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Abstract.   In this article we consider the equations  px  +  qy   =  z3  in which  p  ≥  2,  q  
are distinct primes,  z  is a positive integer and the integers  x, y  satisfy  1 ≤  x,y  ≤  2.  
The following  three  cases  are  examined,  namely  x  =  y  =  2,  x  =  y  =  1,  x  =  1  
and  y  = 2,  when  p  ≥  2,  q  are primes.  All the possibilities are determined for 
infinitely many solutions, unique solutions and cases of no solutions. 
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions. 
 
       The famous general equation 

px  +  qy  =  z2 
has many forms.  The literature contains a very large number of articles on non-linear 
such individual equations involving particular primes and powers of all kinds.   
 
       In this article we consider the equations px  +  qy   =  z3  when  p  ≥  2,q  are primes 
and  1 ≤  x,y  ≤  2  are integers.  We investigate the three possibilities   x  =  y  =  2,  x  = y  
=  1,  and  x  =  1,  y  =  2.  For these possibilities we determine the cases of no solutions, 
infinitely many solutions, and unique solutions.  This is done in the following  Sections  
2, 3  and  4,  where each section and the theorems within are all self-contained. 
 
2.  All the solutions of  p2 + q2   =  z3  when  p  ≥  2,q  are distinct primes  
In this section, when  p, q  are distinct odd primes, it will be shown that  p2  +  q2  =  z3 has 
no solutions (Theorem  2.1).  Whereas when  p = 2,  the equation  p2  +  q2   =  z3 has a 
unique solution  (Theorem  2.2).     
 
Theorem  2.1. Let  z  be a positive integer.  If  p,  q  are distinct odd primes, then the 
equation  p2  +  q2  =  z3 has no solutions. 
 
Proof: We shall assume that  p2  +  q2   =  z3 has a solution, and reach a contradiction. 
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Since  p,  q  are distinct odd primes, then by our assumption  z3  is even.  Thus  z  =  2T  
where  T  is an integer.  Whether the prime  p  is of the form  4M  +  3  or of the form  4M 
+ 1  (M an integer),  p2  is of the form  4Q  +  1.  Certainly,  the same is true for any form 
of the prime  q,  and  q2  has the form  4R  +  1.  Hence,  p2  +  q2    =  z3 yields  

p2 + q2 = (4Q + 1) + (4R + 1) = 2(2Q + 2R + 1)  ≠  8T3  =  z3.                              (1) 

 It follows from  (1)  that our assumption is false, and the equation  p2 + q2  =  z3 has no 
solutions when  p, q  are distinct odd primes. 
 
       The proof of Theorem  2.1  is complete.                                   □ 
 
Theorem  2.2.  Let  z  be a positive integer.  If  p = 2  and  q  is an odd prime, then the 
equation  22  +  q2  =  z3  has the unique solution  

                                             22  +  112  =  53.                                                     (2) 
 
Proof:  We shall assume that  22 + q2  =  z3   has more than one solution and reach a 
contradiction. 
 
       The sum  22 + q2  is odd for all primes  q.  Then by our assumption  z3  is odd.  
Denote  z  =  2T  +  1  where  T  is an integer.  The values  T  =  0, 1 are clearly 
impossible, and  hence  T  ≥  2.  Whether  q  =  4N  + 3  or   q  =  4N  + 1  (N  an integer),  
q2  is of the form  4R  + 1.  Hence  z3  is of the form  z3   =  4  +  q2  =  4  +  (4R  + 1)  = 
4(R  +  1)  +  1.  If   T  =  2U  +  1  (U an integer)  is odd, then  z  = 2T  +  1  =  2(2U  +  
1)  +  1  =  4U + 3,  and  z3  is of the form   4V  +  3  which is impossible.  This implies 
that  T  is  not odd, and therefore   T   is even.  Denote   T  =  2G,  where  G  ≥ 1 is an 
integer and  z = 4G  + 1.  Thus  

z3  =  64G3  +  48G2  +  12G  +  1. 

