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Abstract. This research described the development of a new mixed cubature rule for 
evaluation of surface integrals over rectangular domains. Taking the linear combination 
of Clenshaw-Curtis 5- point rule and Gauss-Legendre 3-point rule ( each rule is of same 
precision i.e. precision 5) in two dimensions the mixed cubature rule of higher precision 
was formed (i.e. precision 7). This method is iterative in nature and relies on the function 
values at uneven spaced points on the rectangle of integration. Also as supplement, an 
adaptive cubature algorithm is designed in order to reinforce our mixed cubature rule. 
With the illustration of numerical examples this mixed cubature rule is turned out to be 
more powerful when compared with the constituents standard cubature procedures both 
in adaptive and non-adaptive environment. 
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1. Introduction  
Of the front, in numerical analysis, after classical quadrature method (Newton Cotes), for 
evaluation of real definite integrals, Gaussian Quadrature [1,2,3,4,5] method and 
Clenshaw-Curtis quadrature method [2,12] are remarkable benchmarks. Clenshaw-Curtis 
quadrature integrates the function over the zeros of the Chebyshev polynomial where as 
the Gaussian quadrature integrates a function over the zeros of several orthogonal 
polynomials (Gauss-Legendre over the roots of the Legendre polynomial, Gauss Hermite 
over the roots of the Hermite polynomial etc.). As we know an n-point Gaussian rule is of 
precision 2n − 1, where as the precision of an n-point Clenshaw-Curtis rule is n. In 
general, Gauss type rule is of higher precision than that of Clenshaw-Curtis type when 
same abscissa are used. 

Two names came to the very front, Das and Pradhan [6], the men who came forth and 
brilliantly brought out a new quadrature method known as “Mixed Quadrature” in 1996. 
The mixed quadrature rule involves construction of symmetric quadrature rule of higher 
precision as a linear/ convex combination of two other rules of equal lower precision. At 
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first they formed this rule by combining Simpson’s 
1

3
rule and Gauss-Legendre 2-point 

rule in one variable, where each rule is of precision 3. The new quadrature rule not only 
found to be effective with higher precision (i.e., precision 5) but also showed its 
superiority on the constituent rules with the evaluation of some real definite integrals 
numerically.  

Down the years many authors [7-10] were marvelous in evaluating real definite 
integrals and also integrals of analytic functions in one dimension applying mixed 
quadrature rule. But the process did not stop here. Again there was a question, what 
happens, if an integrand takes a sharp pick within the nodes of the quadrature rule? Can 
we still get a better approximation over the prescribed interval using mixed quadrature 
process? 

Surprisingly a much better answer with a much better quadrature process eventuated 
by Dash and Das. For the first time they capitalized an adaptive integration process 
[12,13,14] by fixing up a termination criterion to strengthen up the mixed quadrature rule 
for approximate evaluation of real definite integrals in one dimension. 
  With functions of two or more variables not only the function can cause the 

integral to be difficult, but also the region over which we integrate. A region of 2ℝ  can 
have any shape. Even if the function is easy to integrate, if the region is complex enough, 
the integral will still be difficult to evaluate. It is then flexible enough to take into account 
only rectangular regions. Integrating the functions over rectangle, the error incurred by 
making approximation to the integrals can be bounded or estimated approximately.  

Let us assume we are given a function f(x, y) defined on a closed and bounded 
region D. Because D is bounded, it can be enclosed in a rectangle R. i.e.,  

Integrals of the type 
    ( ) ( ),

R
I f f x y dxdy= ∫∫          (1.1) 

can be evaluated with in a closed rectangle [ ] [ ], ,a b c d×  i.e., 

( ) ( ) ( ), ,
b d

R
a c

I f f x y dxdy f x y dxdy= =∫∫ ∫ ∫        (1.2) 

This closed rectangle [ ] [ ], ,a b c d×  can be transformed into a standard 2 square 

[ ] [ ]1,1 1,1− × −  as an integrating domain i.e. 

( ) ( )
1 1

1 1

, ,
b d

a c

f x y dxdy f x y dxdy
− −

=∫ ∫ ∫ ∫                                (1.3) 

The integrals of the type (1.3) have been successfully approximated by some authors 
[11,15]  using mixed quadrature rule.  

