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Abstract. The status of a vertex u is defined as the sum of the distances between u and all 
other vertices of a connected graph. In this paper, we introduce the (a, b)-status index of a 
graph. We also compute the (a, b)-status index of wheel and friendship graphs. Also we 
introduce F1-status index, first and second status Gourava indices,  symmetric division 
status index of a graph and compute exact formulas for wheel and friendship graphs. 
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1. Introduction 
Let G be a finite, simple, connected graph. Let V(G) be the vertex set and E(G) be the 
edge set of G. The degree dG(u) of a vertex u is the number of vertices adjacent to u. The 
distance, denoted by d(u, v), between any two vertices  u and v is the length of shortest 
path connecting u and v. The status σ(u) of a vertex u  in G is the sum of distances of all 
other vertices from u in G. For undefined terms and notations, we refer [1]. 
 A graph index is a numerical parameter mathematically derived from the graph 
structure. The graph indices have their applications in various disciplines of Science and 
Technology [2, 3]. Some of the graph indices can be found in [4, 5, 6, 7, 8, 9, 10]. 
 The first and second status connectivity indices were introduced by Ramane at al. 
in [11], defined as  

( ) ( ) ( )[ ]
( )

1 ,
uv E G

S G u vσ σ
∈

= +∑   ( ) ( ) ( )
( )

2 .
uv E G

S G u vσ σ
∈

= ∑  

 In [12], Kulli introduced the product connectivity status index, defined as  
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 The reciprocal product connectivity status index and general second status index 
were introduced by Kulli in [12], and they are defined as 

( ) ( ) ( )
( )

.
uv E G

RPS G u vσ σ
∈

= ∑   ( ) ( ) ( )[ ]
( )

2 ,
aa

uv E G

S G u vσ σ
∈

= ∑  

where a is a real number. 
 We introduce the F1-status index of a graph and is defined as  
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 We introduce the first and second status Gourava indices of a graph, defined as  
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 We define the symmetric division status index of a graph as  
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 Motivated by the work on status indices, we introduce the (a, b)-status index of a 
graph and it is defined as  

( ) ( ) ( ) ( ) ( )
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where a and b are real numbers. 
 Recently the first and second Gourava indices were studied in [13].Recently, 
some status indices were introduced and studied such as multiplicative vertex  status  
index [14], multiplicative first and second status indices [15], multiplicative (a, b)-status 
index [16], F-status index [17], ABC status index [18], multiplicative GA status index 
[19],  harmonic status index [20], status connectivity coindices [21].In this paper, the (a, 
b)-status index of wheel and friendship graphs are determined. 
 
2. Observations 
We observe the following relationships. 

1. The first status index ( ) ( )1 1,0 .S G S G=  

2. The second status index ( ) ( )2 1,1
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.
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4. The reciprocal product connectivity status index ( ) ( )1 1
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5. The general second status index ( ) ( )2 ,
1

.
2

a
a aS G S G=  

6. The F1-status index ( ) ( )1 2,0 .F S G S G=  

7. The second status Gourava index ( ) ( )2 2,1 .SGO G S G=  

8. The symmetric division status index ( ) ( )1, 1 .SDS G S G−=  

 
3. Results for wheel graphs 
A wheel graph Wn is the join of Cn and K1. Then Wn has n+1 vertices and 2n edges. A 
graph Wn is shown in Figure 1. 
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Figure 1: Wheel graph Wn 

In Wn , there are two types of edges as follows:  
 E1 = {uv ∈ E(Wn) | d(u) = d(v) = 3}, |E1| = n. 
 E2 = {uv ∈ E(Wn) | d(u) =3, d(v) = n}, |E2| = n. 
Therefore there are two types of status edges as given in Table 1. 

σ(u), σ(v) \ uv ∈ E(Wn) (2n – 3, 2n – 3) (n, 2n – 3) 
Number of edges n n 

Table 1: Status edge partition of Wn 
 
Theorem 1. The (a, b)-status index of a wheel graph Wn is  

 ( ) ( ) ( ) ( ), 2 2 3 2 3 2 3 .
a b b aa b

a b nS W n n n n n n n
+   = − + − + −                              (i) 

Proof : By using definition and Table 1, we deduce 
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Corollary 1.1. From observations and by using equation (i), we establish the following 
results. 
(1) ( ) 2
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Theorem 2. The first status Gourava index of a wheel graph Wn is  
 ( ) 3 2

1 6 8 .nSGO W n n= −  

Proof: By definition, we have  
 ( ) ( ) ( ) ( ) ( )[ ]

( )
1

n

n
uv E W

SGO W u v u vσ σ σ σ
∈

= + +∑  

Thus by using Table 1, we deduce  
 ( ) ( ) ( ) ( )[ ]1(W ) 2 3 2 3 2 3 2 3nSGO n n n n n= − + − + − −  

 ( ) ( )[ ]2 3 2 3n n n n n+ + − + −  

 
3 26 8 .n n= −  

 
5. Results for friendship graphs 
A friendship graph Fn, n ≥ 2, is a graph that can be constructed by joining n copies of C3 
with a common vertex. A graph F4 is presented in Figure 2. 

 
Figure 2: Friendship graph F4 

 
 Let Fn be a friendship graph with 2n+1 vertices and 3n edges. By calculation, we 
obtain that there are two types of edges as follows: 

 ( ) ( ) ( ){ }1 | 2 ,
n nn F FE uv E F d u d v= ∈ = =  |E1| = n. 

 ( ) ( ) ( ){ }2 | 2, 2 ,
n nn F FE uv E F d u d v n= ∈ = =  |E2| = 2n. 

Therefore, in Fn, there are two types of status edges as given in Table 2. 

σ(u), σ(v) \ uv ∈ E(Fn) (4n – 2, 4n – 2) (2n, 4n – 2) 
Number of edges n 2n 

Table 2: Status edge partition of Fn 
 
Theorem 3. The (a, b)-status index of a friendship graph Fn is given by 

 ( ) ( ) ( ) ( ) ( ) ( ), 2 4 2 2 2 4 2 2 4 2 .
a b a b b a

a b nS F n n n n n n n
+   = − + − + −                      (ii) 

Proof: From definition and by using Table 2, we obtain  



The (a, b)-Status Index of Graphs  

117 
 

( ) ( ) ( ) ( ) ( )
( )

,

n

a b b a
a b n

uv E F

S F u v u vσ σ σ σ
∈

 = + ∑  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 2 4 2 4 2 4 2 2 2 4 2 2 4 2
a b b a a b b a

n n n n n n n n n n   = − − + − − + − + −     

( ) ( ) ( ) ( ) ( )2 4 2 2 2 4 2 2 4 2 .
a b a b b a

n n n n n n n
+   = − + − + −     

 
Corollary 3.1. From observations and by using equation (ii), we derive the following 
results. 
(1) ( ) 2
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Theorem 4. The first status Gourava index of a friendship graph Fn is  
 ( ) 3 2

1 32 4 4 .nSGO F n n n= − −  

Proof: By definition, we have  
 ( ) ( ) ( ) ( ) ( )[ ]
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Thus by using Table 2, we obtain  
 ( ) ( ) ( ) ( )( )[ ]1 4 2 4 2 4 2 4 2nSGO F n n n n n= − + − + − −  

 ( ) ( )[ ]2 4 2 2 4 2 2n n n n n+ + − + −  

 
3 232 4 4 .n n n= − −  

4. Conclusion    
In this study, the (a, b)-status index and some other status indices for particular values of 
a and b for wheel graphs and friendship graphs are computed. 
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