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Abstract.   In this article, we investigate the solutions of the Diophantine equations px  + 
(p  +  1)y  +  (p  +  2)z   =  M2  for primes p  ≥  2 when 1 ≤  x, y, z  ≤  2.  We  establish :  (i)  
When  p  =  2  and  x  =  y  =  z  =  1,  the equation has a unique solution.  (ii)  When p  = 
4N + 1  and 1  ≤  x, y, z  ≤  2,  the equations have no solutions.  (iii)  When  p  =  4N  + 3 
and  x  =  y  =  z  =  1, the equation has infinitely many solutions.  (iv)  When 3 ≤  p ≤ 199  
and   x  =  1,  y  =  z  =  2,    the equation has exactly one solution.  (v)  In all other cases  
1 ≤  x, y, z  ≤  2  which are not mentioned above, the equations have no solutions. 
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions. 
       The famous general equation 

px  +  qy  =  z2 
has many forms.  The literature contains a very large number of articles on non-linear 
such individual equations involving particular primes and powers of all kinds.  
       In this asticle, we extend the above equation, and consider  px  +  (p  +  1)y  +  (p  + 2)z  

=  M2  for primes  p  ≥  2,  integers  x,  y,  z  where 1 ≤  x, y, z  ≤  2.  The value  M  is a 
positive integer.  We employ our new method which uses the last digits of certain 
powers.  We establish the solutions for all values  x, y, z  above.  As in such equations, 
cases of infinitely many solutions, no solution cases and unique solutions are determined.  
       The primes  p = 2,  p  = 4N + 1  and  p =  4N  + 3  are respectively discussed in 
Sections  2, 3  and  4.  All the theorems and the cases within are self-contained. 
 
2.   All the solutions of  px  + (p + 1)y + (p  + 2)z  = M2  when  p = 2,  1  ≤  x, y, z  ≤  2 
In this section all the solutions of equation  2x  +  3y  +  4z  =  M2  are determined.  
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Theorem 2.1.  Let  1  ≤  x, y, z  ≤  2.  Then the equation  2x  +  3y  +  4z  =  M2  has a 
unique solution when  x  =  y  =  z  =  1.  In all other cases, the equation has no solutions. 
 
Proof: When  1 ≤  x, y, z  ≤  2,  the eight cases of  2x  +  3y  +  4z  =  M2  are listed below.  
(1)          21 + 31 + 41 = 32      =  M2. 
(2)          21 + 31 + 42 = 21  ≠  M2. 
(3)          21 + 32 + 41 = 15  ≠  M2. 
(4)          22 + 31 + 41 = 11  ≠  M2. 
(5)          21 + 32 + 42 = 27  ≠  M2. 
(6)          22 + 31 + 42 = 23  ≠  M2. 
(7)          22 + 32 + 41 = 17  ≠  M2. 
(8)          22 + 32 + 42 = 29  ≠  M2. 
 
       It follows that case  (1)  when  x  =  y  =  z  =  1  yields a solution for which  M  =  3, 
whereas in all other cases  (2) – (8)  the equation has no solutions as asserted. 
 
       This completes the proof of Theorem 2.1.                                □  
 
3.   All the solutions of  px  + (p + 1)y + (p + 2)z  =  M2  when  p =  4N + 1,  1 ≤  x, y, z ≤ 2 
Here we consider  px  + (p  + 1)y + (p +  2)z  =  M2 for all primes of the form  p =  4N + 1, 
when  1 ≤  x, y, z ≤  2.  We establish in Theorem 3.1  that the equations have no solutions. 
 
Theorem  3.1.  Let  1 ≤  x, y, z  ≤  2.  If  p =  4N + 1,  no solutions exist for  px  + (p + 1)y  
+  (p  +  2)z  =  M2. 
 
