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Abstract.   In  this  article we consider the  class  of  Diophantine  equations  (10K + A)x+  
(10M + A)y  =  z2   when  A = 1, 3, 7, 9  with  positive integers  x, y, z.  It  is  established:  
(i)  When  A = 1, the equation has  no solutions. (ii)  When   A = 3, 7, 9,  each equation  
has infinitely many solutions.  All the results are achieved by our recent new technique 
which makes use of the last digits of the powers involved.  Various solutions for the 
equations are exhibited. 
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions. 
 
       The famous general equation 

px + qy = z2 

has many forms.  The literature contains a very large number of articles on non-linear 
such individual equations involving particular primes and powers of all kinds.  Among 
them are for example [7, 8, 9, 10, 11]. 
 
       In this article we consider the class of Diophantine equations (10K + A)x  + (10M + 
A)y  =  z2  when  A = 1, 3, 7, 9 with positive integers x, y, z.  We will show for  A = 1  that 
the equation has no solutions, and when  A = 3, 7, 9,  that each equation has infinitely 
many solutions.  All these results are attained by using the last digits of the powers 
involved.  This is a new elementary technique developed by us for finding solutions of 
exponential Diophantine equations already adopted in our recent articles on this subject.  
The solutions obtained correspond to primes and composites as well with no distinction.  
Each of the following sections is self-contained, and so are the theorems within each 
section. 
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2.   On  (10K + 1)x  + (10M + 1)y = z2 
 
       In a very short, elementary and elegant way, we will show in the following theorem 
that the equation (10K + 1)x  + (10M + 1)y  =  z2  has no solutions. 
 
Theorem 2.1.  Let   K  ≥ 1  and  M ≥ 1  be integers.  Let  x, y, z  be positive integers.  
Then  
                                   (10K + 1)x   + (10M  + 1)y   =  z2                                                     (1) 
has no solutions. 
 
Proof:  For all values  K,  x,  M,  y,  each of the two powers  (10K + 1)x  and  (10M + 1)y  
has a last digit which is equal to  1.  Thus, the sum  (10K + 1)x  + (10M  + 1)y  has a last 
digit which is equal to  2.  If the sum satisfies  (1),  then  z2  is even.  Any even square  z2  
does not have a last digit which is equal to  2.  Therefore, a priori  (1)  has no solutions. 
 
       The proof of Theorem  2.1  is complete.                                                            □ 
 
Remark  2.1.  In Theorem  2.1  we have established for all integers  (composites, primes)  
whose last digit ends in  1,  and for all values  x ≥ 1,  y ≥ 1 that equation  (1)  has no 
solutions.  In particular, when 10K + 1 = p,  10M  + 1 = q are distinct primes, then the 
equation  px  +  qy  =  z2  has no solutions.  The result is also valid when  K, M  are equal.  
Thus,  it is completely redundant to consider any equations of the form  (1)  since such 
equations have no solutions. 
 
3.   On  (10K  + 3)x + (10M  + 3)y  =  z2 
 
       Let  K  ≥  0,  x  ≥  1,  M  ≥  0,   y  ≥  1  be integers.  Let  z  be a positive integer. For 
all values  x,  y,  each of the powers  (10K  +  3)x,  (10M   +  3)y  ends in one of the digits  
3,  9,  7,  1.  Suppose that for some values  K,  x,  M,  y,  z 
                                           (10K + 3 )x  + (10M  + 3)y  =  z2                                             (2) 
is satisfied.  The sum in  (2)  is even, and ends in one of the digits  2, 4, 6, 8, 0.  Since  z2 
is an even square,  z2  cannot have a last digit equal to  2  or equal to  8.  Hence  z2  ends in 
one of the digits  4, 6, 0.  To prove that (2)  has infinitely many solutions, it is clearly 
immaterial what three possibilities for  z2  are chosen.  A set of three such possibilities is 
presented in the following Table  1. 
 

Table 1. 
 
case last digit of   

(10K + 3)x 
last digit of   
(10M  +  3)y 

last digit of   
(10K + 3)x + (10M + 3)y 

solutions of  
(10K + 3)x + (10M + 3)y = z2 

1 3 1 4 infinitely many 
2 3 3 6 infinitely many 
3 3 7 0 infinitely many 

 
In Theorems 3.1 – 3.3  we shall consider the three cases in Table 1.  We will show that in 
each such case, equation  (2)  has infinitely many solutions. 
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Theorem  3.1.   If  (10K  + 3)x  has a last digit equal to 3,  and  (10M  + 3)y  has a last 
digit equal to  1,  then the equation (10K + 3)x + (10M  +  3)y  =  z2  has infinitely many 
solutions. 
 
