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Abstract. The interplay between groups and graphs have been the most famous and 
productive area of algebraic graph theory.  In this paper, we define new graphs namely 
stabilizer graph, orbit graph, non-stabilizer graph and non-orbit graph for each 
permutation group G.  Our aim is to translate properties of graphs into algebraic 
properties and then using the results and methods of algebra to declare theorem about 
graphs.  We investigate the interconnection between the group theoretic properties of G 
and the graph theoretic properties of the above said graphs.  Some of the graphs are 
illustrated with example.  Finally we obtain some important results including theorem 
and discuss the relationship between group isomorphism and graph isomorphism. 
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1. Introduction 
Graph theory is one of the foremost probing field in mathematics principally because of 
its applications in various fields which include biochemistry, electrical engineering, 
computer science and operations research. These both twigs of mathematics are playing a 
prominent role in modern mathematics. 

Groups are the focal mathematical equipment for studying symmetries of an 
object and symmetries are usually associated to graph automorphisms.  Several structures 
in abstract algebra are special cases of groups.  In group theory we study and examine 
different groups and their structures while in graph theory we concentrate on the graphs 
that indicates the structure of materials and objects.  The forceful combinatorial methods 
found in graph theory have also been utilized to demonstrate significant and well-known 
results in a variety of areas in mathematics comprising group theory.  

All finite groups can be delineated as the automorphism group of a connected 
graph [1].  Relating a graph to a group provides a method of visualizing a group and 
connects two important branches of mathematics.  It gives a review of cyclic groups, 
dihedral groups, direct products, generators and relations [2]. In the past few decades the 
researchers have concentrated on the modified form of groups and graphs by inter 
relating their properties.  The literature of algebraic graph theory itself has grown 
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enormously since 1974 [3].  The study of the algebraic structures utilizing the properties 
of graphs has become a rousing research topic in the last twenty years, foremost to 
several interesting results and questions. 

The concept of zero-divisor graph was first introduced by Beck in [4] while 
discussing the coloring of a commutative ring. In his work all elements of the ring were 
considered as vertices of the graph.  Anderson and Naseer used this same concept in [5] 
and Mahadevi and Babujee also done their work on special structures of zero-divisor 
graphs [6]. Muneshwar and Bondar gave an introduction and overview of some nice ideas 
from group theory by using graph theory [7].  Chalapathi and Kiran Kumar explained the 
concept of order divisor graph of finite groups [8].  Cameron and Ghosh done their work 
on power graph of a finite group [9]. Omer, Sarmin and Erfanian introduced orbit graph 
for some finite solvable groups [10].  Shigehalli and Uppin discussed some properties of 
glue graph [11]. Varkey and Rajan studied on the spectrum and energy of concatenated 
singular graphs [12]. Revankar et al. [13] explained on eccentricity sum eigenvalue and 
eccentricity sum energy of a graph.  In this paper, we construct a stabilizer graph and 
orbit graph for finite groups.   

In section 2, we discuss stabilizer graph and non-stabilizer graph.  Orbit graph 
and non-orbit graph are discussed in section 3.  In each section related theorems and 
results are obtained.  Also, some of graphs are illustrated with suitable examples.  Section 
4 concludes the paper.  
 
2. Stabilizer graph of finite group 
A. Stabilizer graph of G 
Definition 2.1. Let G be a group of permutations of a set A.  For each x in A, let 

�����(�) = { φ ∈G |φ (x) = x}.  We call �����(�) the stabilizer of x in G and is 
denoted by��(�). (See [14]). 
 
Definition 2.2. Let A be any finite set and G be a group of permutations.  We define a 
stabilizer graph of G, denoted by г(��(
)) is a simple graph (V, E) with vertex set V = { 
��(�) |∀ x∈A} and edge set E = {(��(�), ��(�)) | ��(�) = ��(�)∀ x, y∈A}. 
 
Example 2.1. Let A = U(7) = {1, 2, 3, 4, 5, 6}.  Let us calculate the left rectangular 
representation �(7)������ for U(7) = {1, 2, 3, 4, 5, 6}. Writing the permutations of U(7) in 
array form, we have (��is just a multiplication by x), 
 

T1 = 1 2 3 4 5 6

1 2 3 4 5 6

 
 
 

,          T2 = 1 2 3 4 5 6

2 4 6 1 3 5

 
 
 

, 

T3 = 
1 2 3 4 5 6

3 6 2 5 1 4

 
 
 

,            T4 = 1 2 3 4 5 6

4 1 5 2 6 3

 
 
 

, 

T5 = 
1 2 3 4 5 6

5 3 1 6 4 2

 
 
 

,            T6 = 1 2 3 4 5 6

6 5 4 3 2 1

 
 
 

. 

