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Abstract. In this article, we investigate the solutionshd Diophantine equatioms +
(p + 1Y + (o + 2F = M*for primesp > 2when K x,y,z < 2. We establish : (i)
Whenp = 2 andx =y = z = 1, the equation has a unique solution. \(lhenp =
AN+ 1 and 1< x, Y,z < 2, the equations have no solutions. (iii) Wher= 4N + 3
andx =y = z = 1, the equation has infinitely many solutioffis) When 3< p< 199
and x = 1,y = z = 2, the equation has exactly one solutior). Ifvall other cases
1< x,y,z < 2 which are not mentioned above, the equatians ho solutions.

Keywords: Diophantine equations
AMS Mathematics Subject Classification (2010): 11D61

1. Introduction
The field of Diophantine equations is ancient, yvastd no general method exists to
decide whether a given Diophantine equation hassahyions, or how many solutions.
The famous general equation
P+ g =7
has many forms. The literature contains a vergeatumber of articles on non-linear
such individual equations involving particular pasnand powers of all kinds.
In this asticle, we extend the above equnatmod considep*+ (p + 1) + (p + 2f
= M? for primesp > 2, integersx, y, z where 1< x,y,z < 2. The valueM is a
positive integer. We employ our new method whiceathe last digits of certain
powers. We establish the solutions for all valuey, z above. As in such equations,
cases of infinitely many solutions, no solutionesaand unique solutions are determined.
The primesp=2, p =4N+1 andp= 4N + 3 are respectively discussed in
Sections 2, 3 and 4. All the theorems and #ses within are self-contained.

2. All thesolutionsof p*+ (p+1)’+(p +2*=M? when p=2, 1 < x,y,z< 2
In this section all the solutions of equatioh ® 3 + 4 = M? are determined.
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Theorem 2.1. Let 1 < x, v,z < 2. Then the equation*2+ 3 + 4 = M? has a
unique solution wherx =y = z = 1. In all other cases, the equation has hdisas.

Proof: When 1< x,y,z < 2, the eight cases of & 3 + 4 = M? are listed below.
(1) 2+3+4=3 =M
(2) 2+3+4=21+ M.

(3) 2+F+4 =15+ M~
(4) Z2+3+4 =11+ M2
(5) 2+F+ £ =27+ M2
(6) Z2+3 +4=23+ M~

@) 2+3+4 =17+ M
(8) Z2+3+#=29+ M2

It follows that cas€l) whenx =y = z = 1 yields a solution for whictv = 3,
whereas in all other cas€g) —(8) the equation has no solutions as asserted.

This completes the proof of Theorem 2.1. o
3. All thesolutionsof p+ (p+1)+(p+2)*= M?> when p= 4N+1, 1< x,y,z<2
Here we considep” + (p + 1) + (p + 2f = M?for all primes of the formp = 4N + 1,

when 1< x,y,z< 2. We establish in Theorem 3.1 that the egoatimve no solutions.

Theorem 3.1. Let 1< x,y,z < 2. If p= 4N+ 1, no solutions exist fop* + (p + 1)
+ (p + 2f= M~

Proof: When 1< x,y,z <2 andp =4N + 1 is prime, eight cases exist:

(1) (@A A+ 1+ AN+ 20+ N+ 3 =M
(2 (AN + 1 + (AN +2f + (N +3F = M
(3 (AN + 1) + (AN +2F + (N + 3 =M
(49 (AN A+ 1+ (AN + 2]+ (N + 3 =M
(5) (AN + 1) + (AN + 2f + (AN + 3f =M’
(6) (AN + IF + (AN + 2] + (N + 3F = M?
(1) (AN +1F + (N + 2 + (N + 3] =M’
(8 (AN + 1f + (AN + 2F + (AN + 3f =M

Each of these cases is considered separatelys @etf-icontained.
(1) Thecase (4 +1) + (AN + 2} + (AN + 3} = M2
The left side of the equation yields
(AN +1) + N+ 2) + (N +3) = 1N + 6 = 6(N + 1).

The prime 2 in the factor 6 has an odd expoagunalto 1. Since K2 + 1) is odd, it
follows that 6(A + 1) is not a square.
The equation (& + 1} + (AN + 2} + (4 + 3} = M? has no solutions.