Proof: When  (10K + 3)x  ends in the digit 3,  then  x = 4m + 1  where  m  ≥ 0  is an 
integer.  When  (10M  + 3)y  ends in the digit 1,  then  y  =  4n   where  n ≥ 1  is an 
integer. To prove our assertion, it suffices to consider  x,  y  as the smallest possible fixed 
values.  Let  x = 1  (m = 0)  and  y = 4  (n = 1)  be fixed values.  Set  z = (10M  + 3)2 + 9  
valid for each value  M  ≥  0.  Then  z  ends in 8,  and  z2  has a last digit equal to  4  as in 
Table 1.  For all values  M  ≥  0  let  K = 180M2 + 108M + 24.  Then for (10K + 3)1 + 
(10M  + 3)4  =  z2  we have the identity 
      (10(180M2  + 108M  + 24) + 3)1  + (10M  +  3)4 = ((10M  +  3)2  +  9)2                  (3) 

valid for each and every value  M  ≥  0.  
 
       Thus, the equation (10K + 3)1  + (10M  + 3)4  =  z2  has infinitely many solutions. 
 
       This completes the proof of Theorem  3.1.                                                         □ 
 
      The first three solutions obtained from  (3)  are: 
 
Solution  1.     2431 + 34     = 182  M  =  0,        K  =  24, x = 1,     y = 4.             
Solution  2.     31231 + 134 = 1782 M  =  1,              K  = 312, x = 1,     y = 4.              
Solution  3.     96031 + 234 = 5382 M  =  2,        K  = 960,   x = 1,  y = 4.    
 
Remark 3.1.  Suppose that  x = 5 (m = 1)  and  y = 4  (n = 1)  are fixed values.  When  K 
= M,  we have  

(10K + 3)5 + (10K + 3)4 = (10K + 3)4((10K + 3) + 1) = ((10K + 3)2)2 (10K + 4) = z2 
provided  (10K + 4)  is a square.  The first four values  K  for which  (10K + 4)  is a 
square are  K = 0, 6, 14, 32, …,  and so on.  Infinitely many such values  K  exist for 
which  (10K + 4)  is a square.  The first four solutions are then: 
35 + 34 = 182,    635 +  634  = 317522,  1435  + 1434  =  2453882,   3235  + 3234 = 18779222. 
It follows that the values  z  alternate between  z  ending in  8  and z  ending in 2.  The 
value  z2  clearly has a last digit equal to  4  as in Table  1. 
 
Theorem 3.2.  If  (10K + 3)x has a last digit equal to 3, and  (10M   + 3)y has a last digit 
equal to 3, then the equation (10K  +  3)x  +  (10M  +  3) y  =  z2  has infinitely many 
solutions.  
 
Proof: When  (10K  + 3)x  ends in the digit 3,  then  x = 4m + 1  where  m  ≥  0  is an 
integer.  When  (10M   +  3)y  ends in the digit 3,  then  y = 4n + 1  where  n  ≥  0  is an 
integer.  To prove our assertion, it suffices to consider  x,  y as the smallest possible fixed 
values.  Let  x = 1  (m  =  0)  and   y = 1  (n = 0)  be  fixed values.  Set   z =  (10M  +  3) + 
1  valid for each value for  M  ≥  0.  Then  z  ends in  4,  and  z2  has a last digit equal to 6 
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as in Table 1.  For all values  M  ≥  0,  let  K = 10M2  + 7M  + 1.  We then obtain for  
(10K  +  3)1 + (10M   +  3)1  =  z2  the identity 

(10(10M2  + 7M  + 1) + 3)1 + (10M  +  3)1 = ((10M   +  3)  +  1)2                          (4) 
valid for each and every value  M  ≥ 0.   
 
       The equation  (10K + 3)1  + (10M  +  3)1  =  z2  has infinitely many solutions. 
 
       This concludes the proof of Theorem  3.2.                                                          □ 

 
      The first three solutions which follow from  (4)  are: 
 
Solution  4.          131 + 31     = 42  M = 0,     K = 1,               x = y = 1. 
Solution  5.          1831 + 131 = 142 M = 1,     K = 18,             x = y = 1. 
Solution  6.          5531 + 231 = 242 M = 2,    K = 55,             x = y = 1. 
 
Theorem 3.3.  If  (10K  +  3)x   has a last digit equal to 3, and  (10M  +  3)y   has a last 
digit equal to 7, then the equation  (10K + 3)x  +  (10M  +  3) y  =  z2  has infinitely many 
solutions.  
 