Proof:  When 1 ≤  x, y, z  ≤ 2  and  p  = 4N + 1 is prime, eight cases exist: 
(1)     (4N  +  1)1  +  (4N  +  2)1  +  (4N  +  3)1    =  M2.  
(2)    (4N  +  1)1  +  (4N  +  2)1  +  (4N  +  3)2    =  M2.  
(3)    (4N  +  1)1  +  (4N  +  2)2  +  (4N  +  3)1  =  M2.  
(4)    (4N  +  1)2  +  (4N  +  2)1  +  (4N  +  3)1    =  M2.  
(5)    (4N  +  1)1  +  (4N  +  2)2  +  (4N  +  3)2  =  M2.  
(6)    (4N  +  1)2  +  (4N  +  2)1  +  (4N  +  3)2  =  M2.  
(7)    (4N  +  1)2  +  (4N  +  2)2  +  (4N  +  3)1  =  M2.  
(8)    (4N  +  1)2  +  (4N  +  2)2  +  (4N  +  3)2  =  M2.  
 
Each of these cases is considered separately, and is self-contained. 
 
(1)   The case  (4N  + 1)1  +  (4N  +  2)1  +  (4N  +  3)1  =  M2.  
        The left side of the equation yields 

(4N  + 1)  +  (4N  +  2)  +  (4N  +  3)  =  12N  +  6  =  6(2N  +  1). 

The prime  2  in the factor  6  has an odd exponent equal to  1.  Since  (2N  +  1)  is odd, it 
follows that  6(2N  +  1)  is not a square. 
       The equation  (4N  +  1)1  +  (4N  +  2)1  +  (4N  +  3)1  =  M2  has no solutions. 
 
(2)   The case  (4N  + 1)1 +  (4N  +  2)1  +  (4N  +  3)2   =  M2. 
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       The left side of the equation yields  

 (4N  +  1) + (4N  +  2) + (16N2  + 24N  + 9)  =  4(4N2  + 8N  + 3). 

If the product  4(4N2  +  8N  +  3)  equals a square  M2,  then (4N2 + 8N + 3)  must satisfy  

                                                           4N2 +  8N + 3  =  T2.    (1) 

       Consider the even square  (2N  + 2)2  =  4N2  +  8N  +  4  =  Q2.  If for some value  N,  
there exists a value  T satisfying  (1),  we have 

Q2 – T2  =  (4N2 +  8N  +  4)  –  (4N2  +  8N  +  3)  =  1 

which is impossible since no two squares differ by  1.  Hence  (1)  is false. 
       The equation  (4N  +  1)1  +  (4N  +  2)1  +  (4N  +  3)2   =  M2  has no solutions. 
 
(3)   The case  (4N  +  1)1  +  (4N  +  2)2  +  (4N  +  3)1   =  M2. 
        The left side of the equation yields 

             (4N  + 1) + (16N2 + 16N  +  4) + (4N  + 3)  =  8(2N2 + 3N  + 1).             (2) 

We shall assume that  8(2N2 + 3N  + 1)  =  M2  and reach a contradiction.  Since  M2  is 
even, denote   M  =  2T  where  T  is an integer and  M2  =  4T2.  From  (2)  we then obtain 

                                                2(2N2 + 3N  + 1)  =  T2.                                           (3)           
If  N  is even, then  2  with an odd exponent equal to 1 and (2N2 + 3N + 1) being odd 
imply that  (3)  is impossible.  Therefore by our assumption  N  is odd.  Denote  N  =  2m  
+  1  where  m  is an integer.  From  (3)  we obtain  

T2 = 2(2N2 + 3N + 1) = 2(2(2m + 1)2 + 3(2m + 1) + 1) = 4(4m2 + 7m + 3)       (4) 

 where  in  (4)  it follows that  (4m2 + 7m  +  3)  =  R2.   

