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Abstract. In this article, we show that the Diophantine equation 3� + 6� = �� has a finite 
number of solutions whereas  the equation  5� + 8� = �� has no solutions in positive 
integers �, 
, �. 
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1. Introduction 
A Diophantine equation is a polynomial equation that takes only integer values. There are 
various forms of diophantine equations studied by different mathematicians [5-7] in the 
last couple of decades. 

The famous general equation �� + �
 = �2 has many forms. The literature con-
tains a very large number of articles on non-linear such individual equations involving 
particular primes and powers of all kinds. In 2011, Suvarnamani [8] proved that the solu-
tion to the diophantine equation of the form 2� + �
 = �2 is (�, 
, �) = (2�, 1,1 + 2�) 
if � = 1 + 2���.Variousauthors [2-4] have investigated equations of the form �� + (� +

�)


= �2. Burshtein[1] has considered an equation 7� + 10
 = �2 of a similar form and 

proved that the equation has no solutions in positive integers �, 
, �. Again Burshtein [9-
10] in recent times, has also studied various diophantine equations of the similar form. 
 
In this article, we study the Diophantine equations of the form  

�� + (� + �)


= �2 when � = 3.  

We consider two equations 3� + 6
 = �2 and 5� + 8
 = �2 with � as 3, 5 respectively. 
 
2. Results 
In this section, we find all the solutions to 3� + 6
 = �2 and 5� + 8
 = �2, in positive 
integers �, 
, �. 
 
Theorem 2.1. The equation 
     3� + 6
 = �2           (1)  
has finite solutions in positive integers �, 
, �. 
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Proof: When 
 = 1, we have the first solution as (1,1,3) and this is the only solution 
possible as 3(3��� + 2) cannot be represented as a perfect square for any other value of 
�. 
Considering 
 > 1, 
As the left side of (1) is always odd, this indicates that � is odd. 
As 3� ends in 1,3,7 or 9, 6
 ends in 6, and �2 ends in 1,5 or 9. For the left side of (1) to 
end in 1, 5 or 9, 3� should end in 3 or 9 which indicates that � is either 1(mod 4) or 
2(mod 4). Furthermore, considering mod 4 on (1), we have the right side to be 1(mod 4), 
and 6
 to be 0(mod 4) for any 
 > 1 and for 3� to be 1(mod 4), � should be 2(mod 4). 
 
Replacing � with 4� + 2 in (1), we get 
    34�+2 + 6
 = �2           (2) 

 
Case (i): Considering 
 to be even, we have 
    34�+2 + 62� = �2 
   34�+2 = �2 − 62� = (� − 6 )(� + 6 )          (3) 

Right side of (3) will be denoted as, 
 3! = (� − 6�),         3" = (� + 6�),        ! < ",         ! + " = 4� + 2. 
We have, 3" − 3! = 2 ⋅ 6� which is 3!(3"−! − 1) = 2�+132�. 
As 3% is odd and 3"−! − 1 is even,  
we have,   3"−! − 1 =2�+132�−! 
    3"−! − 2�+132�−! = 1           (4) 

As the left side of (4) is divisible by 3, so for the equation to hold, the power of 3 on the 
left side should be 1. Which makes (4) to be 
    32�−!(3"−2� − 2�+1) = 1,          (5) 

In which, 32�−! = 1. 
So, ! = 2�,(5) becomes (3'�� − 2 ��) = 1. 
The only positive solutions to the equation of the form, 
    3� − 2
 = 1 are (1,1) and (2,3).          (6)  
Therefore, " − 2� = 1, � + 1 = 1 (or) " − 2� = 2, � + 1 = 3 
 
Considering " − 2� = 1, � + 1 = 1,  we obtain 

� = 0, which indicates that ! = 0, " = 1and � =
��

(
. We don’t have any solutions, as 

m is not an integer. 
 
Considering " − 2� = 2, � + 1 = 3, we get � = 2, which indicates that ! = 4, " = 6 
and � = 2.  
Here, we have the second solution as (6, 4, 45). 
 
Case (ii): Considering 
 to be odd, we have 
    34�+2 + 62�+1 = �2 
  62�+1 = �2 − 34�+2 = (� + 32�+1)(� − 32�+1)         (7) 

Here we denote (7) as, 
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� + 3�)�� = 2%3', � − 3�)�� = 2*3+,    ! + , = 2� + 1, " + - = 2� + 1. 
We have,   2!3" − 2,3- = 2 ⋅ 32�+1   
   2!−13"−1 − 2,−13-−1 = 32�           (8) 

As 32� is odd, for the left side of (8) to be odd, one among 2!−1 and 2,−1 should be 1. 
 
