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Abstract. This research described the development of a nexedncubature rule for
evaluation of surface integrals over rectangulanaios. Taking the linear combination
of Clenshaw-Curtis 5- point rule and Gauss-Leger@dpeint rule ( each rule is of same
precision i.e. precision 5) in two dimensions thizad cubature rule of higher precision
was formed (i.e. precision 7). This method is tigeain nature and relies on the function
values at uneven spaced points on the rectangistagiration. Also as supplement, an
adaptive cubature algorithm is designed in orderetoforce our mixed cubature rule.
With the illustration of numerical examples thisxet cubature rule is turned out to be
more powerful when compared with the constituetdsdard cubature procedures both
in adaptive and non-adaptive environment.
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1. Introduction

Of the front, in numerical analysis, after claskmaadrature method (Newton Cotes), for
evaluation of real definite integrals, Gaussian @ature [1,2,3,4,5] method and
Clenshaw-Curtis quadrature method [2,12] are reatdekbenchmarks. Clenshaw-Curtis
guadrature integrates the function over the zefdekeoChebyshev polynomial where as
the Gaussian quadrature integrates a function twerzeros of several orthogonal
polynomials (Gauss-Legendre over the roots of thgehdre polynomial, Gauss Hermite
over the roots of the Hermite polynomial etc.).we know am-point Gaussian rule is of
precision &2 — 1, where as the precision of arpoint Clenshaw-Curtis rule in. In
general, Gauss type rule is of higher precisiom tteat of Clenshaw-Curtis type when
same abscissa are used.

Two names came to the very front, Das and Praddlathe men who came forth and
brilliantly brought out a new quadrature methodwnas “Mixed Quadrature” in 1996.
The mixed quadrature rule involves constructiosyfmetric quadrature rule of higher
precision as a linear/ convex combination of twioeotrules of equal lower precision. At
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first they formed this rule by combining Simpsonésule and Gauss-Legendre 2-point

rule in one variable, where each rule is of precis3. The new quadrature rule not only
found to be effective with higher precision (i.@recision 5) but also showed its
superiority on the constituent rules with the ewa#ibn of some real definite integrals
numerically.

Down the years many authors [7-10] were marvelougvaluating real definite
integrals and also integrals of analytic functiansone dimension applying mixed
guadrature rule. But the process did not stop h&gain there was a question, what
happens, if an integrand takes a sharp pick witténnodes of the quadrature rule? Can
we still get a better approximation over the priésat interval using mixed quadrature
process?

Surprisingly a much better answer with a much beftedrature process eventuated
by Dash and Das. For the first time they capitdlizen adaptive integration process
[12,13,14] by fixing up a termination criterion strengthen up the mixed quadrature rule
for approximate evaluation of real definite intdgria one dimension.

With functions of two or more variables not orthe function can cause the

integral to be difficult, but also the region owenich we integrate. A region dk? can
have any shape. Even if the function is easy tgiate, if the region is complex enough,
the integral will still be difficult to evaluatet is then flexible enough to take into account
only rectangular regions. Integrating the functionsr rectangle, the error incurred by
making approximation to the integrals can be bodrateestimated approximately.

Let us assume we are given a functfioq y) defined on a closed and bounded
regionD. Becausé is bounded, it can be enclosed in a rectaRgliee.,

Integrals of the type

I(f):JJRf(x,y)dxdy (1.1)
can be evaluated with in a closed rectanglgx[c,d] i-e.,

'(f)=HRf(x,y)dxdy:ﬁf(x,y)dxdy (1.2)

This closed rectanglgab]x[c,d] can be transformed into a standard 2 square
[-1]x[-1] as an integrating domain i.e.

bd 11
[[T(xy)ddy=[ [ f(xy)dxdy (1.3
ac -1-1
The integrals of the type (1.3) have been succlgsdpproximated by some authors
[11,15] using mixed quadrature rule.

Once again a question strikes the mind, is it pdssio find an integration
scheme which can treat the ill behavior of the graed in (1.3) delicately over the
domain B, b] x [c, d]. Means iff (X, y), besides continuous, is irregular or badly shaped
then can we make a smooth or productive approaohdier to accomplish a much better
approximation to the integrand? Once again the ansxfavorable.