 
Let G = �(7)������ = {(1), (1 2 4)(3 6 5), (1 3 2 6 4 5), (1 4 2)(3 5 6), (1 5 4 6 2 3),(1 6)(2 5)(3 
4)}.  Then, we have, 
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�����(1) = �����(2) = �����(3) = �����(4) = �����(5) = �����(6) = {(1)}.Stabilizer 
graph of U(7) in �(7)������ is shown in Figure 1. 

 
Figure 1: г(S�(�)�������U(7)) 

 
Definition 2.3. г(��(
))is complete if and only if ��(�) = ��(�)for all distinct x, y	∈	A. 
 
Result 2.1. Stabilizer graph of the group �(�)������� is always complete.Because the stabilizer 
point of U(n) in �(�)������� is trivially equal to (1). 
 
Result 2.2. If G is a symmetric group �� where n ≥ 3, then the stabilizer graph is always 
null graph. 
Proof: Let A be any finite set and G be a group of permutations of a set A. For each x in 
A, let �����(�) = {� ∈ �	|	�(�) = �}.  If G is a symmetric group �� where � ≥ 3, we 
get different stabilizer of each x in G.  i.e. ��(�) ≠ ��(�)	∀	�, � ∈ 
.  Then there does 
not exist an edge between every pair of vertices, ��(�)	∀	� ∈ 
.  Therefore, the stabilizer 
graph г(��(
)) is a null graph. 
 
Result 2.3. For abelian groups, the stabilizer graph is obviously complete. 
Proof: Let G be an abelian group.  i.e.,  �� , � ≤ 2 and �(�)�������.  For each x in A, we have 
�����(�) = {(1)} so that ��(�) = ��(�)	∀	�, � ∈ 
.  Then there exist an edge between 
every pair of vertices, ��(�)	∀	� ∈ 
 .  Therefore, the stabilizer graph г(��(
) ) is 
complete. 
 
Result 2.4. If G is the set of all even permutations of a symmetric group, then the 
stabilizer graph is complete for �� where n ≤ 3 and null graph for �� where n ≥ 4. 
Proof: Let G be the set of all even permutations of a symmetric group ��. 
Case(i): If G is the set of all even permutations of a symmetric group ��where � ≤ 3, 
then for each x in A, we have	�����(�) = {(1)} so that ��(�) = ��(�)	∀	�, � ∈ 
.  Then 
there exist an edge between every pair of vertices, ��(�)	∀	� ∈ 
 .  Therefore, the 
stabilizer graph г(��(
)) is complete. 
Case(ii): If G is the set of all even permutations of a symmetric group�� where                  
� ≥ 4	,	then for each x in A,��(�) ≠ ��(�) for all�, � ∈ 
.  Then there does not exist an 
edge between every pair of vertices, ��(�)	for all� ∈ 
.  Therefore, the stabilizer graph 
г(��(
)) is a null graph. 
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Result 2.5. If G is the set of all odd permutations of a symmetric group, then the 
stabilizer graph is null graph for �� where n ≥ 3 and empty graph for �'. 
Proof: Let G be the set of all odd permutations of a symmetric group ��. 
Case (i): If G is the set of all odd permutations of a symmetric group��where � ≥
3	,	then for each x in A, ��(�) ≠ ��(�)	∀�, � ∈ 
.  Then there does not exist an edge 
between every pair of vertices, ��(�)∀	� ∈ 
.  Therefore, the stabilizer graph г(��(
)) is 
a null graph. 
Case (ii): If G is the set of all odd permutations of a symmetric group�� where � = 2, 
then for each x in A, stabilizer point does not exist.  So there is no any vertex.  Thus we 
get an empty graph. 
 
Result 2.6. If G is the set of all even permutations of a group �(�)�������, then the stabilizer 
graph is complete. 

Proof: Let G be a group of even permutations of the group �(�)�������. Then, by Result 2.1, for 
each x in A, �����(�) = {(1)} so that ��(�) = ��(�)	∀	�, � ∈ 
.  Then there exist an 
edge between every pair of vertices, ��(�)	∀	� ∈ 
 .  Therefore, the stabilizer graph 
г(��(
)) is complete. 
 

Result 2.7. If G is the set of all odd permutations of a group	�(�)�������, then the stabilizer 
graph is empty graph.   
 
Example 2.2. Let A = U(5) = {1, 2, 3, 4, 5}. If we take G as an odd permutation then G = 
�(5)������ = {(1 2 4 3), (1 3 4 2)}. 
 
Result 2.8. If we take G as a random permutations of a symmetric group, then the 
stabilizer graph maybe connected or disconnected. 
 