(2) Thecase (4 +1)'+ (AN + 2} + (AN + 3f = M2

42



Solutions of the Diophantine Equatiop&+ (p + 1) + (p + 2F = M? for Primesp> 2
when 1< x,y,z2 < 2

The left side of the equation yields
(AN + 1)+ (N + 2) + (16 + 24\ +9) = 4(4% + 8N + 3).
If the product 4(K° + 8N + 3) equals a squaé®, then (42 + 8N + 3) must satisfy
N+ 8N+3 =T 1)
Consider the even squareN (2 2F = 4\ + &N + 4 = Q% If for some valueN,
there exists a valud satisfying (1), we have
Q°-TP = AP+ N+ 4) - @A +&N+3 =1

which is impossible since no two squares differhyHence (1) is false.
The equation 4 + 1) + (AN + 2} + (4 + 3¥ = M? has no solutions.

(3) Thecase (4 + 1)} + (AN + 2F + (AN + 3} = M?%
The left side of the equation yields
(N +1)+ (107 + 16N + 4) + (AN +3) = 8(A*+ 3N +1). (2)

We shall assume that 82+ 3N + 1) = M? and reach a contradiction. Sinté* is
even, denoteM = 2T whereT is an integer and® = 4T% From (2) we then obtain

R+ AN +1) = T2 (3)
If N is even, then 2 with an odd exponent equal &md (N? + 3N + 1) being odd
imply that (3) is impossible. Therefore by ogsamptionN is odd. DenoteN = 2m
+ 1 wherem is an integer. From (3) we obtain

TP=22N?+ N+ 1) =222m+ 1F + 3@+ 1) + ) =44+ m+3)  (4)
where in (4) it follows that (#+ 7m + 3) = R

Consider the following two consecutive squafes= (2m+ 1Y and A+ 1f =
(2m + 2Y. The first square yields 2+ 1 = 4n? + 4m + 1, whereas the second square
yields (n+ 2f = 4n? + 8m+ 4. Then we have

A =4t +4dm+1<4’+Tm+3<&P+8n+4 = A+ 1Y (5)

which clearly implies that @& + 7m + 3) # R since the squares on the left and right
of (5) are two consecutive squares. Our assomfs therefore false.
The equation [+ 1) + (4N + 2 + (4N + 3)' = M? has no solutions.

(4) The case (4+ 1F + (AN +2) + (4N + 3)' = M2
The left side of the equation yields
(16N + 8N + 1) + (N + 2) + (N + 3) = 2(8°+ 8N + 3).

The prime 2 has an odd exponent equal to 1ceSi(B\* + 8N + 3) is always odd,
therefore 2(B + 8N + 3) is not a square.
The equation M+ 1Y + (4N +2)' + (4N + 3 =M? has no solutions.

(5) The case (4+ 1)+ (4N +2Y + (4N + 3f = M2
The left side of the equation yields
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(4N + 1) + (16N° + 16N + 4) + (16N> + 24N + 9) = 2(16% + 2N + 7).

The prime 2 has an odd exponent equal to 1ceS{@N’ + 2N + 7) is always odd,
hence 2(18° + 2N + 7) is not a square.
The equation [+ 1)' + (4N + 2 + (4N + 3¥ = M? has no solutions.

(6) The case (d4+ 1F + (4N + 2) + (4N + 3Y = M2
The left side of the equation yields

(16\Z + 8N+ 1) + (AN +2) + (16N° + 24N +9) = 4B+ N+3). (6)

We shall assume that for some valueN, 4(8\° + 9N + 3) = M? and reach a
contradiction. SinceM? is even, denotél = 2T whereT is an integer andi® = 4T,
Thus from (6) we have

8N?+ ON + 3 =T (7

Suppose thad is even.
Then T2 is odd. One could easily verify that each cyfléive consecutive even values
N = 2,4,6,8, 10, ..., yields five respectiaues T? which end in the digits 3,7, 5,
7, 3. An odd squard? cannot end in the digits 3 and 7. Therefare shall consider
only the case in whictN ends in the digit 6. Denote b = 1K + 6 all the
integers whose last digit is equal to 6, wheke > 0 is an integer. From (7) we
obtain

8(1& + 6) + 9(1K + 6) + 3= 5(16B*+ 21K + 69) =T (8)

In (8), the prime 5 has an odd exponent equdl.t Since % (16(K? + 21K + 69), it
follows that 5(168° + 21K + 69) # T2 and (8) is false wheN is even.