Once again a question strikes the mind, is it possible to find an integration 
scheme which can treat the ill behavior of the integrand in (1.3) delicately over the 
domain [a, b] × [c, d]. Means if f (x, y), besides continuous, is irregular or badly shaped 
then can we make a smooth or productive approach in order to accomplish a much better 
approximation to the integrand? Once again the answer is favorable.  

In this paper, Patra, Das and Dash are first to revitalize the mixed quadrature 
process with the outfit of adaptive quadrature algorithm in two dimensions. Keeping in 
view the improvement of precision. At first we have formulate a mixed cubature rule of 
precision seven by blending Clenshaw-Curtis 5- point rule and Gauss-Legendre 3-point 
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rule in two dimensions each is of precision five. The theoretical dominance of this 
cubature rule over its constituent rules is established through error analysis.  Then we 
have designed an adaptive quadrature algorithm taking the mixed cubature rule

( )
5 3

2
CC GLR f  as the base rule. This adaptive integration scheme not only outstanding in 

giving better approximation with a specified tolerance but also it helps to evaluate f (x, y) 
very few times. Literally, we can say the number of steps the integrand requires to reach 
the accuracy is lessen up.  
One can see  

(i) The analytical comparison of the mixed cubature rule with their constituent 
rules (using non adaptive scheme) given in table-1.  

(ii)  The analytical comparison of the mixed cubature rule with the mixed 

cubature of Simpson’s
1

3
rd rule and Gauss-Legendre 2-point rule ( )( )3 2

2
S GLR f  

developed in a previous paper[15] (using non adaptive scheme) given in 
table-2. 
 

(iii)  The analytical comparison of the mixed cubature rule with their constituent 
rules (using adaptive scheme) given in table-3 

(iv) The analytical comparison of the mixed cubature rule with the mixed 

cubature rule ( )( )3 2

2
S GLR f  (using adaptive scheme) given in table-4. 

 
2. Formulation of mixed cubature rule of precision seven in two dimensions 
The Clenshaw-Curtis 5-point rule in one dimension is 

( ) ( ) ( ) ( ) ( ) ( )
5

1

1

1 1 1
1 8 12 0 8 1

15 2 2
CCI f f x dx R f f f f f f

−

    = ≈ = − + − + + +    
    

∫
              

(2.1) 

So we can reformulate Clenshaw-Curtis 5-point rule in two dimensions as  

  

( ) ( ) ( )
5

1 1
2

1 1

, CCI f f x y dxdy R f
− −

= ≈∫ ∫  

          ( ) ( ) ( )2

1 1 1
1, 1 8 1, 12 1,0 8 1, 1,1

2 215
f f f f f

    = − − + − − + − + − + −    
    

 

                                                                                                                                                                                                                                                           

2

8 1 1 1 1 1 1 1
, 1 8 , 12 ,0 8 , ,1

2 2 2 2 2 2 215
f f f f f
          + − − + − − + − + − + −          
          

 

               ( ) ( ) ( )2

12 1 1
0, 1 8 0, 12 0,0 8 0, 0,1

2 215
f f f f f

    + − + − + + +    
    

 

               
2

8 1 1 1 1 1 1 1
, 1 8 , 12 ,0 8 , ,1

2 2 2 2 2 2 215
f f f f f

          + − + − + + +          
          

 

   
( ) ( ) ( )2

1 1 1
1, 1 8 1, 12 1,0 8 1, 1,1

2 215
f f f f f

    + − + − + + +    
    

                   (2.2) 

and the Gauss-Legendre 3-point rule in one dimension is 
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( ) ( ) ( ) ( )
3

1

1

1 3 3
5 8 0 5

9 5 5GLI f f x dx R f f f f
−

    
= ≈ = − + +       

     
∫        (2.3) 

the reformulation of Gauss-Legendre 3-point rule in two dimensions gives 

     ( ) ( ) ( )
3

1 1
2

1 1

, GLI f f x y dxdy R f
− −

= ≈∫ ∫  

 
2

5 3 3 3 3 3
5 , 8 ,0 5 ,

5 5 5 5 59
f f f

      
= − − + − + −           

       

 

   
( )2

8 3 3
5 0, 8 0,0 5 0,

5 59
f f f

    
+ − + +       

     

 