Consider the following two consecutive squares  A2  =  (2m + 1)2  and  (A + 1)2  =  
(2m  + 2)2.  The first square yields  (2m + 1)2 = 4m2 + 4m + 1,  whereas the second square 
yields  (2m + 2)2 = 4m2 + 8m + 4.  Then we have  

A2 = 4m2 + 4m + 1 < 4m2 + 7m + 3 < 4m2 + 8m + 4  =  (A + 1)2              (5) 

which clearly implies that  (4m2 + 7m  +  3)  ≠  R2  since the squares on the left and right 
of   (5)  are two consecutive squares.  Our assumption is therefore false. 
        The equation  (4N + 1)1 + (4N + 2)2 + (4N + 3)1   = M2  has no solutions. 
 
(4)  The case  (4N + 1)2  + (4N  + 2)1 + (4N + 3)1   =  M2. 
       The left side of the equation yields   

(16N2  + 8N + 1) + (4N + 2) + (4N + 3)  =  2(8N2 + 8N + 3). 

The prime  2  has an odd exponent equal to  1.  Since  (8N2 + 8N + 3)  is always odd, 
therefore  2(8N2 + 8N + 3)  is not a square. 
       The equation  (4N + 1)2  +  (4N  + 2)1 + (4N  + 3)1   = M2   has no solutions. 
 
(5)  The case  (4N + 1)1 + (4N + 2)2 + (4N  +  3)2    =  M2. 
       The left side of the equation yields  
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(4N  + 1) + (16N2   + 16N + 4) + (16N2  + 24N + 9)  = 2(16N2 + 22N + 7). 

The prime  2  has an odd exponent equal to  1.  Since  (16N2  +  22N  +  7)  is always odd, 
hence  2(16N2  +  22N  +  7)  is not a square. 
       The equation  (4N + 1)1 + (4N + 2)2 + (4N + 3)2   = M2  has no solutions. 
 
(6)  The case   (4N + 1)2 + (4N + 2)1 + (4N + 3)2   =  M2. 
       The left side of the equation yields   

     (16N2  + 8N + 1) + (4N  + 2) + (16N2  + 24N  + 9)  =  4(8N2 + 9N + 3).      (6) 

We shall assume that for some value   N,  4(8N2 + 9N + 3) = M2  and reach a 
contradiction. Since  M2  is even, denote  M  =  2T  where  T  is an integer and  M2  =  4T2.  
Thus from (6)  we have 

                                                    8N2 + 9N + 3 = T2.                                                        (7) 

       Suppose that  N  is even.   
Then  T2  is odd.  One could easily verify that each cycle of five consecutive even values  
N  =  2, 4, 6, 8, 10, … ,   yields five respective values  T2  which end in the digits  3, 7, 5, 
7, 3.  An odd square  T2  cannot end in the digits  3  and  7.  Therefore  we  shall consider  
only  the  case  in which  N  ends in the digit  6.  Denote by  N   =  10K  +  6  all the 
integers whose last digit is equal to  6,  where   K  ≥  0  is an integer.  From  (7)  we 
obtain  

         8(10K + 6)2 + 9(10K + 6) + 3 =  5(160K2 + 210K + 69)  =  T2.              (8) 

In  (8),  the prime  5  has an odd exponent equal to  1.  Since  5	∤ (160K2 + 210K + 69),  it 
follows that  5(160K2 + 210K + 69)  ≠  T2  and  (8)  is false when  N  is even.  
         Suppose that  N  is odd. 
Then  T2  is even.  It is clearly seen that each cycle of five consecutive odd values  N =  1, 
3, 5, 7, 9, … ,  yields five respective values  T2  which end in the digits  0, 2, 8, 8, 2.  An 
even square   T2  cannot end in the digits  2  and 8.  Hence, we shall consider only the 
case in which  N  ends in the digit  1.  Denote by  N  =  10K  +  1  all integers whose last 
digit is equal to  1,  where   K  ≥  0  is an integer.  From   (7)  we have  

      8(10K + 1)2 + 9(10K + 1) + 3 = 10(80K2 + 25K + 2)  =  T2.              (9) 

In  (9)  10  =  21	∙	51,  where the prime 5 has an odd exponent equal to  1,  and  5	∤ (80K2 +  
25K  + 2).  Therefore, when  N  is odd, then 8N2 + 9N + 3 ≠ T2  and  (9)  is false. 
 