In this paper, Patra, Das and Dash are first titaleae the mixed quadrature
process with the outfit of adaptive quadrature allgm in two dimensions. Keeping in
view the improvement of precision. At first we haeemulate a mixed cubature rule of
precision seven by blending Clenshaw-Curtis 5- fpnife and Gauss-Legendre 3-point
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rule in two dimensions each is of precision fivéheTtheoretical dominance of this
cubature rule over its constituent rules is essaild through error analysisThen we
have designed an adaptive quadrature algorithmndakkhe mixed cubature rule

RécsGL3(f) as the base rule. This adaptive integration scheshenly outstanding in

giving better approximation with a specified tolera but also it helps to evaludté, y)
very few times. Literally, we can say the numbesigfps the integrand requires to reach
the accuracy is lessen up.
One can see
® The analytical comparison of the mixed cubature with their constituent
rules (using non adaptive scheme) given in table-1.
(i) The analytical comparison of the mixed cubaturee rulith the mixed

cubature of Simpson—ésrd rule and Gauss-Legendre 2-point ( oL, (f ))

developed in a previous paper[15] (using non adapsicheme) given in
table-2.

(i) The analytical comparison of the mixed cubature mith their constituent
rules (using adaptive scheme) given in table-3
(iv) The analytical comparison of the mixed cubaturee rulith the mixed

cubature ruléRiGL2 ( f )) (using adaptive scheme) given in table-4.

2. Formulation of mixed cubaturerule of precision seven in two dimensions
The Clenshaw-Curtis 5-point rule in one dimensn i

1
1 1 1
I(f)=] f(x)dx= f)=—| f(-1)+8f| —= [+12f (Q+ & | —= |+ f 21
()= 0= ()= 4 rvor [ Jraz (9 L]er0)| @)
So we can reformulate Clenshaw-Curtis 5-point imifevo dimensions as

= ] [ 1)y =Rec (1)

-1-1

:é{f(-l,—1)+8f[—1,—%}lz( 1,0+ $[ \/EJ f(- 14

Sl

(
o gmon s 1o
+li2f(\/1_—1j+8f(\/— }j’fl”[ ] [ J’] ﬂ

V2

and the Gauss-Legendre 3-point rule in one dimerisio

NE V2
1 1 1
+E[f(1 1)+8f( ]+ 17 ( 1,9+ 8 17 ﬁ (2.2)
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(0)=] f(x)dszG,_s(f)=é{5f(—\/§J+8f (0)+ 5 [Eﬂ 23)

-1
the reformulation of Gauss-Legendre 3-point ruleania dimensions gives

:H f(x y)dxdy=R§ ()

-1-1

oG =)
+982{5f{0,—\/§J+ 8f (0,9 + 5( O‘EH
+9‘Z{5f(\/§,—\/§]+8f [ﬁ,o} 5f [\E’\Eﬂ (2.4)

Let 2. (f) and 3 (f) denote the error terms in approximating the irteg( f) b
the rules (2.2) and (2.4) respectively. Let
I(f)=Ré (f)+E&, (f) (2.5)

I(f)=RE, (f)+E&,(f) (2.6)
Using Maclaurin’s expansion of functions in two iadies we get from equations (2.5)
and (2.6) we get

Eéc, (f) J:f6000+f06(0C) 90720£ 80(0()+fo€(09)]

+M(£fez 0,0+ f56(0,9 ]+ (2.7)
&, (f) 7875[f6000+f06(oQ 283500£f 40.9+f, 9{09)]

47250[f62 (0,0)+ f,6(0,9]+- (2.8)

This shows that the rules (2.2) and (2.4) are e€igion 5.

Now multiplying the equations (2.5) and (2.6) é)and —%2 respectively, and
then adding the resulting equations we obtain

(1) =2[12R (1) - &, ()] + 5[ 12 (1) - &, (1)]
or I(f):RCZlCSGL3(f)+ECZCSGL3(f) (2.9)
where RéCSGLS(f):%[RF%CS(f)—SFéLs(f)J (2.10)

This is the desired mixed cubature rule of precisieven for approximate evaluation of
I (f) The truncation error generated in this approxiomais given by

B, (1) =2 (1265, (1) - &, ()]
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- 113400([ fa,0(0.0)+ fog(0.9 ]+ (2.11)

The rule (2.10) may be called as a mixed type aslé is constructed from two different
types of rules of the same precision (i.e. preni&p

3. Error analysis
An asymptotic error estimate and error bound ofrrtile (2.10) are given in theorems
(3.1) and (3.2) respectively.

Theorem 3.1. Let f(x,y) be a continuously differentiable function in theosgd

rectangl¢-1,1x[~1,. Then the erroE&c g ( f) associated with the rulB&c g ()
is given by

2 _ 1
‘ECC5GL3 (f )‘ = MA[ fg0(0,0)+ fo (0, Q:H
Proof: Follows immediately from equation (2.11).

