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Abstract.  In this paper we discuss a group structure of unit Г-regular ring and unit inner 
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1. Introduction 
An element a of a ring R is said to be regular if and only if there exists an element x of R 
such that α x α = α. The ring R is regular iff each element of R is regular. The idea of a 
regular ring introduced by von Neumann [12,14], but required as well regular ring 
contain a unit element [1]. If  R is a ring with identity such that for every α x α = α and  
αn  x = x αn, and if n is a unit of R, the every element of R is a sum of the bounded 
number of units [9, 10]. This concept is used in the theorem (3.9) and lemma (3.6). It is 
recognized that [6, 7] a ring R is strongly regular if and only if every α ∈	 R is a group 
member. In this note we shall utilize the fundamental theorem for group members in a 
ring to exhibit locally that a ring element α ∈	 R is unit regular precisely when there is a 
unit u ∈	 R and a group G in R such that a ∈	 uG. Thus unit regular rings are, so to speak 
locally a rotated version of strongly regular rings [5]. We remind that a ring is called 
regular if for every α ∈	 R, α ∈	 α R α and its unit regular if for every α ∈	 R, there is a unit 
u ∈	 R such that α u α = α [4]. A ring with unity is called finite if α β = 1 and β α = 1. Any 
solution α  ̶  to α x α = α is called an inner or 1-inverse of [2], and any solution α+ to α x α 
= α and x α x = x is called a reflexive or 1-2 inverse of α. If idempotent elements e and j 
in R, and e ~ j denotes the equivalence in [8] as contrasted with α = p α	 q, where p and q 
are invertible [5].       
 
2. Preliminaries 
Ring. A non-empty set R is said to be ring, together with two operation ⨁ and ∗ , which 
has the following properties: 



 

 

(a) R is  a commutative group under  
(b) R is a associative under 

(c) Multiplicative identity: There is an element  1 such that r

(d) The operation 
Г-Ring. Let R and Г be two addition abelian group. If for all x, y, z 
Г the conditions: 

1) x α y ∈ R 
2) (x + y) α z = x α
3) (x α y) β z = x α

 
Regular. An element ‘a’ of a ring R is said to be 
of R such that a x a = a. The ring R is regular iff each element of R is regular.
 
Unit regular. Let R be a ring with identity. If a 
R such that  a x a = a. 
 
Unit Г-regular ring. A 
u ∈ R and a group G in Г

 
Inverses. If A has a 1-inverse, 
is of the form A⎺ +H⎼ A
arbitrary [5].       
 
1-inverse. a ∈ R is regular if there exist an element a
is called an inside or 1-inverse
inverse of a and any solution a
inverse of [9].  
 
Unit inner inverses. An element ҅

then ha = u h a u = hu a u. Indeed, if 

	 a = a and hence u 	 

= a u which implies that u 

    Since u ha u is independent of the choice of the unit inner inverse u of a, for any unit 

inner inverses u and v of a, such that 

 
Unit inner inverse of idempotent element.
unit inner inverses he. If 

i. 1 + (1  ̶  
ii. e+ (1   ̶ e
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R is  a commutative group under  ⨁ 
R is a associative under ∗ 

Multiplicative identity: There is an element  1 such that r∗1=1∗

The operation ∗ distributes over ⨁: a ∗ (b ⨁ c) = (a ∗ b) ⨁ (a ∗
 be two addition abelian group. If for all x, y, z ∈ R and for all 

 z = x α z + y α z and x (α +β) z = x α z + x β z 
 z = x α (y β z) are satisfied, then R is called a Г- ring.    

An element ‘a’ of a ring R is said to be regular and if there exists an element x 
of R such that a x a = a. The ring R is regular iff each element of R is regular.

Let R be a ring with identity. If a ∈ R, a is unit regular if there is a unit x 

A Г- ring(Г, R) is a unit regular, if for element a ∈
R and a group G in Г such that a ∈ uG. 

inverse, A⎺ then it is not unique and that the most general 1
A⎺ AHAA ⎺ (or) A⎺ + (1⎼ A⎺ ) H+K(1⎼A A⎺ ), w

is regular if there exist an element a⎺ such that a a⎺ a = a, the element a
inverse of a.  Any solution a⎺ to a x a = a is called an inner or 1

inverse of a and any solution a+ to a x a = a and x a x = x is called a reflexive or 1

An element a̔ ҆of a unit regular ring if a u a = a, with u is invertible, 
u. Indeed, if 	 ∈ h a u  then au	 a u = a u which implies that a u 

 ∈ h a   conversely, if a 	 a = a, 	 is a unit, then a u (u 

= a u which implies that u ⎺1
	∈h  a u and hence 	 ∈ u ha u. 