        We have shown that no value  N  exists which satisfies the equation  (4N  + 1)2 +  
(4N + 2)1 + (4N + 3)2   = M2.  This contradicts our assumption.  
       The equation  (4N + 1)2 + (4N + 2)1 + (4N + 3)2   =  M2  has no solutions. 
 
(7)  The case   (4N + 1)2 + (4N + 2)2 + (4N + 3)1  =  M2. 
       The left side of the equation yields  

  (16N2  + 8N + 1) + (16N2  + 16N + 4) + (4N + 3)  =  4(8N2 + 7N + 2).          (10) 
We shall assume that for some value  N, 4(8N2 + 7N + 2) = M2  and reach a contradiction.  
Since  M2  is even, denote  M  =  2T  where  T  is an integer and  M2  =  4T2.  Hence from 
(10)  we obtain 
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                                     8N2 + 7N + 2 =  T2.                                           (11) 

We shall consider two cases, namely  N  is even and  N  is odd. 
       Suppose that  N  is even. 
Then  T2  is even.  It is easily verified that each cycle of five consecutive even values  N  
=  2, 4, 6, 8, 10, … ,  yields five respective values  T2  which end in the digits  8, 8, 2, 0, 
2.  An even square  T2  cannot end in the digits  8  and  2.  Therefore we shall consider 
only the case in which  N  ends in the digit  8.  Denote by  N  =  10K  +  8  all the integers 
whose last digit is equal to  8,  where  K  ≥  0  is an integer.  From  (11)  we have 

  8(10K + 8)2 + 7(10K + 8) + 2 = 5(160K2 + 270K + 114) =  T2.              (12) 

In  (12),  the prime  5  has an odd exponent equal to  1.  Since  5		∤ (160K2 + 270K + 114),  
it follows that  5(160K2 + 270K + 114)   ≠  T2  and  (12)  is false when  N  is even. 
       Suppose that  N  is odd. 
Then  T2  is odd.  One can easily see that each cycle of five consecutive odd values  N  = 
1, 3, 5, 7, 9, … ,  yields five respective values  T2  which end in the digits  7, 5, 7, 3, 3.  
An odd square  T2  does not end in the digits  7  and  3.  Hence, we shall consider only the 
case in which N  ends in the digit  3.  Denote by  N = 10K + 3  all the integers whose last 
digit is equal to  3, where  K  ≥  0  is an integer.  From  (11)  we then obtain 

   8(10K + 3)2 + 7(10K + 3) + 2  =  5(160K2 + 110K  + 19)  =  T2.                (13) 

In  (13),  the prime  5  has an odd exponent equal to  1.  Since  5	∤ (160K2 + 110K + 19),  
it follows that   5(160K2  + 110K + 19)  ≠  T2  and   (13)  is impossible when  N  is odd. 
 
       We have shown that no value  N  exists which satisfies the equation  (4N + 1)2 +  (4N 
+ 2)2 + (4N + 3)1  =  M2.  This contradicts our assumption.  
       The equation  (4N  + 1)2  + (4N  + 2)2 +  (4N  + 3)1   =  M2  has no solutions. 
 
(8)  The case  (4N  +  1)2 + (4N + 2)2 + (4N  + 3)2  =  M2. 
       The left side of the equation yields  

(16N2  +  8N  + 1) + (16N2  + 16N  + 4) + (16N2   + 24N  +  9)  =  2(24N2 + 24N  + 7). 