If  q  =  4N  + 1,  then  

z3  =  4 + (16N2 + 8N + 1)  =  4(4N2  +  2N  +  1)  +  1 =  4G(16G2  +  12G  +  3) + 1 

and after simplifications it follows that  G  is not even. 
If  q = 4N  + 3,  then 

z3  =  4  +  (16N2  +  24N  +  9) = 4(4N2  +  6N  +  3) + 1  =  4G(16G2  +  12G + 3) + 1 

and after simplifications it follows that  G  is not even. 
Hence  G  is odd.  Denote  G  =  2M  + 1,  M  ≥ 0  is an integer, and  z  =  8M  +  5.  
 

When  M  = 0,  the values  z  =  5  and  q = 11  yield solution  (2).  We now show 
for all values  1 ≤  M  ≤ 10  or  13  ≤  z  ≤  85  that the difference  z3  –  q2 = 4  is not 
achieved.  
 
            In the following  Table 1,  we consider for each value  M  the largest possible 
prime  q  in order to minimize the even difference  z3  –  q2. 
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Table 1: 

 
M z = 8M + 5 z3 prime  q q2 the difference  z3 – q2 
1 13 2197 43 1849 348 
2 21 9261 89 7921 1340 
3 29 24389 151 22801 1588 
4 37 50653 223 49729 924 
5 45 91125 293 85849 5276 
6 53 148877 383 146689 2188 
7 61 226981 467 218089 8892 
8 69 328509 571 326041 2468 
9 77 456533 673 452929 3604 
10 85 614125 773 597529 16596 

 
In Table  1,  for all values 1  ≤  M  ≤ 10  the differences  z3  –  q2 are even, and each 
difference has at least  3  digits.  If  D  denotes the number of digits of each such  
difference, then   D  ≥  3.  Moreover, the value D  is increasing,  and hence  D = 1  is 
never achieved. Therefore, for all values  M  > 10  with the respective values  q,  it is 
clear and self-evident that the difference  z3  –  q2  =  4  is never attained. 
 

The uniqueness of solution  (2)  follows. 
 

This concludes Theorem  2.2.                                          □ 
 
3.   All the solutions of the equation  21 + q1 = z3  when  q  is prime 
In this section we establish all the solutions of  2  +  q  =  z3  when  q  is an odd prime.  
Moreover, we shall extend this equation to include odd composites.  Hereafter, the odd 
value  A  will represent any odd prime or any odd composite. 
 
       Observe that all odd values  A  are either of the form  4N  +  3  or of the form  4N  + 
1,  and yield primes as well as composites. When  A  =  4N  +  3,  it is shown  in Theorem  
3.1  that   2  +  A  =  z3  has infinitely many solutions.  When  A  =  4N  +  1,  the same 
result is obtained in Theorem  3.2.  
 
Theorem  3.1.   Suppose that   N  >  0  and  M  ≥  1  are integers.  Then, for each and 
every value  M,  there exists a unique value  N  satisfying the equation  

21  +  (4N   +  3)1  =  (4M   +  1)3.                                           (3) 

The equation  21  +  (4N   +  3)1   =  (4M   +  1)3  has infinitely many solutions in which 
4N  +  3  is prime,  and when  4N  + 3  is composite. 
 
Proof:  Since  2  +  (4N  +  3)   =  4(N  +  1)  +  1,  it is then justified to write that   z = 
4M  +  1  in  (3).  From  (3)  after simplifications we obtain 

N   =  16M3  +  12M2   +  3M  – 1.                                         (4) 
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It is clearly seen from  (4)  that every value  N  does not yield a value  M.  However, it 
follows from  (4),  that each and every value  M  ≥  1  determines a unique value  N  
which satisfies  (3). 
 
       The equation  21  +  (4N  +  3)1  =  (4M  +  1)3  has infinitely many solutions. 
 