Suppose thatl is odd.
Then T2 is even. It is clearly seen that each cycléwef €onsecutive odd valued = 1,
3,5,7,9, ..., yields five respective valug&s which end in the digits 0, 2, 8, 8, 2. An
even square T> cannot end in the digits 2 and 8. Hence, val slonsider only the
case in whichN ends in the digit 1. Denote by = 1K + 1 all integers whose last
digit is equal to 1, whereK > O is an integer. From (7) we have

8(1KK + 1F + 9(1K + 1) + 3= 10(8B? + 25K + 2) = T~ (9)

In (9) 10 = 2-5', where the prime 5 has an odd exponent equéal tand % (80K* +
25K + 2). Therefore, wheiN is odd, then8? + 9N + 3# T2 and (9) is false.

We have shown that no vallé exists which satisfies the equationN(4+ 1Y +
(4N + 2 + (4N + 3¢ = M2 This contradicts our assumption.
The equation [+ 1F + (4N + 2)' + (4N + 3¥ = M? has no solutions.

(7) Thecase (4+ 1F + (4N + 2 + (4N + 3} = M?%
The left side of the equation yields
(16N% + 8N + 1) + (16N> + 16N + 4) + (N + 3) = 4(8° + N + 2). (10)
We shall assume that for some vale4(8\N? + 7N + 2) =M? and reach a contradiction.

Since M? is even, denotél = 2T where T is an integer andi®> = 4T% Hence from
(10) we obtain
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N8+ 7N+2=T (11)

We shall consider two cases, namélyis even and\ is odd.

Suppose thad is even.
Then T? is even. It is easily verified that each cycldive consecutive even value
= 2,4,6,8, 10, ..., yields five respective ealur’ which end in the digits 8, 8, 2, 0,
2. An even squar€l? cannot end in the digits 8 and 2. Therefoeesivall consider
only the case in whiciN ends in the digit 8. Denote by = 1K + 8 all the integers
whose last digit is equal to 8, wheike> 0 is an integer. From (11) we have

8(1K + 8F + 7(1XK + 8) + 2 = 5(16B% + 27K + 114) =T~ (12)

In (12), the prime 5 has an odd exponent equdl. Since 5 (160K + 27K + 114),

it follows that 5(166° + 27 + 114) # T? and (12) is false wheN is even.
Suppose thad is odd.

Then T2 is odd. One can easily see that each cyclevefddnsecutive odd valuds =

1,3,5,7,9, ..., yields five respective valu€s which end in the digits 7, 5, 7, 3, 3.

An odd squareT? does not end in the digits 7 and 3. Henceshed consider only the

case in whiciN ends in the digit 3. Denote By = 1K + 3 all the integers whose last

digit is equal to 3, wher& > O is an integer. From (11) we then obtain

8(1K + 3P + 7(1K + 3) + 2 = 5(16R%+ 11K +19) =T (13)

In (13), the prime 5 has an odd exponent equdl. Since % (16(K*+ 11K + 19),
it follows that 5(1682 + 110K + 19) # T? and (13) is impossible wheN is odd.

We have shown that no valde exists which satisfies the equatiorN@® 1F + (4N
+2¢ + (4N + 3} = M% This contradicts our assumption.
The equation M + 1F + (4N +2f+ (4N + 3} = M? has no solutions.

(8) Thecase (4 + 1Y+ (4N + 2F + (4N + 3¥ = M-
The left side of the equation yields
(16N° + 8N +1) + (16\° + 16N + 4) + (16\° + 24N + 9) = 2(28% + 24N + 7).

The prime 2 has an odd exponent equal to 1ceS{@4? + 24 + 7) is always odd,
it follows that 2(24% + 24N + 7) is not a square.
The equation M + 1F + (AN + 2f + (4N + 3¥ = M? has no solutions.