is independent of the choice of the unit inner inverse u of a, for any unit 

inner inverses u and v of a, such that ha = u h a u = v hav  ,in particular, u 

Unit inner inverse of idempotent element. The set of ha is determined by the set of 

. If he is the set of all unit of the form: 
  e) x + y (1  ̶  e) for some x , y; 
e) v + s (1  ̶  e)  for some v , s; 

∗r=r for all r  R 

∗ c). 
R and for all α, β ∈ 

.     

and if there exists an element x 
of R such that a x a = a. The ring R is regular iff each element of R is regular. 

if there is a unit x ∈ 

∈ R , there is unit 

then it is not unique and that the most general 1-inverse 
), where H and K is 

a = a, the element a⎺ 
to a x a = a is called an inner or 1-

to a x a = a and x a x = x is called a reflexive or 1-2 

= a, with u is invertible, 
a u which implies that a u 

is a unit, then a u (u ⎺1
	) a u 

is independent of the choice of the unit inner inverse u of a, for any unit 

u ⎺1 v ha u [5].       

is determined by the set of 
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iii.  1 + h  ̶  e h e        for some h; 
iv. e + k ̶ e k e        for some k.  

In general, the set ha or even he will not be a union of semi groups [5].       

Example 2.1. If e= ∈ R2⨯2    where R2⨯2 denotes the two by two matrix ring over a 

field, and if ∈h e, but 
2
∉h e . It is only for idempotent elements possible 

to posses union of semi groups of unit inner inverses [5].       

 
Regular Г-ring. A  Г-ring (Г,R) is regular if for each x ∈	 R there exists �	 ∊Г such that x 
�	x = x. we abbreviate this as R is regular.  

 
Commutative ГГГГ----regular ring. A Г-regular ring (Г, R) is said to be commutative Г-
regular ring, if α	x = x α, α +x = x + α for α	∈	R and x ∈	Г. 
 
Zero element. A regular Г-ring R is said to have a zero element if there exists an element 
0 ∈	 R such that 0+x = x+0 and 0 α x = x α 0 for all x ∈	 R and α ∈	 Г. Also, a regular Г-
ring R is said to be commutative if x α y = y α x for all x, y ∈	R and α ∈	Г.  
 
Г-Homomorphism. Let R and S be two Г-regular rings. A mapping f of a Г-regular ring 
R into a Г-regular ring S is said to be a Г-homomorphism of R into S if the following 
condition are satisfied: 

1) (α + β)f =α f +β f 
2) (α �	β)f  =(α f)�(bf) ,  

∀	α, β ∈	R and �	∈	Г. If f is one–one and onto then f is called a Г-homomorphism from R 
into S. 
 
Г-regular ring homomorphism. A Г-regular ring homomorphism is a mapping f of a Г-
regular ring R to Г-regular ring R is said to be Γ-regular ring homomorphism and such 
that: 

1) f(α + β) = f(α) + f(β) 
2) f(α �	β) = f(α) �	f(β), for all α , β ∈ R and �	∈	Г. 

				

ГГГГ- regular endomorphism. Let R be a Г-regular ring. A mapping f: R→R is called a Г-
regular endomorphism of R if x, y ∈	R, α	∈	Г,	then (x + y) f = x f +y f and (x α	y) f = (x 
f) α	(y f). 
 
3. A note on the group structure of unit Г-regular ring elements 
Unit Г-regular ring. A Г- ring (Г, R) is a unit regular, if for element a ∈	R , there is unit 
u ∈	R and a group G in Г such that a ∈	uG.  

1 0

0 1

 
 
 










01

11









01

11
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Commutative unit Г-regular ring. A Г-regular ring (Г,R) is said to be unit commutative 
Г-regular ring and if there is a unit element α ∈	 R and there exists an x ∈	 Г such that a x 
= x a.    
 
Lemma 3.1. If (R, Γ) be a Г-regular ring and x, a ∈ R. Then b = a ⎼ a x a has a 1-inverse 
y iff a has 1-inverse x + (1 ̶   x a) y (1 ̶ a x). 
Proof: Let a ∈	 R and there is a unit x ∈	 Г then a has 1-inversex + (1 ̶   x a) y (1 ̶ a x) is 
and it’s enough to prove that b y b = b. Now we consider,  
(a ⎼ a x a) y (a   ̶ a x a) = a   ̶ a y a   ̶ a x a + a y a = a⎼ a x a = b. Hence b is 1-inverse y. 
If b = a ⎼ a x a has 1-inverse y and to prove that ‘a' has 1-inverse x + (1 ̶  x a) y (1  ̶a x) 
and we consider,  
⟺a(x + (1⎼x a)y(1 ̶ ax)a)a = a(x+ y ⎼x a y ⎼ y a x+ x a y a x) a   
= (a x + a y ⎼ a x a y   ̶ a y a x + a x a y a x)a 
= (a x + a y   ̶ a y  ̶  a x + a y a x)a  
 = a x a + a y a   ̶ a y a   ̶ a x a + a x a = a. where a x a=a and a y a = a. Hence a has 1-
inverse  x + (1 ̶  x a) y (1 ̶ a x). 
 