Theorem 3.2. The bound of the truncation err@.q, (f)=1(f)-RégaL,(f) is given
by

M
‘E(%CsGL3 (f )‘ 571102452 = &[xjme=n|
M = max

—l<x<1

[ f7,o(><,® + f0,7( 0&’)]
-I<y<1
Proof: We have from (2.7) and (2.8)

Eécs( 1890(J:f60 Ea2)* Fodl€an 9] (€27 J0[-13x[-1]
&, (f 7875[ 6.0 51”71)+f0651’7ﬂ &y1)0[-13x[-11

We know

EécSGL3(f):%[12E§Cs(f)_5EGZ'—3(f)J
~1[ 1 1
=2 E5{ fo,0(£2:0)+ fo,e(oﬂz)} Eéf 6d€20+  of 0n )}}
=$5[{ fo.0(€20)* fod( 0779} {6 d€29+ 1 o0f 0 )} |

12¢2
11(1)251 I[fm (x,0)+ fo7(0,y) |dxdy (assuming;<&, and,<s )
h 1
1 1262
o) ‘EECSGL( )‘ 11025_” f7,o(x,0)+f0'7(0,y)]dxdy
1"(1
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11025I ”[fm x,0) + fo(0,y) ] oxay

ULy,

1
and so ‘EécsGLs(f)‘smM,{g{dxdy

h =
where M _@3;(1[f7y0(x,q + fo.7( O,y)]‘
-Isy<1

11024 1)x(72=1m)
which gives only a theoretical error bound(dg-7,) and (&, -7,) are unknown points

in [-1,x[-1. It shows that the error in the approximation Vol less if the points
(&.1) (€1.171) get closed to each other.

Corollary 3.1. The error bound for the truncation errEéCSGL3 (f)is given by

4M
Eecon (1)< 11025

Proof: We know from theorem (3.2) that
M
‘EéCSGL3 (f )‘ Sm(fz ‘51)x(’72"71)|’ (€272 (Exn)O[-13x[- 1}
[ f7.0(x.0+ fo O,y)]

where M = max

—l<x<1

-1<y<1

choosing|(&, =&)< 2 and|(r7, —/n)|< 2
4M

11025

we get‘ECZ;CSGL3 (f )‘ <

4. Adaptive cubature algorithm for evaluation of surfaceintegrals
To evaluate surface integrals over any rectar@@eb]x[c,d]} using adaptive cubature

scheme, we adopt the following four steps algorithm
Input: Function f :[a,b] x[c,d] ~ R and the prescribed tolerance

Output: An approximation Q(f) to the integral | ( f ” x,y)dxdy such that

ac
Q(f)-1(f)=e
Step-1: The mixed cubature rul&Z.q (f) is applied over the rectangle,b]x|[c,d]
having corner points(a,c),(b,c),(b.d)and(ad) to approximate the surface integral

bd . .
f):“ f (x, ) dxdly - The approximated value is denoted@gSGLS ( f[a,b]x[c,d]) .
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Step-2: The rectangle of integratimﬁa,b]x[c,d] is split into four equal pieces of
rectanglesy, A,, A;andA, having corner poin@a, c).(m.c),(m.m,) (a ,mz)} ,

{(m.c).(bc) (bimy) (my mz)} {(m_L my) (b,my) (b,d) (my d)} and{(a,m,),(m;,m,)(m..d) (a )}
c+d

respectively, wheren =2 — andmz

(a,d) (m.d) (b.d)

(a,m:) () (0-102)

(a,c) (mic) (b.c)
The mixed cubature ruleéc oL, (f) is applied over each small rectangle to approxémat

the surface integra}ls(f H X, y) dxcly | jj X, y)dxdy 1, ” X, y) dxdy

and |4(f):rﬁf (x,y) dxcly respectively. The apprOX|mated values are dendigd
am

Recios(fampiemi ) Recsots(mtpfom ) Reci (fmspima) 319 Recata(fampimal)
respectively.

Step-3: RCZICSGL3 ( f[a,ml]x[c,mz]) +RéCSGL3 ( f[ml,b]x[c,mz]) +RCZCSG'-3(f[ml!b]X[mz’d])

+RécseL3(f[am]x[m2, d]) is compared with RéC5GL3(f[a,b]><[c, d]) to estimate the error in

F%CSGL3(f[a,ml]x[c,mz]) +R(2?CSGL3(f[ml,b]x[c,mz]) +RCZCSGL3(f[ml,b]x[mz,d]) +R(2?C5GL3(f[a,ml]x[mz,d]) :

Step 4: If the |estimated err¢sg( termination criterif then R%CSGLg(f[a,mI]X[c,mz])
+RC2CSGL3 ( f[ml,b]x[c,mz]) +|%2C56L3( f[ml,b]X[mz,d]) +R(23C5GL3 ( f[a,ml]X[mz,d] ) is acceptEd as an

bd
approximation to the surface integ|r(a+ )= J‘ j f (x,y)dxdy- Otherwise the same procedure

ac
. . . . £
is applied to each of the four rectangles alloweéagh piece of rectangles a toIeragce