Proof:  When  (10K + 3)x  ends in the digit 3,  then  x =  4m + 1  where  m  ≥  0  is an 
integer.  When  (10M   +  3)y  ends in the digit 7,  then  y = 4n + 3  where  n  ≥  0  is an 
integer.  To prove our assertion, it suffices to consider  x, y  as the smallest possible fixed 
values.  Let  x = 1  (m = 0)  and   y = 3  (n = 0)  be  fixed values.  Set   z  = (10M  +  3)2 + 
1  valid for each value for  M  ≥  0.  Then  z   and also   z2  have a last digit equal to 0 as in 
Table 1.  For all values  M  ≥  0  let  K  = 1000M 4   +  1100M 3  +  470M 2 + 93M + 7.  
We then obtain for  (10K + 3)1 + (10M  + 3)3 = z2  the identity 
(10(1000M4  + 1100M3  +  470M2  +  93M  + 7)  + 3)1 + (10M  + 3)3  =  ((10M  + 3)2 + 1)2             (5) 
valid for each and every value  M  ≥  0.                                               
 
       The equation  (10K  +  3)1  + (10M   +  3)3  =  z2  has infinitely many solutions. 
 
       This completes the proof of Theorem  3.3.                                                         □ 
 
      The first four solutions derived from  (5)  are: 
 
Solution  7.      731 + 33= 102     M = 0,    K = 7,               x = 1,     y = 3. 
Solution  8.  267031 + 133 = 1702  M = 1,    K = 2670,         x = 1,     y = 3. 
Solution  9.    2687331 + 233 = 5302  M = 2,    K = 26873,       x = 1,     y = 3. 
Solution  10.    11521631 + 333 = 10902  M = 3,    K = 115216,     x = 1,     y = 3. 
 
4.   On  (10K  +  7)x + (10M  +  7)y  =  z2 
 
       Let  K ≥ 0,  x  ≥ 1,  M  ≥  0,  y  ≥  1  be integers.  Let  z  be a positive integer. For all 
values  x,  y,  each of the powers  (10K  +  7)x,  (10M   +  7)y  ends in one of the digits  7,  
9,  3,  1.  Suppose that for some values  K,  x, M,  y,  z 
                                                 (10K  +  7)x  +  (10M   +  7)y  =  z2                                   (6) 
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is satisfied.  The sum in  (6)  is even, and ends in one of the digits  2, 4, 6, 8, 0.  Since  z2 
is even,   z2   cannot have a last digit equal to  2  or equal to  8.  Thus  z2  ends in one of the 
digits  4, 6, 0.  To prove that  (6)  has infinitely many solutions, it is clearly immaterial 
what three possibilities for  z2  are chosen.  A set of three possibilities is demonstrated in 
the following Table  2. 
 

Table 2. 
 
Case last digit of   

(10K + 7)x 
last digit of   
(10M  + 7)y 

last digit of   
(10K + 7)x + (10M  + 7)y 

solutions of  
(10K + 7)x + (10M + 7)y = z2 

1 7 7 4 infinitely many 
2 7 9 6 infinitely many 
3 7 3 0 infinitely many 

 
In the following Theorems 4.1 – 4.3  we consider the three cases in Table 2.  We will 
show that in each case, equation (6) has infinitely many solutions. 
 
Theorem  4.1.   If  (10K  +  7)x  has a last digit equal to 7,  and  (10M  + 7)y  has a last 
digit equal to  7,  then the equation (10K + 7)x  +  (10M  + 7)y  =  z2  has infinitely many 
solutions. 
 
Proof:  When  (10K  + 7)x  ends in the digit 7,  then  x = 4m + 1  where  m  ≥ 0  is an 
integer.  When  (10M  + 7)y  ends in the digit 7,  then  y = 4n + 1  where  n  ≥ 0  is an 
integer.  To prove our assertion, it suffices to consider  x, y  as the smallest possible fixed 
values.  Let  x = 1  (m = 0)  and   y = 1  (n = 0)  be  fixed values.  Set   z = (10M  + 7)  +  1  
valid  for  each  value   M   ≥  0,  and   z2   has a last digit equal to  4  as in Table 2.  For 
all values  M  ≥  0 let  K = 10M2  +  15M  + 5.  Then for  (10K  + 7)1 + (10M  + 7)1   = z2 

we obtain the identity 

(10(10M2  + 15M + 5)  + 7)1  +  (10M  + 7)1 = ((10M  +  7)  +  1)2                          (7) 
valid for each and every value  M  ≥  0. 
 