   
2

5 3 3 3 3 3
5 , 8 ,0 5 ,

5 5 5 5 59
f f f

      
+ − + +           

       

                                (2.4) 

Let ( )
5

2
CCE f  and ( )

3

2
GLE f  denote the error terms in approximating the integral ( )I f  by 

the rules (2.2) and (2.4) respectively. Let 
  ( ) ( ) ( )

5 5

2 2
CC CCI f R f E f= +           (2.5) 

  ( ) ( ) ( )
3 3

2 2
GL GLI f R f E f= +           (2.6) 

Using Maclaurin’s expansion of functions in two variables we get from equations (2.5) 
and (2.6) we get 

( ) ( ) ( ) ( ) ( )
5

2
6,0 0,6 8,0 0,8

1 1
0,0 0,0 0,0 0,0

18900 907200CCE f f f f f   = + + +      

                  
( ) ( )6,2 2,6

1
0,0 0,0

113400
f f + + +  ⋯                                   (2.7) 

( ) ( ) ( ) ( ) ( )
3

2
6,0 0,6 8,0 0,8

1 11
0,0 0,0 0,0 0,0

7875 2835000GLE f f f f f   = + + +     

                 
( ) ( )6,2 2,6

1
0,0 0,0

47250
f f + + +  ⋯           (2.8) 

This shows that the rules (2.2) and (2.4) are of precision 5. 

 Now multiplying the equations (2.5) and (2.6) by 
1

5
and 

1

12
− respectively, and 

then adding the resulting equations we obtain 

 ( ) ( ) ( ) ( ) ( )
5 3 5 3

2 2 2 21 1
12 5 12 5

7 7CC GL CC GLI f R f R f E f E f   = − + −   
 

or ( ) ( ) ( )
5 3 5 3

2 2
CC GL CC GLI f R f E f= +                                    (2.9) 

where ( ) ( ) ( )
5 3 5 3

2 2 21
12 5

7CC GL CC GLR f R f R f = − 
                    (2.10) 

This is the desired mixed cubature rule of precision seven for approximate evaluation of 

( )I f . The truncation error generated in this approximation is given by 

 ( ) ( ) ( )
5 3 5 3

2 2 21
12 5

7CC GL CC GLE f E f E f = − 
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  ( ) ( )8,0 0,8
1

0,0 0,0
1134000

f f = − + +  ⋯                                (2.11) 

The rule (2.10) may be called as a mixed type rule as it is constructed from two different 
types of rules of the same precision (i.e. precision 5) 
 
3. Error analysis 
An asymptotic error estimate and error bound of the rule (2.10) are given in theorems 
(3.1) and (3.2) respectively. 
 
Theorem 3.1. Let ( ),f x y be a continuously differentiable function in the closed 

rectangle[ ] [ ]1,1 1,1− × − . Then the error ( )
5 3

2
CC GLE f  associated with the rule ( )

5 3

2
CC GLR f  

is given by 

( ) ( ) ( )
5 3

2
8,0 0,8

1
0,0 0,0

1134000CC GLE f f f ≈ +   

Proof: Follows immediately from equation (2.11). 
 
Theorem 3.2. The bound of the truncation error ( ) ( ) ( )

5 3 5 3

2 2
CC GL CC GLE f I f R f= −  is given 

by 

 ( )
5 3

2
2 1 2 111025CC GL

M
E f ξ ξ η η≤ − × −  

( ) ( )7,0 0,7
1 1
1 1

max ,0 0,
x
y

M f x f y
− ≤ ≤
− ≤ ≤

 = + 
 

Proof: We have from (2.7) and (2.8) 

 ( ) ( ) ( ) ( ) [ ] [ ]
5

2
6,0 2 2 0,6 2 2 2 2

1
, , , , 1,1 1,1

18900CCE f f fξ η ξ η ξ η ≈ + ∈ − × −   

 ( ) ( ) ( ) ( ) [ ] [ ]
3

2
6,0 1 1 0,6 1 1 1 1

1
, , , , 1,1 1,1

7875GLE f f fξ η ξ η ξ η ≈ + ∈ − × −   

We know 

 ( ) ( ) ( )
5 3 5 3

2 2 21
12 5

7CC GL CC GLE f E f E f = − 
 

  ( ) ( ){ } ( ) ( ){ }6,0 2 0,6 2 6,0 1 0,6 1
1 1 1

,0 0, ,0 0,
7 1575 1575

f f f fξ η ξ η ≈ + − +  
 

  ( ) ( ){ } ( ) ( ){ }6,0 2 0,6 2 6,0 1 0,6 1
1

,0 0, ,0 0,
11025

f f f fξ η ξ η = + − +   

 

