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Abstract. In this article we consider the equatiops + ¢ = Z2 in which p > 2, q
are distinct primes,z is a positive integer and the integexsy satisfy 1< xy < 2.
The following three cases are examined, namely y = 2, x =y = 1, x = 1
and y =2, whenp > 2, g are primes. All the possibilities are determiried

infinitely many solutions, unique solutions andessf no solutions.
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1. Introduction
The field of Diophantine equations is ancient, yvastd no general method exists to
decide whether a given Diophantine equation hasahyions, or how many solutions.

The famous general equation
P+ =7
has many forms. The literature contains a vergeatumber of articles on non-linear
such individual equations involving particular pasnand powers of all kinds.

In this article we consider the equatiphs+ ¢ = Z2 when p > 2q are primes
and 1< xy < 2 areintegers. We investigate the three pititisih x =y = 2, X =y
= 1, andx = 1,y = 2. For these possibilities we determine th&es of no solutions,
infinitely many solutions, and unique solutionshisTis done in the following Sections
2,3 and 4, where each section and the theonétinis are all self-contained.

2. All the solutions of p?+ ¢ = Z when p > 2,q are distinct primes

In this section, wherp, q are distinct odd primes, it will be shown thatt + o
no solutions (Theorem 2.1). Whereas wher 2, the equatiorp® + f =
unique solution (Theorem 2.2).

Z has
has a

z
Theorem 2.1.Let z be a positive integerlf p, q are distinct odd primes, then the
equationp® + ¢ = Z has no solutions.

Proof: We shall assume tha®® + ¢? = Z has a solution, and reach a contradiction.
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Since p, q are distinct odd primes, then by our assumptnis even. Thusz = 2T
where T is an integer. Whether the pringeis of the form M + 3 or of the form M
+1 (M an integer),p? is of the form @ + 1. Certainly, the same is true for any form
of the primeq, and¢® has the form R + 1. Hencep® + ° = Z yields

PP+g’=4Q+1)+(R+1)=2Q+2R+1) # 8T = 7. 1)

It follows from (1) that our assumption is falsend the equatiorp? + g = Z* has no
solutions whenp, g are distinct odd primes.

The proof of Theorem 2.1 is complete. O

Theorem 2.2. Let z be a positive integer. Ip =2 andq is an odd prime, then the
equation 2 + ¢ = 2 has the unique solution

22 17 = 5. (2

Proof: We shall assume that’2 q° = Z has more than one solution and reach a
contradiction.

The sum 2+ ¢f is odd for all primesq. Then by our assumptioZ® is odd.
Denote z = 2T + 1 whereT is an integer. The value§ = 0, 1 are clearly
impossible, and henc&é > 2. Whetherq = 4N +3 or g = 4N +1 (N an integer),
o is of the form R + 1. HenceZ isoftheformZ = 4 +f = 4 + (R +1) =
4R+ 1) + 1. f T =20 + 1 Uaninteger) isodd, them =2T + 1 = 2(& +
1) + 1 = ¥ +3, andZ isof the form ¥ + 3 which is impossible. This implies
that T is not odd, and thereforel is even. DenoteT = 2G, where G > 1 is an
integer andz=4G + 1. Thus

Z = 643 + 483 + 15 + 1.
If g = 4N +1, then
Z=4+AOP+8N+1) = 44 + N + 1) + 1= G(16G> + 15 + 3)+1

and after simplifications it follows thab is not even.
If g=4N + 3, then

Z2=4+ (16F + 2N + 9)=4(AN* + &N + 3)+1 = G(16G* + 1 +3)+ 1
and after simplifications it follows thaB is not even.
Hence G is odd. DenoteG = 2V +1, M >0 is an integer, and = 8V + 5.

When M =0, the valuez = 5 andqg= 11 yield solution (2). We now show
for all values < M <10 or 13< z < 85 that the difference® — o’ = 4 is not
achieved.

In the following Table 1, we consider each valueM the largest possible
prime g in order to minimize the even differenzd— of.