       The equation  (10K  + 7)1  +  (10M   +  7)1  =  z2  has infinitely many solutions. 
 
       The proof of Theorem  4.1  is complete.                                                             □ 
 
       The first three solutions obtained from  (7)  are: 
Solution  11. 571 +71        = 82 M = 0, K = 5, x = y = 1. 
Solution  12. 3071 + 171   = 182 M = 1, K = 30, x = y = 1. 
Solution  13. 7571 + 271   = 282 M = 2, K = 75, x = y = 1. 

 
Theorem  4.2.   If  (10K  + 7)x  has a last digit equal to  7,  and  (10M  + 7)y  has a last 
digit equal to  9,  then the equation (10K  +  7)x  +  (10M   +  7)y  =  z2  has infinitely many 
solutions.  
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Proof: When  (10K  + 7)x ends in the digit 7,  then  x = 4m + 1  where  m  ≥  0  is an 
integer.  When  (10M   +  7)y  ends in the digit 9,  then  y = 4n + 2  where  n  ≥  0  is an 
integer.  To prove our assertion, it suffices to consider  x, y  as the smallest possible fixed 
values.  Let  x = 1  (m  =  0)  and   y =  2  (n  =  0)  be  fixed values.  Set   z = (10M  +  7)  
+  9  valid  for  each  value  M   ≥  0.  Then  z  and  z2  have a last digit equal to 6  as in 
Table 2.  For all values   M   ≥  0  let  K  = 18M  +  20.  Then for  (10K  + 7)1  + (10M  +  
7)2  =  z2   we obtain the identity 

(10(18M  + 20)  + 7)1  +  (10M  +  7)2  =  ((10M  +  7)  +  9)2                            (8) 
valid for each and every value  M  ≥  0. 
 
       The equation  (10K  + 7)1  +  (10M  +  7)2   =  z2  has infinitely many solutions. 
 
       This concludes the proof of Theorem  4.2.                                                          □ 
 
       The following three solutions stem from  (8). 
 
Solution  14. 2071 + 72   = 162 M = 0, K = 20, x = 1, y = 2. 
Solution  15. 3871 + 172 = 262 M = 1, K = 38, x = 1, y = 2. 
Solution  16. 5671 + 272  = 362 M = 2, K = 56, x = 1, y = 2. 
 
Theorem  4.3.   If  (10K  + 7)x  has a last digit equal to  7,  and  (10M  +  7)y  has a last 
digit equal to  3,  then the equation  (10K  +  7)x  +  (10M  +   7)y  = z2  has infinitely many 
solutions.  
 
Proof:  When (10K  +  7)x ends in the digit 7,  then  x = 4m + 1  where  m  ≥  0  is an 
integer.  When  (10M   +  7)y  ends in the digit  3,  then  y = 4n + 3  where  n  ≥ 0  is an 
integer.  To prove our assertion, it suffices to consider  x,  y  as the smallest possible fixed 
values.  Let  x = 1  (m  =  0)  and   y = 3  (n  =  0)  be  fixed values.  Set   z  =  (10M  + 7)2 
+ 1  valid  for  each  value  M  ≥  0.  Then  z  and also  z2   have a last digit equal to 0  as in 
Table  2.  For all values  M   ≥  0  let  K  =  1000M4  +  2700M3  +  2750M2  +  1253M  + 
215.  We then obtain for  (10K  +  7)1  +  (10M  +  7)3  =  z2  the identity 
(10(1000M4 + 2700M3 + 2750M2  + 1253M  +  215) + 7)1 +  (10M  + 7)3  =  ((10M + 7)2  + 1)2    (9) 
valid for each and every value  M  ≥  0. 
 
       The equation  (10K  +  7)1  +  (10M  +  7)3   =  z2  has infinitely many solutions. 
 
       The proof of Theorem  4.3  is complete.                                                               □ 
 
       The first three solutions which follow from  (9)  are: 
 
Solution  17. 21571 + 73       =  502 M = 0, K = 215, x = 1, y = 3. 
Solution  18. 791871 + 173   =  902 M = 1, K = 7918, x = 1, y = 3. 
Solution  19. 5132171 + 273  = 7302 M = 2, K = 51321, x = 1, y = 3. 
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5.   On  (10K  +  9)x  +  (10M  +  9)y  =  z2 
 
       Let  K  ≥  0,  x  ≥  1,  M  ≥  0,  y  ≥  1  be integers.  Let  z  be a positive integer. For all 
values  x,  y,  each of the powers  (10K  +  9)x,  (10M   +  9)y  ends either in the digit 1 or 
in the digit  9.  Suppose that for some values  K,  x,  M,  y,  z  