       This completes the proof of Theorem  3.1.       □ 
 
Remark  3.1.  The values  4N  +  3  represent composites and primes as well.  When  M  
=  1, 2, 3,  the first three solutions of  (3)  are exhibited in the following Table  2. 
 

Table 2: 
 

 Solutions of  (3) N M 4N + 3 
Solution  1 21  +  1231     =   53 30 1 composite 
Solution  2 21  + 7271       =  93 181 2 Prime 
Solution  3 21  + 21951    =  133 548 3 composite 

 
Theorem  3.2.    Suppose that  N  >  0  and  M  ≥  0  are integers.  Then, for each and 
every value  M,  there exists a unique value  N  satisfying the equation   

                  21   +  (4N  +  1)1  =   (4M   +  3)3.                                           (5) 
The equation   21  +  (4N  +  1)1  =  (4M  +  3)3  has infinitely many solutions in which 4N  
+  1  is prime, and when  4N  + 1  is composite. 
 
Proof:  Since  2  +  (4N  +  1)  =  4N  +  3,  it is then justified to write that  z  =  4M  + 3 
in  (5).  From  (5)  after simplifications we have 

N  = 16M3  +  36M2  +  27M  +  6.                                        (6)  

Evidently, each value  N  does not yield a value  M.   But,  (6)  implies that each and 
every value  M  ≥ 0  determines a unique value  N  which satisfies  (5).   
 
       The equation   21  +  (4N  +  1)1  =  (4M  +  3)3   has infinitely many solutions. 
 
       This concludes the proof of Theorem  3.2.        □ 
 
Remark  3.2.  The values 4N  +  1  represent composites as well as primes.  When  M =  
0, 1, 2, 3, 4,  the first five solutions of  (5)  are demonstrated in Table  3. 
 

Table 3: 
 

 Solutions of  (5) N M 4N + 1 
Solution  4 21 + 251        =  33 6 0 composite 
Solution  5 21 + 3411     =  73 85 1 composite 
Solution  6 21 + 13291  =  113 332 2 composite 
Solution  7 21 + 33731  =  153 843 3 Prime 
Solution  8 21 + 68571  =  193 1714 4 Prime 
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Concluding remark.   Theorems 3.1  and  3.2,  and the solutions demonstrated in Tables  
2  and  3  imply that the equation  21  +  A1  =  z3  with odd values  A,  has a unique 
solution for each and every odd value  z  ≥  3.  The above equation has infinitely many 
solutions  when  A  is prime and when  A  is composite. 
 
4.   All the solutions of the equation  21  +  q2   =  z3  when  q  is prime 
In this section we show  (Theorem  4.1)  when  q  is  an odd prime that the equation  2 + 
q2  =  z3  has a unique solution.   
 
Theorem  4.1.   Let  z  be  a  positive  integer.  If   q  is  an  odd  prime,  then the equation   
2  +  q2  =  z3  has 
(a)   No solutions when  q  is of the form  4N  +  3. 
(b)   A unique solution when  q  is of the form  4N  +  1. 
 
Proof:  Observe that all odd primes  q  are either of the form  4N   +  3  or of the form  4N  
+  1  where  N  is an integer.  In both cases  (a)  and  (b),  q2  is of the form  4Q + 1.  
Thus,  2  +  q2  =  4Q  +  3  implying that  z3  is odd.  Since  (4M  +  1)3   

≠   4Q  +  3,  it 
follows that  z  =  4M  +  3  where  M  ≥  0  is an integer,  and  z3  =  (4M  +  3)3.   
 

(a) Suppose that   q  =  4N + 3.  Then we have 

                                               2  +  (4N  +  3)2  =  (4M   +  3)3.                                        (7) 

 
       In the following Table  4,  we consider the first nine primes  q  where  3  ≤  q  ≤  59.   
 