The prime  2  has an odd exponent equal to  1.  Since  (24N2  +  24N  +  7)  is always odd, 
it follows that  2(24N2  +  24N  +  7)  is not a square.  
       The equation  (4N  + 1)2  +  (4N  +  2)2  +  (4N  + 3)2   =  M2  has no solutions. 
 
       The proof of Theorem  3.1  is complete.                                  □ 
 
Remark 3.1.   It is worthy of remark that   p  =  4N  +  1  is prime was not used at all in 
the proofs of the eight cases.  Therefore, the results obtained in Theorem  3.1  are valid 
for all primes of the form  4N  + 1  as well as for all composites of this form. 
 
 
4.   Solutions of  px  + (p + 1)y + (p + 2)z   =  M2  when  p =  4N + 3,  1 ≤  x, y, z  ≤  2 
In this section we consider  px  + (p  +  1)y  +  (p  +  2)z  =  M2 when  1  ≤  x, y, z  ≤  2,  and 
the primes  p  are of the form  p  =  4N  +  3. 
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Theorem  4.1.  Let  1 ≤  x, y, z  ≤  2.  Then  px  + (p + 1)y + (p + 2)z   =  M2    has:   
(i)  Infinitely many solutions when  x = y = z = 1  with primes  p  =  4N  +  3.  (ii)  Exactly 
one solution when  3  ≤  p  ≤  199  and  x = 1,  y  =  z  = 2.   (iii)  No solutions for all other 
possibilities. 
 
Proof:  When 1 ≤  x, y, z  ≤  2  and  p  =  4N  +  3  is prime, eight cases exist: 
(1)        (4N  +  3)1  +  (4N  +  4)1  +  (4N  +  5)1  =  M2. 
(2)        (4N  +  3)1  +  (4N  +  4)1  +  (4N  +  5)2  =  M2. 
(3)        (4N  +  3)1  +  (4N  +  4)2  +  (4N  +  5)1  =  M2. 
(4)        (4N  +  3)2  +  (4N  +  4)1  +  (4N  +  5)1  =  M2. 
(5)        (4N  +  3)1  +  (4N  +  4)2  +  (4N  +  5)2  =  M2. 
(6)        (4N  +  3)2  +  (4N  +  4)1  +  (4N  +  5)2  =  M2. 
(7)        (4N  +  3)2  +  (4N  +  4)2  +  (4N  +  5)1  =  M2. 
(8)        (4N  +  3)2  +  (4N  +  4)2  +  (4N  +  5)2  =  M2. 
 
Each case is considered separately, and is self-contained. 

 
(1)   The case  (4N  +  3)1  +  (4N  +  4)1  +  (4N  +  5)1  =  M2. 
        The left side of the equation yields  

  (4N  +  3)  +  (4N  + 4) + (4N  +  5)  =  12(N  +  1).                            (14) 

In  (14),  the equality  12(N  +  1)  =  M2  is true provided  N + 1 = 3a  or  N + 1  =  3a   
∙
  G 

where  a  ≥  1  is an odd integer and  G  is a product of squares only.  For instance,  when  
a = 1, 3, 5, 7,  then  N  + 1  =  3a  yields the respective primes  p  =  11, 107, 971, 8747,  
and the respective values  M  =  6, 18, 54, 162.  The values  a = 1  and  G  = 22,  a = 1  
and  G  =  42,    a  =  3  and  G   =  52  yield the respective primes  p  =  47, 191, 2699,  
and the respective values  M  =  12, 24, 90.  Evidently then, infinitely many solutions of  
the  equation  exist  in  which  4N  +  3  is prime. 
       The equation  (4N  +  3)1  +  (4N  +  4)1  +  (4N  + 5)1  =  M2  in which  4N  +  3  is 
prime has infinitely many solutions. 
 