 ( ) ( ) ( )
2 2

1 1

7,0 0,7 1 2 1 2
1

,0 0, assuming  and 
11025

f x f y dxdy
η ξ

η ξ
ξ ξ η η = + < < ∫ ∫  

so  ( ) ( ) ( )
2 2

5

1 1

2
7,0 0,7

1
,0 0,

11025CC GLE f f x f y dxdy
η ξ

η ξ

 ≈ + ∫ ∫  
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  ( ) ( )
2 2

1 1

7,0 0,7
1

,0 0,
11025

f x f y dxdy
η ξ

η ξ

 ≤ + ∫ ∫  

and so   ( )
2 2

5 3

1 1

2 1

11025CC GLE f M dxdy
η ξ

η ξ
≤ ∫ ∫   

where   ( ) ( )7,0 0,7
1 1
1 1

max ,0 0,
x
y

M f x f y
− ≤ ≤
− ≤ ≤

 = +   

     ( ) ( )2 1 2 111025

M ξ ξ η η= − × −  

which gives only a theoretical error bound as ( )1 1ξ η−  and ( )2 2ξ η− are unknown points 

in [ ] [ ]1,1 1,1− × − . It shows that the error in the approximation will be less if the points 

( ) ( )2 2 1 1, , ,ξ η ξ η get closed to each other. 

 

Corollary 3.1. The error bound for the truncation error ( )
5 3

2
CC GLE f is given by  

 ( )
5 3

2 4

11025CC GL
M

E f ≤  

Proof: We know from theorem (3.2) that 

 ( ) ( ) ( ) ( ) ( ) [ ] [ ]
5 3

2
2 1 2 1 2 2 1 1, , , , 1,1 1,1

11025CC GL
M

E f ξ ξ η η ξ η ξ η≤ − × − ∈ − × −  

 where ( ) ( )7,0 0,7
1 1
1 1

max ,0 0,
x
y

M f x f y
− ≤ ≤
− ≤ ≤

 = +   

choosing ( )2 1 2ξ ξ− ≤  and ( )2 1 2η η− ≤   

we get ( )
5 3

2 4

11025CC GL
M

E f ≤  

 
4. Adaptive cubature algorithm for evaluation of surface integrals 
To evaluate surface integrals over any rectangle [ ] [ ]{ }, ,a b c d× using adaptive cubature 

scheme, we adopt the following four steps algorithm. 
Input: Function [ ] [ ]: , ,f a b c d× →ℝ and the prescribed toleranceε . 

Output: An approximation ( )Q f  to the integral ( ) ( ),
b d

a c

I f f x y dxdy= ∫ ∫  such that 

( ) ( )Q f I f ε− ≤  

Step-1: The mixed cubature rule ( )
5 3

2
CC GLR f  is applied over the rectangle [ ] [ ], ,a b c d×  

having corner points ( ) ( ) ( ) ( ), , , , , ,anda c b c b d a d  to approximate the surface integral

( ) ( ),
b d

a c

I f f x y dxdy= ∫ ∫ . The approximated value is denoted by [ ] [ ]( )5 3

2
, ,CC GL a b c dR f × . 
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Step-2: The rectangle of integration [ ] [ ], ,a b c d× is split into four equal pieces of 

rectangles 1 2 3, ,A A A and 4A  having corner points( ) ( ) ( ) ( ){ }1 1 2 2, , , , , , ,a c m c m m a m , 

( ) ( ) ( ) ( ){ }1 2 1 2, , , , , , , ,m c b c b m m m ( )( ) ( ) ( ){ }1 2 2 1, , , , , ,m m b m b d m d and ( ) ( )( ) ( ){ }2 1 2 1, , , , , ,a m m m m d a d  

respectively, where 1 2

a b
m

+=  and 2 2

c d
m

+= . 