14



On Solutions to the Diophantine Equatiop's+ ¢ = 22 whenp > 2 are Primes and
1< xy< 2 are Integers

Table 1:

M z=8M + 5 z prime q q the difference Z — o
1 13 2191 43 184¢ 34¢€
2 21 9261 89 7921 134(C
3 29 2438¢ 151 2280! 158¢
4 37 5065! 22¢ 4972¢ 924
5 45 9112¢ 29¢ 8584¢ 527¢
6 53 14887 38:¢ 14668¢ 218¢
7 61 22698: 467 21808¢ 889z
8 69 32850¢ 571 32604 246¢
9 77 45653 67:< 45292¢ 3604
10 85 61412! 775 59752¢ 1659¢

In Table 1, for all values K M < 10 the differences?” — ¢ are even, and each
difference has at least 3 digits. B denotes the number of digits of each such
difference, then D > 3. Moreover, the valub is increasing, and hencb =1 is

never achieved. Therefore, for all valud > 10 with the respective valueg, it is
clear and self-evident that the differenfe- g° = 4 is never attained.

The unigueness of solution (2) follows.
This concludes Theorem 2.2. o

3. All the solutions of the equation 2+ " =2 when q is prime

In this section we establish all the solutionsf+ q = Z2 when q is an odd prime.
Moreover, we shall extend this equation to inclode composites. Hereafter, the odd
value A will represent any odd prime or any odd composite

Observe that all odd values are either of the form Nl + 3 or of the form M +
1, and yield primes as well as composites. WAer 4N + 3, itis shown in Theorem
3.1 that 2 +A = Z has infinitely many solutions. WheA = 4N + 1, the same
result is obtained in Theorem 3.2.

Theorem 3.1. Suppose thatN > 0 andM > 1 are integers. Then, for each and

every valueM, there exists a unique vall¢ satisfying the equation

2 + (N + 3} = (4 + 1} (3)
The equation 2+ (4 + 3} = (4 + 1} has infinitely many solutions in which
AN + 3 is prime, and whenN4+ 3 is composite.
Proof: Since 2 + (W + 3) = 4N + 1) + 1, itis then justified to write that =
aM + 1 in (3). From (3) after simplificatiomge obtain

N = 16v° + 1M? + 3V —1. (4)
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It is clearly seen from (4) that every valld does not yield a valuél. However, it
follows from (4), that each and every valld > 1 determines a unique valud
which satisfies (3).
The equation 2+ (4N + 3) = (4 + 1)} has infinitely many solutions.

This completes the proof of Theorem 3.1. o

Remark 3.1. The values M + 3 represent composites and primes as wehe\M
= 1, 2, 3, the first three solutions of (3) awrhibited in the following Table 2.

Table 2:
Solutions of (3) N M 4N + 3
Solution 1 | 2" + 128" = 5° 30 1 compositi
Solution 2 | 2" +727 = ¢ 181 2 Prime
Solution 3 | 2" +2198 = 17 54¢ 3 compositi

every valueM, there exists a unique vall¢ satisfying the equation

54+ (AN + 1} = (a1 + 3. (5)
The equation 2+ (4N + 1) = (4 + 3} has infinitely many solutions in whiciN4
+ 1 is prime, and whenN4 + 1 is composite.

Theorem 3.2. Suppose thatN > 0 andM > 0 are integers. Then, for each and

Proof: Since 2 + (Wl + 1) = N + 3, itis then justified to write that = 4M + 3
in (5). From (5) after simplifications we have

N =16v° + 36V + 2™ + 6. (6)

Evidently, each valueN does not yield a valueM. But, (6) implies that each and
every valueM >0 determines a unique vallé¢ which satisfies (5).

The equation 2+ (4 + 1) = (4 + 3¥ has infinitely many solutions.
This concludes the proof of Theorem 3.2. o

Remark 3.2. The values Bl + 1 represent composites as well as primesen\i =
0, 1, 2, 3, 4, the first five solutions of (5)ealemonstrated in Table 3.

Table 3:
Solutions of 5) N M IN +1
Solution 4 | 2" +288 = 3 6 0 compositi
Solution 5| 2'+341 = 7 85 1 composit
Solution 6 | 2" +132¢ = 17 332 2 composit
Solution 7 | 2" +337¢ = 1F° 84: 3 Prime
Solution 8 | 2'+ 6857 = 1¢° 171¢ 4 Prime

16



On Solutions to the Diophantine Equatiop's+ ¢ = 22 whenp > 2 are Primes and
1< xy< 2 are Integers

Concluding remark. Theorems 3.1 and 3.2, and the solutions denairgtin Tables

2 and 3 imply that the equation* 2 A' = Z with odd valuesA, has a unique
solution for each and every odd valze> 3. The above equation has infinitely many
solutions whenA is prime and wherA is composite.