(2)   The case  (4N  +  3)1  +  (4N  +  4)1   +  (4N  + 5)2   =  M2. 
       The left side of the equation yields 

  (4N  + 3)  +  (4N  + 4)  +  (16N2  + 40N  +  25)  =  16(N2   + 3N  +  2).            (15) 

In  (15)  the factor  (N2   +  3N  +  2)  must be a square  C2  in order for a solution to exist.  
Consider the following two consecutive squares  (N  +  1)2  and  (N  +  2)2.  The first 
square yields  (N  +  1)2  =  N2  + 2N  +  1,  whereas the second square yields  (N  +  2)2   =  
N2  + 4N + 4.  Then,  we have  

N2  +  2N  + 1  <  N2  +  3N  +  2  <  N2  +  4N  +  4                              (16) 

which implies that  N2  +  3N  +  2   ≠   C2,  since the squares on the left and right of  (16)  
are consecutive squares. 
       The equation   (4N  +  3)1 +  (4N + 4)1 +  (4N  + 5)2   =  M2  has no solutions. 
 
(3)   The case  (4N  +  3)1  +  (4N  +  4)2  +  (4N  +  5)1   =   M2. 
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        The left side of the equation yields 

   (4N  + 3) + (16N2  +  32N  + 16)  +  (4N  +  5)  =  8(2N2  +  5N  +  3).             (17) 

In  (17)  the number  8 = 23  has an odd exponent equal to  3.  If  N  is even, then the 
factor   (2N2  +   5N  +  3)  is odd,  and hence the equation has no solutions.  Therefore, if 
the equation has a solution, then  N  must be odd.  Denote  N  =  2m + 1  where  m  is an 
integer.  Then  (2N2  +  5N  +  3)  =  2(2m  +  1)2 + 5(2m  + 1)  + 3 = 2(4m2  +  9m  +  5)  
implying that  (4m2  +  9m  +  5)  must be a square  A2  for a solution to exist.   
       Consider the following two consecutive squares  (2m  +  2)2  and  (2m  +  3)2.  The 
first square yields  (2m  +  2)2  =  4m2  + 8m + 4,  whereas the second square yields  (2m  
+ 3)2  =  4m2 + 12m +  9.  Then we have  

   4m2  +  8m  +  4  <  4m2  +  9m  +  5  <  4m2  +  12m  +  9                               (18) 

implying that  (4m2 + 9m + 5) ≠ A2,  since the two squares in  (18)  are consecutive 
squares.  Thus  N  is not odd. 
 
       It follows that in (17) no value  N  exists for which  8(2N2  +  5N  + 3) is a square. 
      The equation  (4N  + 3)1 + (4N  +  4)2  +  (4N  +  5)1  =  M2  has no solutions. 
 
(4)   The case  (4N  +  3)2  +  (4N  +  4)1  +  (4N  +  5)1  =  M2. 
        The left side of the equation yields 

         (16N2  +  24N  +  9)  +  (4N  +  4)  +  (4N  +  5)  =  2(8N2  +  16N  +  9).              (19) 

In  (19),  the prime  2  has an odd exponent equal to  1.  The factor  (8N2 + 16N + 9)  is 
odd for all values  N.  It therefore follows that   2(8N2 + 16N + 9)  ≠  M2.   
       The equation  (4N  +  3)2  +  (4N  +  4)1 +  (4N  +  5)1  =  M2  has no solutions.             
 
(5)  The case  (4N  + 3)1 + (4N  +  4)2  +  (4N  +  5)2  =  M2. 
        The left side of the equation yields 

(4N  +  3) + (16N2 + 32N  + 16) + (16N2 + 40N  + 25)  =  4(8N2 + 19N  +  11). 

       When  N  =  0, 1,  the equation has no solutions.  When  N  =  2,  then  p  =  11 and  
M  =  18.  The first solution of the equation has been achieved.  For any other solution if 
such exists, it follows that  (8N2 + 19N  + 11)  =  T2  where  T  is an integer,  and  N  ≥ 3. 
All values 3 ≤  N  ≤  50 have been examined, and (8N2  + 19N  + 11)  ≠  T2.   
       The equation  (4N  +  3)1 + (4N  +  4)2  +  (4N  +  5)2  =  M2  has exactly one solution 
(N  =  2) when  0 ≤  N  ≤  50. For all primes  3 ≤  p  ≤  199,  p  = 11  is the only solution. 
 