Example 2.3. Let A = {1, 2, 3, 4, 5, 6, 7, 8} and G = {(1), (1 3 2) (4 6 5) (7 8), (1 3 2)(4 6 
5), (1 2 3) (4 5 6), (1 2 3) (4 5 6) (7 8), (7 8)}.  Then, we have, 
����� (1) = ����� (2) = ����� (3) = ����� (4) = ����� (5) = ����� (6) = {(1), (7 8)}, 
�����(7) = �����(8) = {(1), (1 3 2)(4 6 5), (1 2 3)(4 5 6)}.     
 
Theorem 2.1. Let U(�))  andU(�')   be two finite groups. If U(�)) ≅ U(�') , then 

г +�,(�-)���������(�)). ≅ г +�,(�/)���������(�').. 
Proof: Assume U(�))≅ U(�').Then there exist an isomorphic mapφ : U(�))→U(�').  
Since φ  is a group isomorphism that preserves stabilizer point of every element of a set,

φ  maps stabilizer point of U(�))  to a stabilizer point of U(�').  Let �1 and �1 be the 
stabilizer points of U(�))  and U(�') respectively, where i = 1, 2, 3…n.  Then we see that
φ (�1) = �1 for all i.  Also, if �1 is adjacent to �2 , then φ (�1) is adjacent to φ (�2), for all i 

≠ j. Thus φ  is a graph isomorphism.  Hence г +�,(�-)���������(�)). ≅ г +�,(�/)���������(�').□ 
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Example 2.4. Let U(8) = {1, 3, 5, 7} and G =�(8)������ = {(1), (1 3)(5 7), (1 5)(3 7), (1 7)(3 
5)}.  Then, we have �����(1) = �����(3) = �����(5) = �����(7) = {(1)}. Similarly, let 
U(12) = {1, 5, 7, 11} and G =�(12	�������� = {(1), (1 5)(7 11), (1 7)(5 11), (1 11)(5 7)}. Then, 
we have, 
�����(1) =�����(5) = �����(7) = �����(11) = {(1)}. Stabilizer graph of U(8) in ��8	������ 
and Stabilizer graph of U(12) in ��12	�������� is shown in Figure 2. 

 
Figure 2: Graph isomorphism between г�S��6	��������U�8			 and г�S��)'	���������U�12			. 

Corollary 2.1. The converse of the above theorem is not true. 
Proof: Consider the finite groups U(8) and U(10).  Let U(8) = {1, 3, 5, 7} and G = ��8	������ 
= {(1), (1 3)(5 7), (1 5)(3 7), (1 7)(3 5)} and Let U(10) = {1, 3, 7, 9} and G = ��10	�������� 
={(1), (1 3 9 7), (1 7 9 3), (1 9)(3 7)}.  

Then stabilizer point of U(8) in ��8	������ and stabilizer point of U(10) in ��10	�������� are 
����� (1) = ����� (3) = ����� (5) = ����� (7) = {(1)} and ����� (1) = ����� (3) = 
�����(7) = �����(9) = {(1)} respectively. 

Here г��,�6	����������8			 and г��,�)8	�����������10			 are isomorphic, but U(8) and U(10) 

are not isomorphic. Stabilizer graph of U(8) in ��8	������ and Stabilizer graph of U(10) in 
��10	�������� is shown in Figure 3. 

 
 
 
 
 
 
 
 
 

Figure 3: Graph isomorphism between   г�S��6	��������U�8			 and  г�S��)8	���������U�10			. 

B.  Non-stabilizer graph of G  
Definition 2.4. Let A be any finite set and G be a group of permutations.  We define a 
non-stabilizer graph of G, denoted by г9(���
	) is a simple graph (V, E) with vertex set 
V = {����	 |∀ x∈A} and edge set E = {((����	, ����	) | ����	 ≠ ����	∀ x, y∈A}.  
Note: Null graph and disconnected graph can be converted into a connected graph by 
using the non-stabilizer graph definition. 
 

��(1) 
 

��(7) 
 

��(3) 
 

��(5) 
 

��(1) ��(3) 
 

��(9) 
 

��(7) 
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Result 2.9. If G is a symmetric group �� where n ≥ 3, then the non-stabilizer graph is 
always complete. 
Proof: Let G be a symmetric group �� where � ≥ 3.  Then, for each x in A,	����	 ≠
����		∀	�, � ∈ 
. By the definition of non-stabilizer graph, there exist an edge between 
every pair of vertices,����		∀	� ∈ 
.  Therefore, the non-stabilizer graph г9(��(
)) is 
complete. 
 
Result 2.10. Non-stabilizer graph need not be complete.   
Note: Disconnected graph becomes connected when using non stabilizer graph definition 
but this need not be complete. 
 
