive
integer. Then

(10K + 11f + (1M + 1)} = Z (1)
has no solutions.

Proof: For each and every of the valleésx and M, the powers (0 + 11} and

(10M + 1) have a last digit which is equal to 1. Thuse sum (1B + 11f + (1Qv

+ 1) is even, and has a last digit equal to 2(1)f has a solution, the# is even, and
has a last digit equal to 2. Since an even sqi@es not have a last digit which is equal
to 2, it follows that (1R + 11f + (1M + 1} # Z and (1& + 11f + (1M +
1)' = Z has no solutions as asserted.

The proof of Theorem 2.1 is complete. O

Remark 2.1. In[1], the author considered @O+ 1) + (1M + 1Y = Z for all
integersKk > 1, M > 1,x > 1 andy > 1. For all valuesy he established that (KO
+ 1 + (1M + 1Y = Z has no solutions.

3.0n (10K + 11)* + (10M + 3)' = Z
In Theorem 3.1 it will be shown that @0+ 11f + (1M + 3} = Z has infinitely
many solutions.

Theorem 3.1.Let K > 0, x > 1andM > 0 be integers. Let be a positive integer.
Then

(1K + 11f + (Am + 3} = 7 )
has infinitely many solutions.

Proof: For all valuesk and x, the power (1R + 11) ends in the digit 1. For aM,

the value (1M + 3) ends in the digit 3. Hence, the sum in (2) seincthe digit 4. If
(2) exists, thenZ ends in the digit 4, and 2, 8 are the last sigh z  For our
purpose, it is clearly adequate to consider ontbexfe two possibilities, say ends in 2.

Suppose that ends in 2. Denotg = 10A + 2 wheréd > 0 is aninteger. To
prove our assertion, it suffices to considé€r x as the smallest possible fixed values.
These areK =0 andx= 1, and let these valu&s x be fixed. Then (2) implies

T# (1oM + 3) = (1A + 2%, A=12, .., ()
or
M =100 + 4A — 1.
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It now follows that each valué\ determines a unique valud and equation (3) has
infinitely many solutions.

Therefore, (10 + 11 + (1M + 3} = Z has infinitely many solutions.
This concludes the proof of Theorem 3.1. o

We exhibit some solutions of (2) as follows

Solution1 |[11' + (10013 + 3j= 17 [K=0[x=1[M =13 [A =1
Solution2 | 11' + (10-47 + 3} =27 K=0|x=1|M= 47 [A=2
Solution3 | 11* + (10-101 +3j =32 K=0|x=1|M=101|A=3

Remark 3.1.Let z = 10A + 2. ThenfoK > 0 andx
solutions of (2) exist. Some of which are for instance:
(10-1 + 11f + (10- 4 + 3} = (10- 2 + 2, (10-1 + 11} + (10- 114 + 3} = (10- 10 +
2% (10-2 + 11} + (10- 333 + 3} = (10- 18 + 2¥.

\Y

1, infinitely many

4. On (10K + 11)*+ (10M +5)' =7
We will show that infinitely many solutions existrf(10K + 11} + (1M + 5)' =7

Theorem 4.1.Let K > 0, x > 1andM > 0 be integers. Let be a positive integer.
Then, for each and every valke

(10K + 11¥ + (1M + 5} = Z (4)
has infinitely many solutions.

Proof: For all valuesKk and x, the power (1K + 11} ends in the digit 1. For aM,

the value (1M + 5) ends in the digit 5. Hence, the sum in (4pseim the digit 6.
Therefore, if (4) exists, the? ends in the digit 6, and 4, 6 are the lasitgligf z

For our purpose, it clearly suffices to considee of these two possibilities, sa ends
in 6.

Suppose that ends in 6. Denote z = BO+ 6 whereB > 0 is aninteger. For
any given fixed value¥, x, let minB denote the smallest possible valBewhich
satisfies the inequality (10 mBi+ 6 > (1K + 11). The difference (10 miB + 6Y
— (1K + 11 vyields an integer that ends in 5 and is kqoalM + 5. We have

(10 minB + 6f — (1K + 11f = 1M + 5. (5)
whereM is uniquely determined. The values lBin= K = 0, x=1 andM = 2 in
(5) yield the first solution of (4).

To prove the infinitude of solutions of (49r any fixed valueskK, x, consider the
infinite set S of consecutive integers
S={minB+1, mnB+2,..., mnB+n, ...} n an integer.
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Evidently, for any given fixed value, x, and minB, it follows that each and every
value n> 1 yields a solution to

(10K + 11) + (1GV1 +5) = (10(min B + n) + 6)°
This establishes the infinitude of solutions t9 & asserted.

Thus, for each valueK (10K + 11f + (1M + 5) = Z has infinitely many
solutions.

This completes the proof of Theorem 4.1. O

We now exhibit various solutions for theues K, x, M and z= 1B + 6.