 
The mixed cubature rule ( )

5 3

2
CC GLR f  is applied over each small rectangle to approximate 

the surface integrals( ) ( )
1 2

1 ,
m m

a c

I f f x y dxdy= ∫ ∫ , ( ) ( )
2

1

2 ,
mb

m c

I f f x y dxdy= ∫ ∫ , ( ) ( )
1 2

3 ,
b d

m m

I f f x y dxdy= ∫ ∫

and ( ) ( )
1

2

4 ,
m d

a m

I f f x y dxdy= ∫ ∫  respectively. The approximated values are denoted by

[ ] [ ]( )5 3 1 2

2
, ,CC GL a m c mR f ×

, [ ] [ ]( )5 3 1 2

2
, ,CC GL m b c mR f × , [ ] [ ]( )5 3 1 2

2
, ,CC GL m b m dR f ×

 and [ ] [ ]( )5 3 1 2

2
, ,CC GL a m m dR f ×  

respectively.  

Step-3: [ ] [ ]( )5 3 1 2

2
, ,CC GL a m c mR f × [ ] [ ]( )5 3 1 2

2
, ,CC GL m b c mR f ×+ [ ] [ ]( )5 3 1 2

2
, ,CC GL m b m dR f ×+

[ ] [ ]( )5 3 1 2

2
, ,CC GL a m m dR f ×+  is compared with [ ] [ ]( )5 3

2
, ,CC GL a b c dR f ×  to estimate the error in  

[ ] [ ]( )5 3 1 2

2
, ,CC GL a m c mR f × [ ] [ ]( )5 3 1 2

2
, ,CC GL m b c mR f ×+ [ ] [ ]( )5 3 1 2

2
, ,CC GL m b m dR f ×+ [ ] [ ]( )5 3 1 2

2
, ,CC GL a m m dR f ×+

 
.           

  Step 4: If the ( )estimated error termination criterion
2

ε≤  then [ ] [ ]( )5 3 1 2

2
, ,CC GL a m c mR f ×

[ ] [ ]( )5 3 1 2

2
, ,CC GL m b c mR f ×+ [ ] [ ]( )5 3 1 2

2
, ,CC GL m b m dR f ×+ [ ] [ ]( )5 3 1 2

2
, ,CC GL a m m dR f ×+ is accepted as an 

approximation to the surface integral( ) ( ),
b d

a c

I f f x y dxdy= ∫ ∫ . Otherwise the same procedure 

is applied to each of the four rectangles allowing each piece of rectangles a tolerance
2

ε
. 

If the termination criterion is not satisfied on one or more of the rectangles, then those 
rectangles must be further split into four sub-rectangles and the entire process is repeated. 
When the process stops, the addition of all accepted values yields the desired 
approximate value ( )Q f  to the surface integral ( )I f  such that ( ) ( )Q f I f ε− ≤ .

 N.B: In this algorithm we can use any cubature rule to evaluate surface integrals in 
adaptive scheme. 



Pritikanta Patra,  Debasish Das and Rajani Ballav Dash 

36 
 

5. Numerical verification 

For the numerical verification of the mixed cubature rule ( )( )5 3

2
CC GLR f , the 

following surface integrals are considered 

Table 1: Comparative study of the cubature/ mixed Cubature rule for approximation 
o f  some surface integrals in non-adaptive scheme 
Integrals Exact Value 

( )( )I f  
Approximate Value ( )( )Q f  

( )
5

2
CCR f  ( )

3

2
GLR f  ( )

5 3

2
CC GLR f  

1 1

1 1

x ye dxdy+

− −
∫ ∫  

 
5.524391382167 

 
5.5242644124 

 
5.5248367316 

 
5.5243935083 

( )

1 1

2
0 0 1

x
dxdy

xy +∫ ∫  
 

0.3068528194 
 
0.3068544528 

 
0.3068569362 

 
 0.30685267902 

( )2 1
3 3

0 0

sin x y dxdy+∫ ∫

 

 
1.381737122 

 
1.3811660279 

 
1.380779084 

 
1.3814424161 

( )2 21 1

1 1

x y
e dxdy

− +

− −
∫ ∫  

 
2.2309851414041 

 
2.2380657547 

 
2.2460405304 

 
2.2323694866 

 
Table 2:  Comparative study of two mixed cubature rules for approximation o f  
surface integrals (as same as table-1) in non-adaptive scheme 
Integrals Exact Value 