4. Orbit graph of finite group 
A.  Orbit graph of G 
Definition 3.1. Let G be a group of permutations of a set A.  For each x in A, let:;��(�) 
= { φ (x) | φ ∈G}.  Then the set :;��(�)  is a subset of A called the orbit of x under G 
and is denoted by :�(�).  We use |	:;��(�) | to denote the number of elements in 
:;��(�). (See [14]). 
 
Definition 3.2. Let A be any finite set and G be a group of permutations.  We define a 
orbit graph of G, denoted by г(:�(
)) is a simple graph (V, E) with vertex set V = { 
:�(�) | ∀ x∈A} and edge set E = {(:�(�), :�(�)) | :�(�) = :�(�)∀ x, y∈A}. 
 
Example 3.1. Let A = {1, 2, 3} and G =�<= {(1), (1 2 3), (1 3 2), (2 3), (1 3), (1 2)}.  
Then,:;��(1) = :;��(2) = :;��(3) = {1, 2, 3}. The Orbit graph of A under �< is shown 
in Figure 4. 

 
Figure 4: г(O>?(A)) 

Definition 3.3. г(:�(
)) is complete if and only if :�(x) = :�(y) for all distinct x, y∈A. 
 
Result 3.1. If G is a symmetric group, then the orbit graph is always complete.  
Proof: Let A be any finite set and G be a group of permutations of a set A. For each x 
in A, let :;��(�) = {�(�)	|	� ∈ �}.  If G is a symmetric group, then for each x in A we 
get :�(�) = {1, 2, 3, … ,n} so that :�(�) = :�(�)	∀	�, � ∈ 
.  Then there exist an edge 
between every pair of vertices,:�(�)	∀	� ∈ 
.  Therefore, the Orbit graph г(:�(
)) is 
complete. 
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Result 3.2. Orbit graph of the group ���	������� is always complete. 
Proof: Let G be the group ���	�������. Then for each x in A, we get :���	 = {1, 2, 3, … ,n} so 
that :���	 = :���		∀	�, � ∈ 
.  Then there exist an edge between every pair of vertices, 
:���		∀	� ∈ 
.  Therefore, the Orbit graph г(:��
	) is complete. 
 
Result 3.3. If G is the set of all even permutations of a symmetric group, then the orbit 
graph is always complete, except �'. 
Proof: Let G be the set of all even permutations of a symmetric group ��. 
Case (i): If G is the set of all even permutations of a symmetric group ��	where	� ≠ 2, 
then for each x in A, we get :�(�) = {1, 2, 3, … ,n} so that :�(�) = :�(�), ∀	�, � ∈ 
.  
Then there exist an edge between every pair of vertices, :�(�)	∀	� ∈ 
.  Therefore, the 
Orbit graph г(:�(
)) is complete. 
Case (ii): If G is the set of all even permutations of a symmetric group ��	where	� = 2, 
then for each x in A, we get different orbit points so that:�(�) ≠ :�(�)	∀	�, � ∈ 
.  
Then there does not exist an edge between the pair of vertices, :�(�)	and :�(�) .  
Therefore, the Orbit graph г(:�(
)) is a null graph. 
 
Result 3.4. If G is the set of all odd permutations of a symmetric group, then the orbit 
graph is always complete, except �'. 
Proof: Similar to the proof of Result 3.3. 
 
Theorem 3.1. Let U(�)) and U(�') be two finite groups.  If U(�)) ≅ U(�'), then 

г +:,(�-)���������(�)). ≅ г +:,(�/)���������(�').. 
Proof: Similar to the proof of Theorem 2.1. 

Corollary 3.1. The converse of the above theorem is not true. 
Proof: Similar to the proof of Corollary 2.1. 

B. Non-orbit graph of G  
Definition 3.4. Let A be any finite set and G be a group of permutations.  We define a 
non-orbit graph of G, denoted by г9(:�(
)) is a simple graph (V, E) with vertex set V = 
{:�(�) |∀ x∈A} and edge set E = {(:�(�), :�(�)) | :�(�) ≠ :�(�),∀ x, y∈A}.  

Example 3.2. Let A = {1, 2} and G = {(1 2)}. Then :;��(1) = {2}, :;��(2) ={1} 
andnon-orbit graph of A under G is shown in Figure 5. 

 
Figure 5: г9(OE(A)) 

4. Conclusion 
In this paper, we established the stabilizer graph and orbit graph of finite groups and 
some of the related results were dealt with suitable examples.  Next, non-stabilizer graph 
and non-orbit graph were found and discussed. We investigated the interconnection 
between the group theoretic properties of G and the graph theoretic properties of the 
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stabilizer graph, orbit graph, non-stabilizer graph and non-orbit graph.  This proposed 
work can be extended to other graph theoretic properties with other finite groups. 
 
Acknowledgement. The authors are highly grateful to the anonymous reviewers for their 
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