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Abstract. In this article, we show that the Diophantine eque3* + 67 = z2 has a finite
number of solutions whereas the equati5* + 8” = z2 has no solutions in positive
integersx, y, z.
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1. Introduction

A Diophantine equation is a polynomial equatiort talies only integer values. There are
various forms of diophantine equations studied iffertnt mathematicians [5-7] in the
last couple of decades.

The famous general equatip® + ¢” = z? has many forms. The literature con-
tains a very large number of articles on non-lineach individual equations involving
particular primes and powers of all kinds. In 20&liyarnamani [8] proved that the solu-

tion to the diophantine equation of the fc2* + p” = z%is (x,y,z) = (2k, 1,1 + 2k)
if p = 1 + 2**1 variousauthors [2-4] have investigated equatidnghe formp* + (p +

n)” = z%. Burshtein[1] has considered an equa7* + 10” = z2 of a similar form and
proved that the equation has no solutions in p@sititegers, y, z. Again Burshtein [9-
10] in recent times, has also studied various dioihe equations of the similar form.

In this article, we study the Diophantine equatiohthe form
p* + (p +n)’ = z2 whenn = 3.
We consider two equatioi3* + 6” = z? and5* + 8” = z? with p as 3, 5 respectively.

2. Results
In this section, we find all the solutions3* + 6” = z% and5* + 8” = z?, in positive
integersx, y, z.

Theorem 2.1. The equation
3+ 6" =27 1
has finite solutions in positive integex,y, z.
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Proof: Wheny = 1, we have the first solution as (1,1,3) and this is the only solution
possible a3(3*"1 + 2) cannot be represented as a perfect square foothay value of
X.
Consideringy > 1,

As the left side of (1) is always odd, this ind&sathatz is odd.

As 3% ends in 1,3,7 or %’ ends in 6, anz? ends in 1,5 or 9. For the left side of (1) to
end in 1, 5 or 83* should end in 3 or 9 which indicates tkds either 1(mod 4) or
2(mod 4). Furthermore, considering mod 4 on (1) haee the right side to be 1(mod 4),
and6” to be O(mod 4) for any > 1 and for3* to be 1(mod 4)x should be 2(mod 4).

Replacingx with 4m 4+ 2 in (1), we get

32 4 6¥ = 22 )
Case (i): Consideringy to be even, we have
34m+2 + 62n — ZZ
34m+2 =72 _ 62n — (Z _ 6”)(2 + 6n) (3)

Right side of (3) will be denoted as,
3'=(z-6", 3F=(@z+6"), A<B, A+B=4m+2.
We have, 3% — 34 =2.6" whichis34(3574 — 1) = 2"*132",
As 34 is odd an3?™ — 1 is even,
we have, 3874 _ 1 =pnizn-a
33—A _ 2n+132n—A =1 (4)
As the left side of (4) is divisible by 3, so fdretequation to hold, the power of 3 on the
left side should be 1. Which makes (4) to be
32n—A(33—2n _ 2n+1) =1, (5)
In which, 3" = 1,
S0,4 = 2n,(5) become (382" — 2n+1) = 1,
The only positive solutions to the equation of fibwen,
3*—2Y =1are(1,1) and (2,3). (6)
ThereforeB —2n=1,n+1=1(rB—-2n=2,n+1=3

ConsiderincB —2n =1,n+1 =1, we obtain
n = 0, which indicates théd = 0, B = landm = —71. We don't have any solutions, as
m is not an integer.

ConsiderincB —2n = 2,n+ 1 = 3, we getn = 2, which indicates theA =4,B =6
andm = 2.
Here, we have the second solution as (6, 4, 45).