Theorem 3.2. Let (Г, R) be a unit Г-regular ring. If every  non-zero element of (Г, R) is a 
unique unit inner inverse. Then either (Г, R) is a Boolean ring or (Г, R) is a division ring. 
Proof: Suppose (Г, R) is neither Boolean ring nor a division ring. Then there exists a unit 
a ∈	R such that a2 

≠ a and there are x, y≠ 0 in Г such that x y = 0, where x and y are 
idempotent in Г. Now we consider the element ax.  
If (ax)

2 = ax, then  a(x a  ̶  1)x = a x a x   ̶ a x= a x    ̶  a x= 0 
	⇒ (x a  ̶  1)x = x a x   ̶ x= x ̶  x = 0⇒ x a x = x ⇒ a = 1. Because x is the unit of inner 
inverse, which is  ⇒⇐If (ax) 

2 ≠ ax then ax is unit, because x is a unit, and y = 0. 
Then x (a x   ̶ 1)a = x a x a   ̶ x a= x a  ̶ x a = 0.⇒ a x a = a, x is unit, which is 
contradiction.	Thus (Г, R) must be either a division ring or a Boolean ring.       

 
Lemma 3.3. If β is an element of the regular ring of (Г, R) for which there is a unit x ∈	Г 
such that β x β = β and β x = x β. Then β is unit Г-regular. 
Proof: Let y = x β x where y ∈	Г then β x β = β and  
y β = x β x β = x β = x β x β = β x β x = β y 
⇒	y	β	=	β	y.	Let � = 1-y β + y. To verifies that β �	β = β	
⇒β(1  ̶  y β + y)β = (β  ̶  β y β + β y)β= β β  ̶  β y β β + β y β = β β  ̶  β β + β 
                             =β and �-1 = 1 ̶  y β + β. Hence β is unit Г-regular.  
 
Lemma 3.4. Let R be a Г-regular ring in which 2 is a unit. If β is an element of Г-regular 
ring for which there is an integer n >1 and there is a unit x ∈	R such that β	x	β	=	β	and βn 

x= x βn then βn-1 is a sum of the unit Г-regular. 
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Proof: Proof: Proof: Proof: Let $ = βn x and to prove that βn-1 is a sum of the unit Г-regular. Since βn is 
commutative with $ xn-1 = xn-1 

$ and to prove that βn-1 is sum of unit Г-regular.    
Given that βn x = x βn and β x β = β, therefore βn+1x = βn = x βn+1 

Hence $ xn-1
$ = βn x xn-1 βn x =β2n xn+1=βn-1 (βn+1 x) xn 

= βn-1 (βn) xn   = β2n-1 xn 

=…=β
n x = $. Hence xn-1 is a Г-regular and βn is unit Г-regular. This implies that βn-1 is a 

sum of the unit Г-regular in R. 
 
Theorem 3.5. Let a be an element of unit regular ring (R, Γ) with unity. If the set h a of 

unit inner inverses of ‘a’ is the union of semi group and if R is prime ring then a2 = a and 
if a = 0 or a =1. 
Proof: Let a u a = a where u is unit. Then u2 

∈ha and au2 a = a, a ∈ R and u ∈ Г. Now 

consider, 
a(u(1  ̶  a(1   ̶ u a)))a = a u( 1   ̶ a + a u a)a= (a u   ̶a u a + a u a u a)a    
= a u a ⎼a u a a + a u a u a a = a⎼ a a + a a =a 
⇒ u(1  ̶ a(1  ̶ u a) ∈h a . Thus (u(1   ̶a(1  ̶ u a)))∈h a and  

 a = a(u(1   ̶a(1  ̶  u a)))2a = a(u(1   ̶a(1  ̶  u a))) (u(1  ̶a(1  ̶  u a)))a 
              = (au   ̶a(1  ̶  u a))u(1 ⎼ a(1⎼au)a = (a u  ̶a ̶  a u a) (u a   ̶ u a   ̶ u aa u) a 
              = (a u2   ̶ a u +a2 u2) (a  ̶  a2 +a2)= (a u2   ̶ a u  ̶  a2 u2)a 
              = a u2 a ̶  a u a + a2 u2 a = a    ̶a +a2 = a2

[1].       