The proof of Theorem 3.1 is complete. O
Remark 3.1. It is worthy of remark thatp = 4N + 1 is prime was not used at all in

the proofs of the eight cases. Therefore, thelteesbtained in Theorem 3.1 are valid
for all primes of the form M + 1 as well as for all composites of this form.

4. Solutionsof p*+ (p+1)+(p+2)°= M? when p= 4N+3, 1< x,y,z< 2
In this section we considgr” + (p + 1) + (@ + 2f = M*when 1< x,y,z < 2, and
the primesp are of the formp = AN + 3.
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Theorem 4.1. Let 1< x,y,z < 2. Thenp*+ (p+ 1) + (p + 2f = M? has:

() Infinitely many solutions whenx=y=z=1 with primesp = 4N + 3. (ii) Exactly
one solution when X p < 199 andx=1,y =z =2. (iii) No solutions for all other
possibilities.

Proof: When 1< x,y,z < 2 andp = 4N + 3 is prime, eight cases exist:
(1) (N + 3 + (AN + 4 + (AN + 5} =M
(2) (N + 3} + (AN + 4} + (AN + 5F = M2
(3) (N + 3} + (AN + 4F + (AN + 5} = M2
(4) (N + 3F + (AN + 4 + (AN + 5} = M2
(5) (N + 3} + (AN + 47 + (AN + 57 = M2
(6) (N + 3 + (AN + 4} + (AN + 5F = M2
(7) (N + 3F + (AN + 47 + (AN + 5} = M2
(8) (N + 3F + (AN + 47 + (AN + 57 = M2

Each case is considered separately, and is sefficed.

(1) Thecase (4 + 3} + (AN + 4} + (N + 5} = M2
The left side of the equation yields

(AN + 3) + (N +4)+(N +5) =124 + 1). (14)

In (14), the equality 1R( + 1) = M? is true providedN+1=3 or N+1 = 3 -G
where a > 1 is an odd integer an@ is a product of squares only. For instance, nwhe
a=1,3,5,7, thertN +1 = 3 yields the respective primgs = 11, 107, 971, 8747,
and the respective value® = 6, 18, 54, 162. The values=1 andG =2, a=1
and G = #, a = 3 andG = 5 yield the respective primep = 47, 191, 2699,
and the respective valudd = 12, 24, 90. Evidently then, infinitely many stbns of
the equation exist in whichN4+ 3 is prime.

The equation M + 3) + (4N + 4) + (4N +5)' = M? inwhich N + 3 is
prime has infinitely many solutions.

(2) Thecase M + 3) + (AN + 4) + (4N +5¢ = M2
The left side of the equation yields
(4N +3) + (N +4) + (16> + 40N + 25) = 16¢° + 3N + 2). (15)

In (15) the factor N> + 3N + 2) must be a squai@® in order for a solution to exist.
Consider the following two consecutive squardé € 1f and N + 2f. The first
square yieldsN + 1f = N> + 2N + 1, whereas the second square yieNs+(2f =
N° + 4N + 4. Then, we have

N>+ N +1 <N°+ N +2<N°+ N + 4 (16)

which implies thatN? + 3N + 2 # C? since the squares on the left and right of (16)
are consecutive squares.
The equation [N+ 3)+ (4N+4) + (4N +5F = M? has no solutions.

(3) Thecase M + 3} + (AN + 4 + (AN + 5} = M2
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The left side of the equation yields
(4N +3)+ (16> + 3N +16) + (A + 5) = 8(A? + N + 3). (17)

In (17) the number 8 =*2has an odd exponent equal to 3. Nf is even, then the
factor (N° + SN + 3) is odd, and hence the equation has ndisns. Therefore, if
the equation has a solution, théh must be odd. Denotdl = 2n+ 1 wherem is an
integer. Then (& + BN + 3) = 2(In + 1f+5(@ +1) +3=2(° + 9n + 5)
implying that (4% + 9n + 5) must be a squa# for a solution to exist.

Consider the following two consecutive s@sar@Zn + 2f and (In + 3. The
first square yields (@ + 2f = 4% + 8n+ 4, whereas the second square yields (2
+3Y = 4+ 12m+ 9. Then we have

4 + M+ 4 <4+ M+ 5< 4” + 1+ 9 (18)

implying that (40° + 9m + 5) # A% since the two squares in (18) are consecutive
squares. Thu$\ is not odd.