Case (ii): Considerincy to be odd, we have
34m+2 + 62n+1 — ZZ
627’L+1 — ZZ _ 34m+2 — (Z + 32m+1)(z _ 32m+1) (7)
Here we denote (7) as,
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z +32m*1 = A38 7 _32m+1 = 2C3D A+ C=2n+1,B+D =2n+1.
We have, 2438 — 2630 = 2. 32mHl

2A—133—1 _ 2C—13D—1 — 32m (8)
As 3*™ is odd, for the left side of (8) to be odd, oneoag2?~* and2¢~! should be 1.

Consider24™! = 1, which implies thad = 1.

We rewrite (8) as, ~ 387172m _ pC-l1gD=1-2m _ 4
3D—1—2m(3B—D _ ZC—].) — 1

Here,3°"1"?™ =1, D =1 + 2m.

Then, we have 38D _ 01 =1

According to (6), one set of solutions to the emumbf this form is (1,1)
so,B—D=1andC—-1=1.

We haveC = 2,A =2n—1, as4d = 1 we haven = 1.

AsB+D=2n+1andB—D =1,wegelB=2,D =1andm = 0.

Here, we have thethird solution as (2,3,15).

The other set of solutions is (2,3).

so,B—D=2andC —1=3.

We haveC=4,4=2n—-3, asA=1 we haven=2.As B+D =2n+1and
B—D =2,wegeB = % which is not an integer. Hence, there are notiswls.

Considei2¢~! = 1, which implies thaC = 1.
We rewrite (8) as, 24-13B-1=2m _ 3b=1-2m _ 4
3B-1-2m(pA-1 _ 3D-By — 1
Here,357172™ = 1 B =1+ 2m.
Then we have, 2471 _3D=B -9 (9)
Only solutions to the equation of the form (9) (1,0) and(2,1).

Consideringd — 1 =1 andD — B =0, we have
A=1,B=D,asB+D =2n+1,13=2"2+1
there are no solutions.

which is not an integer, this implies that

Consideringd — 1 =2 andD — B =1, we get
A=3,C=1,as4A+C=2n+1, we haved = 2n, son = %which is not an integer.
Hence, there are no solutions.

So, we have exactly 3 solutions3* + 67 = z%in positive integerx, y, z, the solutions
are (1,1,3), (2,3,15) and (6,4,45).

Theorem 2.2. The equation
5+ 8 =7 (10)
has no solutions in positive intege;y, z.
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Proof: As the left side of (10) is always odd, this indésathat z is odd.
As 5% ends in 58” ends in one among 2,4,6,8 &z*dends in 1,5,9. For the left side of

(10) to end with 1, 5 or 8” should end in 4, 6. F8” to end in 4 or €y should be
even.

As z2 = 1(mod 8) for any odd value of z. For the left sife(10) to be 1(mod 85"

should also b= 1(mod 8) a8” = 0(mod 8). Foi5* to be= 1(mod 8),x should be
even.

As bothx,y are even, we represex = 2m andy = 2n. After replacingx with 2m and
y with 2n in (10), we have
52m + 82n — ZZ
which is, 52M = 22 — 82" = (z — 8™)(z + 8M) (11)
we denote the right side of (11) as,
z—8"=54 z+8"=55 A<B, A+B=2m.
Then5? — 5% yields
5454 —1)=2.8" (12)
As 55574 — 1) is divisible by 5, wherez2 - 8" is not, this indicates th54 = 1.
Therefored = 0 in (12), and hencB = 2m. Then this implies that,
54" _1=2.8" (13)
For all values of m, eith¢5™ — 1 or5™ + 1 is divided by 3, whereas the right side of
(13) cannot be represented as a multiple of 3.ifdies that (13) cannot be true. Hence,
we conclude that there are no positive valuex, y; z, that satisfies (10).

3. Conclusion
In this article, we proved that there are onlytéhi many solutions to the equation

3* + 6” = z? and these solutions has one-one correspondenbeheitsolutions of the
equation3® — 2” = 1 and2* — 3” = 1. Furthermore, the equati5* + 8” = z? has no
solutions in positive integex; y, z.
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