Solution 4 | (10- 0+11) + (10- 2+5) = 6° K=0 [x=1[M=2 B =0
Solution 5 | (10- 0+11)+ (10- 24+5) = 16’ K=0 [x=1|M=24 |[B=1
Solution 6 | (10- 0+11) + (10- 66+5) = 26" K=0 |[x=1|[M=66 |B=2
Solution 7 | (10- 1+11)+ (10- 1+5) = & K=1 [x=1[M=1 B =0
Solution 8 | (10- 0+11Y+ (10- 13+5) = 16" K=0 [x=2[M=13 |[B-=1
Solution 9 | (10- 2+11¥+ (10- 33+5) = 36’ K=2 |[x=2|M=33 |B=3
Solution 10 | (10- 4+11¥+ (10- 2603+5 s K=4 |x=4|M =2603| B=260
= 260
Solution 11 | (10- 5+11f+ (10- 3723+5] s K=5 |x=4|M=3723 | B=372
=372

Remark 4.1. We note that inSolution 4 and inSolutions 7-11, the appearing values
B are actually values of mBiwhich are in accordance with the given vallesand x.

Remark 4.2. We observe that two solutions with a fixed valde and consecutive
values x have values miB which are not consecutives. This is shown in thing
two solutions:

(10-0 + 11 + (10-13 +5} = 16 and (10-0 + 11} + (1078 + 5§ = 46,
inwhichK = 0,x = 2, minB = 1, andKk = 0,x = 3, minB = 4.

5.0n (10K + 11)* + (10M + 7)' = 7
For all valuesk, x andM we will show that (18 + 11} + (1QV + 7)' = Z has no
solutions.

Theorem 5.1. Let K > 0, x > 1 andM > 0 be integers. Let be a positive
integer. Then

(10K + 11f + (1M + 7) = Z (6)
has no solutions.

Proof: For all valuesK andx, the power (1R + 11} ends in the digit 1. For alM,
the value (18 + 7) ends in the digit 7. Thus, the sum in (6) simdthe digit 8 and
is even. The even squai if such exists in (6) ends in the digit 8.n& no even
square has a last digit equal to 8, it then fadidor all valuesK, x, M that (1K +
11 + (1aV + 7) # 7, and therefore (6) has no solutions as asserted
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The proof of Theorem 5.1 is complete. o

6. On (10K + 11)*+ (10M +9)' =7
We will show that (1B + 11} + (1M + 9) = Z has infinitely many solutions.

Theorem 6.1. Let K > 0, x > 1 andM > 0 be integers. Lez be a positive
integer. Then

(10K + 11F + Am + 9} = 7 (7)
has infinitely many solutions.

Proof: For all valuesk andx, the power (1K + 11) ends in the digit 1. For all,
the value (1M + 9) ends in the digit 9. Hence, the sumin (7¥isein the digit O.
Therefore, if (7) exists, ther ends in the digit 0, and alscends in the digit 0.

Whenz endsin 0, denoteg = 10C where C >1 is an integer. To prove our
assertion it suffices to considé&t, x as the smallest possible fixed values. The ssiall
possible fixed values ar& =0 andx= 1. With these values we obtain in (7)

M+ (1M + 9) = (100)2, c=12,.., (8)
or
M =10C" - 2.
It follows that for each valueC, the valueM is uniquely determined satisfying (8) and
also (7). Hence, (30 + 11) + (1M + 9) = Z has infinitely many solutions.

This concludes the proof of Theorem 6.1. O

The first two solutions which follow fronB) are:

Solution 12 | 11' + (10- 8 + 9} = 1C K
Solution 13 | 11*+ (10- 38 + 9} = 2C° K

[e0]
olle]
1|

N

0
0

TR
|-

X | X

We have the following remark.

Remark 6.1. Let K > 1 be any value. Then for each such valkie there exist

infinitely many valuesx and M satisfying (7) in whichz = 10C.

Some solutions with larger valué§ x which are in accordance with Remark 6.1
are as follows:

Solution 14 | (10-1+11}+(10-7+9} =10 |[K =1][x=1[M=7 [C=1
Solution 15 | (10-1 + 115+ (10-45+ 9} =3¢ |K =1|x =2 |M=45 [C=3
Solution 16 | (10-1 + 11+ (10-73+9) =100 |K =1|x =3 [ M=73 [ C=10
Solution 17 | (10- 2 + 11§+ (10- 260 + 9j=180 | K =2 x =3 [ M=260| C= 18
Solution 18 | (10- 3+ 11§+ (10-81+ 9} =50 |K =3|x =2 |M=81 [C=5

Final remark. In this article we have established for K18 11} + (1M + A)' = Z
when A =1, 7 that no solutions exist, whereas whierr 3, 5, 9 that infinitely many
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solutions exist. Several solutions have also béemonstrated. Our results were
achieved primarily and in principle by utilizing onew technique which is based upon

the last digits of the powers involved.
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