It follows that in (17) no valu®l exists for which 8(%? + 5N + 3) is a square.
The equation (4 +3)' + (4N + 4¥ + (4N + 5} = M? has no solutions.

(4 Thecase M + 3f + (AN + 4} + (AN + 5} = M2
The left side of the equation yields

(A + 2N + 9) + (N + 4) + (N + 5) = 2(8° + 16N + 9). (19)

In (19), the prime 2 has an odd exponent equal. The factor (8% + 16N + 9) is
odd for all valuesN. It therefore follows that 2(& + 16N + 9) # M2
The equation (& + 3f + (AN + 4)+ (4N + 5} = M? has no solutions.

(5) Thecase (M +3) + (4N + 4f + (4N + 5F = M2

The left side of the equation yields

(4N + 3) + (16 + 3N + 16) + (160° + 40N +25) = 4(8F + 1N + 11).

WhenN = 0, 1, the equation has no solutions. Win= 2, thenp = 11 and
M = 18. The first solution of the equation hasrbachieved. For any other solution if
such exists, it follows that K& + 19N + 11) =T? where T is an integer, andN > 3.
All values 3< N < 50 have been examined, andli{8+ 1N + 11) # T%

The equation 4 + 3} + (4N + 4¥ + (AN + 5¢ = M? has exactly one solution
(N = 2)when & N < 50. For all primes 8 p < 199, p =11 is the only solution.

(6) Thecase (4 +3F + (AN + 4} + (4N + 5% = M2
The left side of the equation yields
(16N? + 24N +9) + (N +4) + (16 + 40N + 25) = 2(1B2 + 34N + 19). (20)

The prime 2 has an odd exponent equal to 1,thenthctor (187 + 34N + 19) is
odd for all valuesN. Thus, the right side of (20) is not equal saare.
The equation 4 + 3¥ + (4N + 4} + (4N + 5F = M? has no solutions.
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(7) Thecase M + 3f + (AN + 4¥ + (AN + 5} = M2
The left side of the equation yields

(16N?+ 24N + 9) + (168 + 3N +16) + (M + 5) = 2(16 + 3N +15). (21)

In (21), the prime 2 has an odd exponent eiqudl, and the factor (M3 + 3N +
15) is odd for all valuedN. Hence, the right side of (21) is not equad &quare.
The equation (& + 3f + (AN + 4Y + (4 + 5} = M? has no solutions.

(8) Thecase M+ 3F + (AN + 4f + (AN + 5f = M2
The left side of the equation yields

(16N? + 24N + 9) + (16N + 32N + 16) + (16V°+ 40N + 25) = 2(28° + 48\ + 25). (22)

In (22), the prime 2 has an odd exponent equa) émd the factor (N + 48N + 25)
is odd for all valuesN. Therefore, the right side of (22) is not eqoah square.
The equation (& + 3f + (AN + 4Y + (4 + 5§ = M? has no solutions.

This concludes the proof of Theorem 4.1. O
Based on our findings for case (5), weestia¢ following conjecture.

Conjecturel. The equation (¢ +3) + (N + 4F + (4N + 5f = M? has no
solutions for all valuesN > 50.

5. Conclusion
The famous equatiop® + ¢ = Z mentioned earliar was considered by many authors.
The equationsp*+ (p + 1) + (p+ 2Ff = M? whenp > 2 isprimeand % x y,z< 2
form an extension of the previous equation. Weehsivown: (a) A unique solution
exists forp = 2 andx =y = z = 1. (b) No solutions exist for all primep=4N + 1
when 1< x,y,z < 2. (¢) Whenx =y = z = 1, infinitely many primesp =4N + 3
exist for which the equation has a solution. ky x=1, y=z=2, the equation has
exactly one solution when 8 p < 199. (e) No solutions exist for all other
unmentioned cases<l X, Yy, z < 2. The results were achieved in an elementarynaran
which includes our new method that uses the lggtsdof certain powers.

This is a pioneering and preliminary artiatethe extended direction, since to the
best of our knowledge other authors have not censtequations such @ + (p + 1)
+ (p + 2Y = M?for primesp > 2 when K x,y,z < 2. ltis therefore obvious, that
there are no references on such equations.
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