4. All the solutions of the equation 2+ ¢ = Z2 when q is prime
In this section we show (Theorem 4.1) whgns an odd prime that the equation 2 +
o’ = Z has a unique solution.

Theorem 4.1. Let z be a positive integer. Ify is an odd prime, then the equation
2 +¢° = Zhas

(a) No solutions wherg is of the form Bl + 3.

(b) A unique solution whery is of the form W + 1.

Proof: Observe that all odd primeg are either of the form Nl + 3 or of the form M
+ 1 whereN is an integer. In both casgs) and (b), ¢ is of the form @ + 1.
Thus, 2 +¢° = 4 + 3 implying thatZ is odd. Since M + 1f # 4Q + 3, it
follows thatz = 44 + 3 whereM > 0 is an integer, and® = (4 + 3Y.

(a) Suppose thatqg = AN + 3. Then we have
2(4N + 3F = (41 + 3. (7

In the following Table 4, we consider fivet nine primesq where 3< q < 59.

Table 4:
N | 4N+3=q | M | min(4M + 3) The difference
min (4M + 3F — (AN + 3Y
0 3 0 3 F-3F = 1€
1 7 1 7 -7 =29
2 11 1 7 7 - 117 = 22
4 19 2 11 11° - 19 = 97(
5 23 2 11 11° - 23 = 80:
7 31 2 11 11° - 31 = 37(
10 43 3 15 15° - 43 = 152¢
11 47 3 15 15° - 477 = 116¢
14 59 4 19 1¢° - 59° = 337¢

To prove our assertion, it certainly suffitesise the first smallest possible value
(4M + 3§ which exceeds (4 + 3F. We denote such a value by @k + 3. The

following may now be observed from Table 4: Ay required in (7), all differences
are even, each of which is larger than the value(ii If D is the number of digits of
each such difference, then &k increases, each valug is either equal or larger than
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its predecessor valuB. In any caseD > 2. (iii) As a consequence of (i) and (im,
follows that the value 2 in (7) is never at&in
Equation (7) has no solutions.

This completes paig).

(b) Suppose thatqg = 4N+ 1. Then we have
2+ +1f = (a1 + 3J. ®)
It has already been determined earlier thag it 4N + 1, thend? is of the form @
+ 1. Thus, 2 +¢° = 4Q + 3implying thatZ is odd. Since ( + 1} +# 4Q + 3,
it follows that z must satisfy z = 4 + 3 where M > 0 is an integer, and® =
(4M + 3} justifies (8).

An immediate and trivial solution of (8 whenN =1 andM =0, namely
2 ¥5 3 (9)
We will now show that solution (9) is unique.

In Table 5 we consider all primes 5¢c< 89, where miidM + 3% is the
first smallest possible value which exceedsl & 1¥.

Table 5:
N |4N+1=q | M | min(4M +3) The difference
min (4M + 3 — (N + 1Y

3 13 1 7 7?-13 = 17«

4 17 1 7 7?17 = 5¢

7 29 2 11 11°-29° = 49(

9 37 3 15 15° - 37 = 200¢

1C 41 3 15 15° - 41° = 169

13 53 3 15 15° - 53 = 56€

15 61 4 19 19°-61> = 313¢

18 73 4 19 19° - 73 = 153C

It is self-evident from Table 5 that: (i) Adifferences are even as required, each of
which is larger than the value 2. (i) B is the number of digits of each such
difference, thenD > 2. (iii) As a consequence of (i) and (i}, follows that the

value 2 in (8) is never attained.
Equation (8) has no solutions.

This concludes pafb) and Theorem 4.1. o
5. Conclusion
We have shown: (i) For distinct odd primegsq the equationp’ + g° = Z has no

solutions, whereas whep = 2, the equation 2+ ¢ = Z has a unique solution. (i)
When 2 + A' = Z with odd valuesA, then for each and every odd valaehere
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exists a valueA prime or composite which satisfies the equatidii) When q is
prime, then the equation' 2% = Z has a unique solution.

Although Table 1 in Section 2, and Tabkg, 5 in Section 4 do not constitute a
formal poof, nevertheless, the numbers presemdtease tables speak for themselves,
and strongly imply the validity of the statementsihheorem 2.2 and of Theorem 4.1.

We remark that to the best of our knowledgher authors have not considered
equations of the fornp* + ¢ = Z. Itis therefore obvious, that there are no esfees
on such an equation.
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