Consider  2!−1 = 1, which implies that ! = 1. 
We rewrite (8) as,   3"−1−2� − 2,−13-−1−2� = 1 
   3-−1−2�(3"−- − 2,−1) = 1 
Here, 3-−1−2� = 1, - = 1 + 2�. 
Then, we have  3"−- − 2,−1 = 1 
 
According to (6), one set of solutions to the equation of this form is (1,1) 
so, " − - = 1 and , − 1 = 1.  
We have , = 2, ! = 2� − 1, as ! = 1 we have � = 1. 
As " + - = 2� + 1 and " − - = 1, we get " = 2, - = 1 and � = 0. 
Here, we have the third solution as (2,3,15). 
The other set of solutions is (2,3). 
so, " − - = 2 and , − 1 = 3.  
We have , = 4 , ! = 2� − 3 , as ! = 1  we have � = 2. As " + - = 2� + 1 and 

" − - = 2, we get " =
.

�
, which is not an integer. Hence, there are no solutions. 

 
Consider 2,−1 = 1, which implies that , = 1. 
We rewrite (8) as,  2!−13"−1−2� − 3-−1−2� = 1 
    3"−1−2�(2!−1 − 3-−") = 1 
Here, 3"−1−2� = 1, " = 1 + 2�. 
Then we have,   2!−1 − 3-−" = 1           (9) 

Only solutions to the equation of the form (9) are (1,0) and (2,1). 
 
Considering ! − 1 =1 and - − " =0, we have 

! = 1, " = -, as  " + - = 2� + 1, " =
� ��

�
 which is not an integer, this implies that 

there are no solutions. 
 
Considering ! − 1 =2 and - − " =1, we get 

! = 3, , = 1, as  ! + , = 2� + 1, we have ! = 2�, so � =
/

�
 which is not an integer. 

Hence, there are no solutions. 
 
So, we have exactly 3 solutions to 3� + 6
 = �2 in positive integers �, 
, �, the solutions 
are (1,1,3), (2,3,15) and (6,4,45). 
 
Theorem 2.2. The equation 
     5

�
+ 8
 = �2                     (10)                                     

has no solutions in positive integers �, 
, �. 
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Proof: As the left side of (10) is always odd, this indicates that z is odd. 
As 5� ends in 5, 8� ends in one among 2,4,6,8 and �2 ends in 1,5,9. For the left side of 
(10) to end with 1, 5 or 9, 8� should end in 4, 6. For 8� to end in 4 or 6, 
 should be 
even. 
As �2 ≡ 1(mod 8) for any odd value of z. For the left side of (10) to be 1(mod 8), 5� 
should also be ≡ 1(mod 8) as 8
 ≡ 0(mod 8). For 5�  to be ≡ 1(mod 8), �  should be 
even. 
 
As both �, 
 are even, we represent � = 2� and 
 = 2�. After replacing � with 2� and 

 with 2� in (10), we have     
    5

2�
+ 82� = �2 

  which is, 5
2�

= �2 − 82� = (� − 8�)(� + 8�)                   (11)                                           
we denote the right side of (11) as, 
  � − 8 = 5%,      � + 8 = 5',      ! < ",      ! + " = 2�.  
Then 5" − 5

! yields  
    5!(5"−! − 1) = 2 ⋅ 8                         (12)    

As 5!(5"−! − 1) is divisible by 5, whereas 2 ⋅ 8  is not, this indicates that 5% = 1. 
Therefore ! = 0 in (12), and hence " = 2�. Then this implies that, 
    5

2�
− 1 = 2 ⋅ 8�                     (13)  

For all values of m, either 5) − 1 or 5) + 1 is divided by 3, whereas the right side of 
(13) cannot be represented as a multiple of 3.This implies that (13) cannot be true. Hence, 
we conclude that there are no positive values of �, 
, �, that satisfies (10). 
 
3. Conclusion 
In this article, we proved that there are only finitely many solutions to the equation 
3� + 6
 = �2 and these solutions has one-one correspondence with the solutions of the 
equations3� − 2
 = 1 and 2� − 3
 = 1. Furthermore, the equation 5

�
+ 8
 = �2 has no 

solutions in positive integers �, 
, �. 
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