If the termination criterion is not satisfied oneoar more of the rectangles, then those
rectangles must be further split into four sub-aagtes and the entire process is repeated.
When the process stops, the addition of all accdeptalues yields the desired

approximate valugy(t) to the surface integral(f) such thallQ( f)-1 (f)| <¢

N.B: In this algorithm we can use any cubature maleevaluate surface integrals in
adaptive scheme.
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5. Numerical erification
For the numerical verification of the mixed Cubatmule(RCZCSGLS(f)), the

following surface integrals are considered

Table 1: Comparative study of theubature/mixed Cubaturerule for approximation
of some surface integrals in non-adapseheme

|ntegralf ExaCE Valu)‘ Approximate Va|udQ( f ))

H(f)

R, (f) Ré., (f) Réc.aL, ()

11
J‘ IeX+dedy 5.524391382167 | 5.5242644124| 55248367316 | 5.5243935083
-1-1
J’ J‘ dxdy 0.3068528194 0.3068544528 | 0.3068569362 |0.30685267902
oo(xy +1
J Isin( [+ y3)dxdy 1.38173712 1.3811660279 | 1.380779084 | 1.3814424161
00
11 (e,
J'J'e y 2.23098514140412.2380657547 | 2.2460405304 | 2.2323694866
-1-1

Table2: Comparative study of two mixedubaturerules for approximation o f
surface integrals (as same as table-1) in non-adagitheme

Integrals Exacz Valu)1 Approximate Value(Q( f ))

1(f) > 7
RgGLZ(f) RCCSGLg(f)

11

J Iex+ydxdy 5.524391382167 | 5.524654155705 | 5.5243935083

-1-1

J I  dxdy 0.3068528194  [0.3068460735304 |0.30685267902

00 xy+1

J jsin( /x3+y3)dxdy 1.38173712 1.38267107252405 | 13814424161

00

11

j je dxdy 2.23098514140412.22897496086442 | 22323694866

-1-1
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Table 3: Comparative study of theubature/mixed cubaturerule for approximation
of surface integrals (as same as table-1) usingt@dsscheme

Integral: Approximate Valug(Q( f ))
2 +H 2 +H 2 +H
I'-‘,CCS ( f ) Steps RGLg ( f ) Steps RCCsGLs ( f ) Steps
11
I I e*Vdxdy ~ [p.524391365409 | 09 5524391374787 | 17 5.524391382204 |05
-1-1
J .[ dy 0.306852820224 | 05 0.306852819844 | 13 0.306852818188 |01
00 xy+1
21
Hsir(,/x?+y3 by [1.381737145515 | 29 1.381737129753 | 37 1.381737082031 (13
00
11 —(X2+y2)
I I e dxdy2-23098514039 | 21 2.230985139001 | 21 2.23098514139 |21
-1-1
Table4: Comparative study of two mixedubaturerules for approximation o f
surface integrals (as same as table-1) using agagtheme
Integrals Approximate Value(Q( f ))
2 +H 2 +H
f f
R%GLz( ) Steps RCCSG"3( ) Steps
11
[ [ &Ydxdy 5.5243913863996 17 5.524391382204 |05
-1-1
j .[ 0.3068528189525 05 0.306852818188 01
00 xy+1
| Isin(«/x3+y3)dxdy 1.38173712269338 | 29 1.381737082031 (13
00
11 —(x2 +y2)
[[e dx 2.23098514273695 | 21 2.23098514139 21
-1-1

Here the prescribed toleranse0.000001

# Steps: Numbeof steps
All the computationsredone usindC’ program.
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Observation
In Table-1&2, we observe that the results of the neixed cubature ruIaéF\’(z;CSG,_3 (f ))

are more accurate than its constituent rules. @mpaoison, also we see that our mixed

1

cubature rule returns much better results thanrixed cubature of Simpsonésrd rule

and Gauss-Legendre 2-point r(JRiG,_Z (f )) .

In Table-3&4, we evaluate the same test integyalsn in the table-1 using the
new mixed cubature rule in adaptive scheme. Wetlsaein evaluation of each test
integral the number of steps used to achieve tascpbed tolerance declines in case of

the mixed cubature ru(é?éCSGL3 (f )) :

6. Conclusion
Basing on the observation we conclude, the mixédituwe rule€ RéCSG,_B (f )) is not only

effective in comparison to the corresponding comstit cubature ruleé%cs(f),

&st (f)and the mixed cubature ru(eRiG,_2 (f )) in non-adaptive environment but also

it is much more potential and impressive in adapgwnvironment so far the number of
steps and accuracy are concerned. Therefore, entifiti computations one must prefer
the mixed cubature rule to its constituent ruled atiher mixed cubature rule in adaptive
mode.
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