(6)  The case   (4N  + 3)2  +  (4N  +  4)1  +  (4N  +  5)2  =  M2. 
       The left side of the equation yields 

(16N2  + 24N  + 9) + (4N  + 4) + (16N2  +  40N  +  25)  =  2(16N2  +  34N  +  19).  (20) 

The prime  2  has an odd exponent equal to  1,  and the factor  (16N2  +  34N  +  19)  is 
odd for all values  N.  Thus, the right side of  (20)  is not equal to a square. 
       The equation  (4N  +  3)2  +  (4N  +  4)1  +  (4N  +  5)2  =  M2  has no solutions. 
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(7)   The case  (4N  +  3)2  +  (4N  +  4)2  +  (4N  +  5)1  =  M2. 
         The left side of the equation yields 

 (16N2 + 24N  +  9)  + (16N2  + 32N  + 16)  +  (4N  +  5)  =  2(16N2  + 30N  + 15).   (21) 

In  (21),  the prime  2  has an odd exponent equal to  1,  and the factor  (16N2  +  30N  + 
15)  is odd for all values  N.  Hence, the right side of  (21)  is not equal to a square. 
       The equation  (4N  +  3)2  +  (4N  +  4)2  +  (4N  +  5)1  =  M2  has no solutions. 

 
(8)  The case  (4N + 3)2  +  (4N  +  4)2  +  (4N  +  5)2  =  M2. 
        The left side of the equation yields       

(16N2 + 24N + 9) + (16N2 + 32N + 16) + (16N2 + 40N + 25)  =  2(24N2  + 48N  + 25). (22) 

In  (22),  the prime 2 has an odd exponent equal to 1, and the factor  (24N2 +  48N + 25)  
is odd for all values  N.  Therefore, the right side of  (22)  is not equal to a square. 
       The equation  (4N  +  3)2  +  (4N  +  4)2  +  (4N  +  5)2  =  M2  has no solutions. 
 
       This concludes the proof of  Theorem  4.1.                                                         □ 
 
        Based on our findings for case (5), we state the following conjecture. 
 
Conjecture 1.   The equation  (4N  + 3)  +  (4N  +  4)2  +  (4N  +  5)2  =  M2  has no 
solutions for all values  N  > 50.  

5.   Conclusion 
The famous equation  px  + qy  =  z2  mentioned earliar was considered by many authors.  
The equations   px  + (p  + 1)y + (p + 2)z  =  M2  when  p  ≥  2  is prime and  1 ≤  x, y, z ≤  2  
form an extension of the previous equation.  We have shown:  (a)  A unique solution 
exists for  p  =  2  and  x  =  y  =  z  = 1. (b)  No solutions exist for all primes   p = 4N  +  1  
when 1 ≤  x, y, z  ≤  2.  (c)  When  x  =  y  =  z  =  1, infinitely many primes  p = 4N  +  3  
exist for which the equation has  a  solution.  (d)  For   x = 1,  y = z = 2,  the  equation  has  
exactly  one  solution  when 3 ≤ p ≤ 199.  (e)  No  solutions exist for all other 
unmentioned cases 1 ≤  x, y, z  ≤  2. The results were achieved in an elementary manner 
which includes our new method that uses the last digits of certain powers. 
       This is a pioneering and preliminary article in the extended direction, since to the 
best of our knowledge other authors have not considered equations such as  px  +  (p +  1)y  
+  (p  +  2)z  =  M2  for primes  p  ≥  2  when 1 ≤  x, y, z  ≤  2.  It is therefore obvious, that 
there are no references on such equations.   
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