And suppose that a = e= e2 where e is the unit inner inverse h e of the idempotent 

element. Then 1 +e R(1   ̶e) and 1+(1   ̶e)e R are contained in h e .To verifies that  e R e = 

e such that e(1 +e R(1   ̶e))(1 + (1   ̶ e)R e)e = e 
⇒ e R(1   ̶ e)R e = (e R   ̶ e)R e = e R R e   ̶ e R e = e R2 e  ̶ e = 0. 
Since R is prime, it follows that either e = 1 or e = 0 desired.  
 
Lemma 3.6. Let (R, Г) be a unit Г-regular ring. Then following two conditions are 
equivalent. 

a) (R, Г) is unit Г-regular such that every nonzero element in R has a unique inner 
inverse 

b) (R, Г) contains only idempotent elements. 

Proof (a)⇒(b): 
Suppose a2 ≠ α ∈ R and α x α = α, x is a unit x≠1, x ∈ Г. 
then α x(1  ̶ α(1 ̶ α x))α = (α x  ̶  α x α(1  ̶  α x))α = (α x  ̶  α(1 ̶  α x)α  = (α x ̶  α  ̶  α α x)α  
= α x α  ̶  α α  ̶  α α x α  = α  ̶  α α  ̶  α α = α = α(1  ̶ (1  ̶  x α)α)x α   
where (1 ̶ α(1  ̶ α x))-1 = 1 + α(1  ̶  α x) and (1 ̶ (1 ̶ x α)α)-1 = 1+ (1   ̶ x α)α. 
If x(1  ̶ α(1  ̶ α x)) = x  ̶ x α  ̶ x α2 x = x = (1   ̶(1  ̶ x α)α)x  (or)  
(1  ̶  α x)α = 0 = α(1  ̶  x α). 
Now either 1   ̶ x α = 0 or 1  ̶x α ≠ 0. Since 1  ̶ x α ≠ 0 is idempotent and  
(1  ̶  x α)1(1  ̶  x α) = (1  ̶  x α) ⇒x=1, which is impossible.(a unit x≠1).  
Hence α x = 1 = x α and α is unit.  
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(b) ⇒	(a): 
If (R, Г) is a unit Г-regular ring. Now let a ∈	R and a ≠ 0. 
Suppose a = 1. Then α	 x α	�	 α	⇒	 x	�	 1	and its unique.  Next suppose that a ≠ 1. If α2 = α 
and α	x	α�α,	where x is a unit but ≠1, then 1̶	x	is also a unit. 
Otherwise (1  ̶	x)2	�	(1	̶	x) because x2=x is idempotent which x to equal 1. 
Hence [α(1  ̶ x)]2 = α(1  ̶ x). 
This implies that x	 = x(1  ̶α)x = x x  ̶ x α	 x = 0,which is contradiction. Hence x = 1 and 
the unit inner inverse of α is unique. Hence completing the proof. 
 
Unit reflexive inverses. Any solution a+ to a u a = a and u a u = u is called reflexiveor 1-
2 inverse of a. 
 If a+ = a 	̶		a a= for some inner inverse a ̶, a= . 
Let ea

+ be the class of unit inverses and given element of a is unit. 
If a u a = a is denoted by a̶	 and u a u = u is denoted by a= with u is invertible, and a̶, a= is 
inner inverses, then ea

+ can be represented as,   
ea

+ = a ̶	e ua
= = ea

=
u a  ̶	� a=

eua
̶ = ea

̶
u a

=. 
where a- and a= are unit inner inverse and ea

+ is called   the unit reflexive inverses. 
 
Theorem 3.7. Suppose (Г, R) is a unit Г-regular ring for which there is a positive integer 
n such that for every element	 β	 ∈	 R and there is a unit x ∈	 Г such that β	 x β =	 β and	 βn  x 
= x βn, then every element of R is the sum of a bounded  number of units. 
Proof:	Proof:	Proof:	Proof:	Given	that	β	∈	R and there is a unit x ∈	Г	and	
βn  x = x βn,		and If n = 1,such that β	x = x β				
∴β is unit Γ-regular by using lemma (3.5)  If n>1, such that βn-1 x = xβn-1 
∴βn-1 is unit Γ-regular by using lemma (3.6) 
Thus βn is unit Γ-regular in R and every element of R is the sum of a bounded number of 
units.  
 