( )( )I f  
Approximate Value ( )( )Q f  

( )
3 2

2
S GLR f  ( )

5 3

2
CC GLR f  

1 1

1 1

x ye dxdy+

− −
∫ ∫  

 
5.524391382167 

 
5.524654155705 

 
5.5243935083 

( )

1 1

2
0 0 1

x
dxdy

xy +∫ ∫  
 

0.3068528194 
 
0.3068460735304 

 
 0.30685267902 

( )2 1
3 3

0 0

sin x y dxdy+∫ ∫

 

 
1.381737122 

 
1.38267107252405 

 
1.3814424161 

( )2 21 1

1 1

x y
e dxdy

− +

− −
∫ ∫  

 
2.2309851414041 

 
2.22897496086442 

 
2.2323694866 
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Table 3:  Comparative study of the cubature/ mixed cubature rule for approximation 
of surface integrals (as same as table-1) using adaptive scheme 
Integrals Approximate Value ( )( )Q f  

( )
5

2
CCR f  # 

Steps ( )
3

2
GLR f  

# 
Steps ( )

5 3

2
CC GLR f  

# 
Steps 

1 1

1 1

x ye dxdy+

− −
∫ ∫  

 
5.524391365409 

 
09 

 
5.524391374787 

 
17 

 
5.524391382204 

 
05 

( )

1 1

2
0 0 1

x
dxdy

xy +∫ ∫

 

 
0.306852820224 

 
05 

 
0.306852819844 

 
13 

 
0.306852818188 

 
01 

( )21
3 3

00

sin x y dxdy+∫∫

 

 
1.381737145515 

 
29 

 
1.381737129753 

 
37 

 
1.381737082031 

 
13 

( )2 21 1

1 1

x y
e dxdy

− +

− −
∫ ∫

 

 
2.23098514039 

 
21 

 
2.230985139001 

 
21 

 
2.23098514139 

 
21 

 
Table 4:  Comparative study of two mixed cubature rules for approximation o f  
surface integrals (as same as table-1) using adaptive scheme 

Integrals Approximate Value ( )( )Q f  

( )
3 2

2
S GLR f  # 

Steps 
( )

5 3

2
CC GLR f  # 

Steps 
1 1

1 1

x ye dxdy+

− −
∫ ∫  

 
5.5243913863996 

 
17 

 
5.524391382204 

 
05 

( )

1 1

2
0 0 1

x
dxdy

xy +∫ ∫  
 
0.3068528189525 

 
05 

 
0.306852818188 

 
01 

( )2 1
3 3

0 0

sin x y dxdy+∫ ∫  
 
1.38173712269338 

 
29 

 
1.381737082031 

 
13 

( )2 21 1

1 1

x y
e dxdy

− +

− −
∫ ∫  

 
2.23098514273695 

 
21 

 
2.23098514139 

 
21 

 
Here the prescribed tolerance ε=0.000001 
# Steps: Number of steps 
All the computations are done using ‘C’ program. 
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Observation 

In Table-1&2, we observe that the results of the new mixed cubature rule ( )( )5 3

2
CC GLR f

are more accurate than its constituent rules. On comparison, also we see that our mixed 

cubature rule returns much better results than the mixed cubature of Simpson’s
1

3
rd rule 

and Gauss-Legendre 2-point rule ( )( )3 2

2
S GLR f . 

  In Table-3&4, we evaluate the same test integrals given in the table-1 using the 
new mixed cubature rule in adaptive scheme. We see that in evaluation of each test 
integral the number of steps used to achieve the prescribed tolerance declines in case of 

the mixed cubature rule ( )( )5 3

2
CC GLR f .  

6. Conclusion 

Basing on the observation we conclude, the mixed cubature rule ( )( )5 3

2
CC GLR f  is not only 

effective in comparison to the corresponding constituent cubature rules ( )
5

2
CCR f ,

( )
3

2
GLR f and the mixed cubature rule ( )( )3 2

2
S GLR f in non-adaptive environment but also 

it is much more potential and impressive in adaptive environment so far the number of 
steps and accuracy are concerned. Therefore, in scientific computations one must prefer 
the mixed cubature rule to its constituent rules and other mixed cubature rule in adaptive 
mode. 
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