Table 4: 
 

N 4N + 3 = q M min (4M + 3) The difference 
min (4M  + 3)3 – (4N + 3)2 

0 3 0 3          33  –  32         =  18 
1 7 1 7          73  –  72         =  294 
2 11 1 7 73  –  112      =  222 
4 19 2 11 113  –  192  =  970 
5 23 2 11 113  –  232  =  802 
7 31 2 11 113  –  312  =  370 
10 43 3 15  153  –  432   =  1526 
11 47 3 15  153  –  472   =  1166 
14 59 4 19  193  –  592   =  3378 

 
To  prove  our  assertion,  it  certainly suffices to use  the  first  smallest  possible  value  
(4M  +  3)3  which exceeds (4N  +  3)2.  We denote such a value by  min(4M  +  3)3.  The 
following may now be observed from  Table  4:  (i)  As required in  (7),  all differences 
are even, each of which is larger than the value  2.  (ii)  If  D  is the number of digits of 
each such difference,  then  as  N  increases, each value  D  is either equal or larger than 
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its predecessor value  D.  In any case  D  ≥  2.  (iii)  As a consequence of  (i)  and  (ii),  it 
follows that the value  2  in  (7)  is never attained. 
Equation  (7)  has no solutions. 
 
       This completes part  (a).  

 
(b) Suppose that   q  =  4N + 1.  Then we have 

                     2  +  (4N   +  1)2  =  (4M   +   3)3.                                        (8) 
It has already been determined earlier that if  q  =  4N  +  1,  then  q2  is of the  form  4Q  
+  1.  Thus, 2 +  q2   =  4Q  +  3 implying that  z3  is odd.  Since  (4M   +   1)3  

≠  4Q  +  3,  
it follows that  z  must satisfy   z  =  4M  +  3  where   M   ≥  0  is an integer,  and  z3  = 
(4M  +  3)3   justifies  (8).   
 
       An immediate and trivial solution of  (8)  is when  N = 1  and  M = 0,  namely 

                                 2  +  52  =  33.                                                     (9) 
We will now show that solution  (9)  is unique. 
 

In  Table  5  we consider all primes  5 <  q  <  89,  where  min (4M  +  3)3  is the 
first smallest possible value which exceeds  (4N  +  1)2.  
 

Table 5: 
 

N 4N + 1 = q M min (4M  + 3) The difference 
min (4M  +  3)3  –  (4N  +  1)2 

3 13 1 7 73   – 132       =  174 
4 17 1 7 73   – 172       =  54 
7 29 2 11 113  – 292     =  490 
9 37 3 15 153  – 372     =  2006 
10 41 3 15 153  –  412  =  1694 
13 53 3 15 153   – 532    =  566 
15 61 4 19 193  – 612     =  3138 
18 73 4 19 193  –  732    =  1530 

 
It is self-evident from  Table  5  that:  (i)  All differences are even as required, each of 
which is larger than the value 2.  (ii)  If  D  is  the  number  of  digits  of  each such 
difference,  then  D  ≥  2.  (iii)  As a consequence of  (i)  and  (ii),  it follows that the 
value  2  in  (8)  is never attained. 
Equation  (8)  has no solutions. 
 
       This concludes part  (b)  and Theorem  4.1.                                     □ 
 
5.   Conclusion 
We have shown:  (i)  For distinct odd primes  p, q  the equation  p2  +  q2   =  z3   has no 
solutions, whereas when  p = 2,  the equation  22  +  q2   =  z3  has a unique solution. (ii)  
When  21  +  A1   =   z3   with odd values  A,  then for each and every odd value  z there 
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exists a value  A  prime or composite which satisfies the equation.  (iii)  When  q  is 
prime, then the equation  21 + q2  =  z3 has a unique solution. 
 
       Although  Table  1  in Section 2,  and Tables  4, 5  in Section  4  do not constitute a 
formal poof,  nevertheless, the numbers presented in these tables speak for themselves, 
and strongly imply the validity of the statements of  Theorem  2.2  and of Theorem  4.1. 
 
       We remark that to the best of our knowledge, other authors have not considered 
equations of the form  px  +  qy   =   z3.  It is therefore obvious, that there are no references 
on such an equation. 
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