Lemma 3.8. If R be Г-regular ring and x is a unit element and a ∈	 R and let {a+} is class 
of unit reflexive inverses of a. If a is idempotent of the form a a+ then a ∈	a2 R. 
Proof: Let a x a = a and x a x = x with x is unit and a+= a ̶a a=, where a ̶	and a= are inner 
inverse and a ∈	R. Let (a++x  ̶ a+ a x a a+)∈ea

+ 
⇒ (a++x  ̶ a+ a x a a+)a(a++x  ̶ a+ a x a a+) =(a+ a+a x⎼a+ a x a a+ a )( a++x⎼ a+ a x a  a+) 
= a+ a a++ a+ a x⎼ a+ a a+ a x a a++x a a++x a x⎼x a a+ a x a a+⎼ a+ a x a a+ a a++  
a+ a x a a+ a x+a+ a x a a+ a a+ a x a a+ 
= a++ a+ a x⎼ a+ a x a  a+ +x a a++x⎼x	a	x	a	a+⎼ a+ a a+ a a+⎼a+ a a+ a x+ a+ a a+ a a+ 
= a++ x  ̶ a+ a x a a+ (∴		a+  a a+ =a+,  a a+ a=a) 
⇒a(a++x̶ a+ a x a a+)a=a. where x=(a++x̶ a+ a x a a+).Hence a is Г-regular. 
 
Remark 3.9. If a is unique reflexive inverse a+ and if a has a unique idempotent of the 
form a a+ then a ∈	a2 R. These the class of all reflexive inverse of a is given by  
               (a++x  ̶ a+ a x a a+)a(a++x  ̶ a+ a x a a+)[5]. 
 
Regular ideals. A two-sided ideal I in (R, Г) is regular if for each x ∈	 R there exists a 
unit	�	∈	Г such that x �	x = x where it denoted by I* = {�	∈	Г/R �	R⊆I}.  
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Theorem 3.10. Let (R, Г) be a regular ring and let I⊆R be a two sided ideal in (R, Г). 
Then R is Г-regular if and if I and R/I are Г-regular.  
Proof: Let I*={� ∈ Г/R � R⊆I} and R*={ �∈Г/R � R⊆R}.Then I* and R* and R*/I* are Г-
rings. 
Suppose that R is Г-regular for each r∈ R, there is unit 5 ∈ R* such that r5 r = r.  
∴ (r+I)(5+I*)(r+I) = (r+I). Hence R/I are Г-regular. By the definition and hence I is Г-
regular. 
Conversely, assume that I and R/I are Г-regular. To prove that R is Г-regular 
Let (α  ̶ α ω α) ∈ J and there is a unit ω ∈ R*and where α ∈ R 
such that α  ̶ α ω α = (α  ̶ α ω α)6(α  ̶  α ω α) where 6 ∈ I*. Then  
α = α  ̶  α ω α + α ω α= (α  ̶  α ω α) 6 (α  ̶  α ω α) + α ω α 
= (α γ⎼ α ω α γ)(α ⎼ α ω α)+ α ω α= α γ α ⎼α γ α ω α ⎼α ω α γ α + α ω α γ α ω α+ α ω α 
= α(6  ̶  6 α ω  ̶  ω α 6  ̶ + ω α 6 α ω + ω)α=α � α, Where � = γ  ̶  6 α ω ⎼ω α 6  ̶ + ω α 6 α 
ω + ω ∈ R* [11]. Since I*⊆R* and R* is an ideal in (R, Г).Hence R is Г- regular. 
 
Theorem 3.11. Let β be an element of (Γ, R) is a regular ring and there is a unit x in Γ 
such that β ⎼ β x β is Γ-regular, then β is Γ-regular. 
Proof: Given that β ∈ R and x ∈ Γ such that β x β=β. If β ⎼ β x β is Γ-regular and there 
exist an element w of Γ such that (β⎼β x β) w (β ⎼ β x β) = β ⎼β x β. If we get y = w ⎼w β 
x + x, and to verify that β y β = β 
β y β =β (w ⎼w β x + x) β = (β w ⎼β w β x + β x)β= β w β ⎼ β w β x β + β x β  
= β ⎼ β x β + β x β = β    
∴ (β x β = β, β w β= β).Thus β is Γ- regular. 
 
4. Conclusion 
In this paper, we have seen that an element a ∈ R is unit Γ-regular exactly when a ∈ uG 
for some unit u ∈ R and group G in Γ. We generalized the unit inner inverses and unit 
reflexive inverses of a unit Γ-regular ring. 
 
Acknowledgement. We are thankful to the reviewers for their comment to improve the 
presentation of the paper. 
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