(10K  +  9)x  +  (10M  +  9)y  =  z2                                                 (10) 
is satisfied.  The sum in  (10)  is even, and therefore ends in one of the digits  0, 2, 8.  
From  (10)  it follows that  z2  is even,  and as such cannot have a last digit equal to  2 
or equal to  8.  Hence,  z2  must end in the digit  0.  For our purposes, it is clearly 
immaterial whether  (10K  +  9)x  ends in  9  and  (10M  +  9)y ends in 1  or vice versa.  
Without any loss of generality we shall consider the case when  (10K  +  9)x  ends in  9,  
and  (10M  +  9)y  ends in 1.   
 
Theorem  5.1.   If  (10K  +  9)x  has a last digit equal to  9,  and  (10M  +  9)y  has a last 
digit equal to 1,  then the equation  (10K  +  9)x  +  (10M  +  9)y  =  z2  has infinitely many 
solutions. 
 
Proof:   When  (10K + 9)x ends in the digit 9,  then  x = 2m + 1 where m  ≥  0  is an 
integer.  When  (10M   +  9)y  ends in the digit  1,  then  y = 2n  where  n  ≥  1  is an 
integer.  The value  z2  has a last digit equal to  0,  and so does the value  z.   
 
       To prove the infinitude of solutions, it suffices to consider x, y as the smallest 
possible fixed values.  Let  x = 1  (m = 0)  and  y  =  2  (n  =  1)  be fixed values.  Set  z = 
(10M  + 9) + 1  which has a last digit equal to  0.  For all values  M  ≥  0  let  K  =  2M + 
1. We then obtain the identity   
      (2(10M  +  9)  +  1)1  +  (10M   +   9)2  =  ((10M  +  9)  +  1)2                               (11) 
valid for each and every value  M  ≥  0. 
 
       The equation  (10K  +  9)1  +  (10M   +  9)2   =   z2  has infinitely many solutions. 
 
       This concludes the proof of Theorem 5.1.                                                                    □ 
 
       We now demonstrate the first five solutions obtained from  (11).   
 
Solution  20.   191 + 92  = 102  K = 1,      x = 1,        M = 0,       y = 2. 
Solution  21.   391 + 192 = 202  K = 3,      x = 1,        M = 1,       y = 2. 
Solution  22.  591 + 292 = 302  K = 5,      x = 1,        M = 2,       y = 2. 
Solution  23.  791 + 392 = 402  K = 7,      x = 1,        M = 3,       y = 2. 
Solution  24.  991 + 492 = 502  K = 9,      x = 1,        M = 4,       y = 2. 
 
Remark  5.1.   The values 10K  +  9  and  10M  +  9  yield primes and composites.  The 
five solutions above, clearly show that the solutions of  (10K  +  9)x  +  (10M  +  9)y  =  z2  
are composed of primes and composites (solutions 20, 21, 23), of primes only (solution 
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22),  and of composites only (solution  24).  Certainly, there exist infinitely many 
solutions of each category. 
 
Remark  5.2.    Let  x,  y  be some fixed values.  We observe that when  z  is a particular 
fixed value, then (10K  +  9)x  +  (10M  +  9)y  =  z2  has more than one solution for  z. 
This is shown for instance for  z = 40  in the following three solutions. 
 
Solution  25.  15191     +  92      =   402. 
Solution  26.  12391   +  192  =   402. 
Solution  27.  7591     +  292  =   402. 
 
Thus, for fixed values  x = 1,  y = 2  and  z = 40, it follows that the equation  (10K  +  9)x  
+  (10M  +  9)y  =  z2  has exactly four solutions, namely  solution 23 and solutions 25, 
26, 27. 
 
Final remark.   It has been shown in this article that the equation  (10K  +  1)x  +  (10M  
+  1)y  =   z2   has no solutions,  whereas the equations  (10K  +  3)x  +   (10M   +  3)y   =  z2,  
(10K   +  7)x  +  (10M   +  7)y  =  z2  and (10K  +  9)x  +  (10M  +  9)y  =  z2  have infinitely 
many solutions.  The results for the three equations were achieved via identities.  All the 
results in this paper stem from the use of the last digits of the given powers.  Our 
technique although quite elementary, but rather very powerful, has already established 
itself in previous articles [see 1, 2, 3, 4, 5, 6]  on exponential Diophantine equations of 
the form  px  +  qy   =  z2.  We believe that more equations of the kind may be solved in 
this manner. 
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